文档库 最新最全的文档下载
当前位置:文档库 › Millisecond Pulsars in X-Ray Binaries

Millisecond Pulsars in X-Ray Binaries

a r

X

i

v

:a

s t

r o

-

p

h

/

4

8

4v

1

3

J u

l

2

4

Binary Radio Pulsars ASP Conference Series,Vol.TBD,2004eds.F.A.Rasio &I.H.Stairs Millisecond Pulsars in X-Ray Binaries Deepto Chakrabarty Department of Physics and Center for Space Research,Massachusetts Institute of Technology,Cambridge,MA 02139Abstract.Despite considerable evidence verifying that millisecond pul-sars are spun up through sustained accretion in low-mass X-ray binaries (LMXBs),it has proven surprisingly di?cult to actually detect millisec-ond X-ray pulsars in LMXBs.There are only 5accretion-powered mil-lisecond X-ray pulsars known among more than 80LMXBs containing neutron stars,but there are another 11“nuclear-powered”millisecond pulsars which reveal their spin only during brief,thermonuclear X-ray bursts.In addition,2of the accretion-powered pulsars also exhibit X-ray burst oscillations,and their unusual properties,along with the absence of persistent pulsations in most LMXBs,suggest that the magnetic ?elds in many LMXBs may be hidden by accreted material.Interestingly,the nuclear-powered pulsars o?er a statistically unbiased probe of the spin distribution of recycled pulsars and show that this distribution cuts o?sharply above 730Hz,well below the breakup spin rate for most neutron star equations of state.This indicates that some mechanism acts to halt or balance spin-up due to accretion and that submillisecond pulsars must be very rare (and are possibly nonexistent).It is unclear what provides the necessary angular momentum sink,although gravitational radiation is an attractive possibility.1.Introduction Since the discovery of the ?rst millisecond radio pulsar (Backer et al.1982),it

has been believed that these old,weak-?eld (~108G)pulsars were spun up to millisecond periods by sustained accretion onto neutron stars in low-mass X-ray binaries (NS/LMXBs;Alpar et al.1982).It is known from accretion torque theory (e.g.,Ghosh &Lamb 1979)and from observations of strong-?eld (>1011G)accreting neutron stars (Bildsten et al.1997)that steady disk accretion onto a magnetized neutron star will lead to an equilibrium spin period

P eq ~1s B

10?9M ⊙yr ?1

?3/7

,(1)

where B is the pulsar’s surface dipole magnetic ?eld strength and ˙M is the mass accretion rate.Also,most neutron stars in LMXBs are old and have weak magnetic ?elds,based both on the occurrence of thermonuclear X-ray bursts (which require B <1010G;see Joss &Li 1980)and on their X-ray spectral

1

2Deepto Chakrabarty

(Psaltis&Lamb1998)and timing properties(see,e.g.,van der Klis2000). Thus,as long as we accept that sustained accretion onto neutron stars can somehow attenuate their strong birth?elds down to~108G strengths(see, e.g.,Bhattacharya&Srinivasan1995),it is natural to expect neutron stars in LMXBs to be spinning at millisecond periods.(Note that although the general trend of Equation(1)is expected to extend down to108G,the precise power-law dependences are likely to be modi?ed;see Psaltis&Chakrabarty1999).

A robust prediction of this model is that the neutron stars in LMXBs should be X-ray pulsars,since a108G?eld should be strong enough to truncate the Keplerian accretion disk and channel its?ow onto the neutron star’s magnetic poles.However,the detection of accretion-powered millisecond X-ray pulsars proved elusive for nearly two decades,with a series of X-ray missions failing to detect millisecond pulsations from NS/LMXBs down to stringent upper limits on the pulsed fraction(e.g.,Vaughan et al.1994).The launch of the Rossi X-Ray Timing Explorer(RXTE;Bradt,Rothschild,&Swank1993;Jahoda et al.1996) in December1995?nally provided an instrument with su?cient?exibility and sensitivity to detect SAX J1808.4?3658,the?rst accretion-powered millisecond X-ray pulsar(Wijnands&van der Klis1998;Chakrabarty&Morgan1998), as well as several additional examples(see Table1).A key element proved to be the highly?exible pointing and scheduling ability of RXTE.The Galactic X-ray sky is highly variable,with some sources lying dormant for years and only intermittently becoming active in X-ray emission.The combination of having both the RXTE All Sky Monitor to determine when an X-ray transient becomes active and the ability to rapidly repoint the main RXTE instruments at a newly active source were crucial in enabling the discovery of millisecond X-ray pulsars.

Along the way,RXTE detected other classes of rapid X-ray variability which also point to millisecond spins for these neutron stars but which also raised a number of new questions about the underlying physics.

https://www.wendangku.net/doc/d015341094.html,lisecond Variability in Accreting Neutron Stars

RXTE has identi?ed three distinct classes of millisecond variability in accreting neutron stars:

?Kilohertz quasi-periodic oscillations(kHz QPOs)(van der Klis et al.1996;see van der Klis2000for a review):These are pairs of relatively high-Q peaks in the X-ray intensity power spectrum whose frequencies drift by hundreds of hertz(200–1200Hz)as the source intensity varies,but whose separation frequency(typically a few hundred Hz)remains roughly constant(see example in left panel of Figure1).This approximate sepa-ration frequency has a unique,reproducible value for each of the over20 NS/LMXBs in which this phenomenon is observed.These oscillations are believed to arise in the inner accretion disk?ow,where the dynamical time scale is of order milliseconds.

?X-ray burst oscillations(Strohmayer et al.1996;see Strohmayer& Bildsten2004for a review):These are nearly coherent millisecond oscil-lations observed only during thermonuclear X-ray bursts(which typically last~10s).The observed frequencies drift by a few Hz over~5s during

Millisecond Pulsars in X-Ray Binaries3

Figure1.Left:Power spectrum of X-ray intensity showing kHz QPO pair in Sco X-1.Adapted from van der Klis et al.(1997).Right:X-ray

burst oscillations in4U1702?43.The solid histogram shows the X-ray intensity history of the X-ray burst.The contours show the Fourier

power level as a function of frequency and time,indicating a drifting

oscillation starting at328Hz(t=7s)and ending at330.5Hz.Adapted from Strohmayer&Markwardt(1999).

the bursts,asymptotically reaching a maximum frequency that is unique

and reproducible for each of the13sources in which this phenomenon is observed(see right panel of Figure1).These maximum frequencies lie

in the270–619Hz range.The oscillation(at least at the burst onset)is

understood as a temperature anisotropy caused by the nuclear burning, with the frequency drift interpreted as angular momentum conservation in

a cooling,decoupled burning layer on the stellar surface(Strohmayer et al.

1997;Cumming&Bildsten2000).Since their discovery,it was suspected that the millisecond oscillations were somehow tracing the stellar spin,

but until recently there was some question about whether the oscillations might be a harmonic of the spin.A list of these sources is given in Table1.?Persistent accretion-powered pulsations(Wijnands&van der Klis 1998;see Wijnands2004for a review):These are the objects originally expected by the recycling hypothesis,NS/LMXBs whose persistent(non-

burst)emission contains coherent millisecond pulsations(see example in

Figure2).Oddly,all?ve of the these pulsars(see Table1)are in soft X-ray transients:accreting systems that lie dormant for years,with inter-mittent outbursts of accretion lasting about a month(these outbursts are understood to arise from an accretion disk instability;see Frank,King,& Raine2002).Moreover,all?ve also have very short orbital periods1and very low mass accretion rates.Also,the pulsed amplitude of these systems

4Deepto Chakrabarty

Figure2.Fourier power spectrum showing coherent401Hz X-ray

pulsations in the persistent pulsar SAX J1808.4?3658.The inset shows

the highly sinusoidal pulse pro?le.Adapted from Wijnands&van der

Klis(1998).

is about6percent,while the upper limit on the pulsed amplitude for most

NS/LMXBs is1per cent or less,raising the question of what is di?erent about this group of5pulsars:why is it so di?cult to?nd persistent mil-

lisecond pulsations in most NS/LMXBs?It should be noted that none of the millisecond X-ray pulsars has been detected as a radio pulsar.

While both kHz QPOs and X-ray burst oscillations are often observed in the same source,until2002neither phenomena had ever been observed in accretion-

powered millisecond pulsar.Since it was only in this latter class that the neutron star spin was de?nitively known,the relationship between these three classes

of variability was not clear.Still,some patterns were clear.In particular, the separation frequency?νkHz organized the burst oscillation sources into two groups:the slow oscillators(withνburst<400Hz)all haveνburst≈?νkHz, while the fast oscillators(withνburst>500Hz)all haveνburst≈2?νkHz.The photospheric radius expansion properties of the X-ray bursts also divide along

these lines,with fast oscillations occurring preferentially in radius expansion bursts(Muno,Galloway,&Chakrabarty2004).Since both?νkHz andνburst are reproducible characteristics of a given source and the most likely mechanism for such a stable frequency is the stellar spin,there was considerable debate as to whether it is?νkHz orνburst that is the fundamental spin frequency.

This question was?nally settled by the detection in kHz QPOs in two accretion-powered X-ray pulsars in2002and2003.In the rapid rotator SAX J1808.4?3658,?νkHz is half the401Hz spin frequency(Wijnands et al.2003); while in the slow rotator XTE J1807?294,?νkHz roughly equals the190Hz spin frequency(Markwardt et al.2004),verifying the odd phenomenology described above.(The possibility that the spin frequency in SAX J1808.4?3658is actually

Millisecond Pulsars in X-Ray Binaries5 200.5Hz was excluded by the very stringent non-detection of pulsations at this frequency;see Morgan et al.2004.)In addition,X-ray burst oscillations were also detected in the401Hz pulsar SAX J1808.4?3658(Chakrabarty et al.2003) and the314Hz pulsar XTE J1814?338(Strohmayer et al.2003);in both cases,νburst was equal to the spin frequency.

These new observations lead to three conclusions:

?X-ray burst oscillations directly trace the neutron star spin(and are not higher harmonics of a fundamental),and may thus be thought of as nuclear-powered pulsations.

?The kHz QPO separation frequency?νkHz is sometimes roughly the spin frequency(in slow rotators)and sometimes roughly half the spin frequency (in fast rotators).The origin of these QPOs is uncertain,but the under-lying mechanism clearly has some coupling to the stellar spin.

?Most neutron stars in LMXBs are indeed spinning at millisecond periods, but for some reason only a small fraction of them are visible as persistent, accretion-powered millisecond pulsars.

This last point is puzzling,since one would expect a108G accreting neutron star to be a pulsar.There have been several possible explanations discussed for why most NS/LMXBs are not pulsars.One possibility is that the most of the NSs have magnetic?elds that are too weak to channel the accretion?ow,although there is evidence for radio pulsars with?elds much weaker than108G.Another possibility is that the neutron stars in non-pulsing LMXBs are surrounded by a scattering medium that attenuates pulsations(Brainerd&Lamb1987;Kyla?s &Phinney1989).Indeed,Titarchuk,Cui,&Wood(2003)have recently argued that the data support this argument,although there is not yet a consensus on this point(Heindl&Smith1998;Psaltis&Chakrabarty1999).A third possibility is that gravitational self-lensing might attenuate the pulsations(Wood,Ftaclas,& Kearney1988;Meszaros,Ri?ert,&Berthiaume1988).In the next section,I will discuss recent evidence that suggests that magnetic?eld strength may indeed be the relevant factor.

3.SAX J1808.4?3658:Evidence for a Range of LMXB Magnetic

Field Strengths

It is instructive to compare the behavior of the X-ray burst oscillations observed in the pulsar SAX J1808.4?3658with those observed in the non-pulsing LMXBs. In SAX J1808.4?3658,strong millisecond oscillations around the401Hz spin frequency were observed during4X-ray bursts in2002,with very similar char-acteristics in each burst(Chakrabarty et al.2003).An example is shown in Figure3.First,a rapidly drifting oscillation(increasing from397to403Hz) was detected during the burst rise.Second,no oscillations were detected during the radius expansion phase of the burst(typical of other burst oscillation sources as well).Finally,a strong oscillation reappeared during the cooling phase of the burst,at a constant frequency nearly equal to the spin frequency(which was known precisely from the pre-burst persistent pulsations),but exceeding it by one part in70000.

6Deepto Chakrabarty

Figure3.X-ray burst oscillation in the pulsar SAX J1808.4?3658.

The histogram shows the X-ray intensity during the thermonuclear X-

ray burst.The contours show the Fourier power levels as a function of

frequency and time.The horizontal dotted line indicates the(known)

pulsar spin frequency.A rapidly drifting oscillation is detected during

the burst rise and overshoots the spin rate.A stationary oscillation near

the spin rate is detected in the burst tail.Adapted from Chakrabarty

et al.(2003).

This observed frequency drift demonstrates that this is a similar phenomena as the burst oscillations observed in other(non-pulsing)neutron stars,although the oscillations in SAX J1808.4?3658have some very unusual traits:the drift time scale is an order of magnitude faster than in the other neutron stars(com-pare right panel of Figure1),and the maximum oscillation frequency is reached during the burst rise,inconsistent with angular momentum conservation in a cooling,contracting burning shell.In fact,as evident in Figure3,the oscillation overshoots the spin frequency during the burst rise.The rapid,overshooting drift probably indicates that SAX J1808.4?3658has a stronger magnetic?eld than the other burst oscillation sources(Chakrabarty et al.2003),since a su?ciently strong?eld will suppress rotational shearing in the burning layer and may act as a restoring force.Strohmayer et al.(2003)also interpreted the frequency evolution of the burst oscillations in the pulsar XTE J1814?338as evidence for a stronger than normal magnetic?eld in that LMXB.

This magnetic?eld argument is particularly appealing given that only SAX J1808.4?3658and XTE J1814?338,among a total of13burst oscillation sources (and two of only?ve systems out of a total of over80NS/LMXBs),show persis-tent pulsations in their non-burst emission.The absence of persistent pulsations in most of these systems suggests that they lack a su?ciently strong magnetic

Millisecond Pulsars in X-Ray Binaries7?eld for the accretion?ow to be magnetically channeled.Indeed,it has been proposed that the absence of persistent pulsations in most NS/LMXBs is due to diamagnetic screening of the neutron star magnetic?eld by freshly accreted material,which would occur above a critical value of˙M at a few percent of the Eddington rate(Cumming,Zweibel,&Bildsten2001).In this context,it is interesting to note that all?ve of the persistent millisecond X-ray pulsars like at the low end of the˙M-distribution for LMXBs.Thus,while all the NS/LMXBs may have underlying surface?eld strengths of~108G(see,e.g.,Psaltis& Chakrabarty1999),it may be that the non-pulsing LMXBs have e?ective?eld strengths that are much lower due to screening by accreted material.Presum-ably,the underlying?eld would emerge when the accretion eventually halts; thus,this idea is still consistent with the absence of millisecond radio pulsars with?elds much weaker than108G.

4.The Underlying Spin Distribution of Recycled Pulsars

Having observationally veri?ed that millisecond pulsars are spun up or“recy-cled”in LMXBs,it is interesting to ask what the underlying spin distribution of recycled pulsars is,and whether there is any limit to the recycling process. One might expect the distribution of spin frequencies to simply re?ect the range of equilibrium spins corresponding to the magnetic?eld strength distribution in LMXBs.However,if the e?ective?eld strength of most NS/LMXBs is consider-ably below108G as discussed above,then the resulting boundary layer accretion onto the neutron star might be capable of spinning up the pulsar to submillisec-ond periods.Certainly,a strict upper limit on the neutron star spin rate is given by the centrifugal breakup limit,up to3kHz depending upon the neutron star equation of state(Cook,Shapiro,&Teukolsky1994;Haensel,Lasota,&Zdunik 1999).

Although the substantial known population of millisecond radio pulsars in principle provides an ideal probe of the spin distribution of recycled pul-sars,severe observational selection e?ects have historically made it di?cult to make a statistically accurate estimate.However,the burst oscillation sources (nuclear-powered pulsars)are an ideal probe:they are bright and easily detected throughout the Galaxy,their signals are short-lived enough to avoid modulation losses due to orbital Doppler smearing,and RXTE has no signi?cant selection e?ects against detecting oscillations as fast as2kHz.

The spin frequencies(see Table1)of the13known nuclear-powered millisec-ond pulsars are plotted in Figure4.(The three non-bursting,accretion-powered millisecond pulsars are omitted to keep the sample unbiased.)The spins are consistent with a uniform distribution within the observed270–619Hz range. The absence of any pulsars at lower frequencies is not surprising,since such low equilibrium spin rates would require somewhat higher magnetic?eld strengths, which would then suppress the thermonuclear X-ray bursts necessary for burst oscillations.However,the absence of spins above619Hz is extremely signi?cant, given that there is no signi?cant loss of RXTE sensitivity out to2kHz.Under the simple assumption of a uniform distribution out to some maximum value, the observed distribution yields an maximum spin frequency of730Hz(95% con?dence;Chakrabarty et al.2003).This limit is consistent with the fastest

8Deepto Chakrabarty

Figure4.The spin frequency distribution of nuclear-powered mil-

lisecond X-ray pulsars.There is a sharp drop o?in the population

at spins above730Hz.RXTE has no signi?cant selection e?ects

against detecting oscillations as fast as2000Hz,making the absence of

fast rotators extremely statistically signi?cant.Based on results from

Chakrabarty et al.(2003).

known millisecond radio pulsar,PSR B1937+21,which has P spin=641Hz.This limit is also well below the breakup frequency for nearly all equations of state for rapidly rotating neutron stars.Recent radio pulsar surveys,in which selection e?ects are accounted for,are independently?nding similar evidence for a max-imum spin frequency around700Hz,as reported at this meeting(McLaughlin et al.2004;Camilo2004).

It is thus clearly demonstrated observationally that the population of pul-sars with spins above730Hz must drop o?dramatically(although not neces-sarily to zero:the existence of submillisecond pulsars is not excluded,but such objects are evidently at best very rare).It remains unclear what causes this drop o?.Magnetic spin equilibrium can only account for the observed distribution if the entire sample has surface magnetic?eld strength~108G.However,as noted above,?elds this strong should be dynamically important for the accretion?ow and lead to persistent millisecond pulsations,making it di?cult to understand the lack of pulsations in most NS/LMXBs and instead suggesting a wider range of magnetic?eld strengths.

Alternatively,several authors have shown that gravitational radiation can carry away substantial angular momentum from accreting neutron stars,driven

Millisecond Pulsars in X-Ray Binaries9 https://www.wendangku.net/doc/d015341094.html,lisecond Pulsars in X-Ray Binaries

ACCRETION-POWERED PULSARS

XTE J0929?31418543.6min

XTE J1807?29419141min

XTE J1814?338314 4.27hr

SAX J1808.4?3658401 2.01hr

XTE J1751?30543542.4min

NUCLEAR-POWERED PULSARS(Burst Oscillations)

4U1916?0527050min

XTE J1814?338314 4.27hr

4U1702?429330?

4U1728?34363?

SAX J1808.4?3658401 2.01hr

SAX J1748.9?2021410?

KS1731?260524?

Aql X-154919.0hr

X1658?2985677.11hr

4U1636?53581 3.8hr

X1743?29589?

SAX J1750.8?2900601?

4U1608?52619?

10Deepto Chakrabarty

References

Alpar,M.A.,Cheng,A.F.,Ruderman,M.A.,&Shaham,J.1982,Nature,300, 728

Andersson,N.,Kokkotas,K.D.,&Stergioulas,N.1999,ApJ,516,307 Backer,D.C.,Kulkarni,S.R.,Heiles,C.E.,Davis,M.M.,&Goss,W.M.1982, Nature,300,615

Bhattacharya,D.&Srinivasan,G.1995,in X-Ray Binaries,ed.W.H.G.Lewin et al.(Cambridge:Cambridge U.Press),495

Bildsten,L.1998,ApJ,501,L89

Bildsten,L.2003,in ASP Conf.Ser.Vol.302,Radio Pulsars,ed.M.Bailes,

D.J.Nice,&S.

E.Thorsett(San Francisco:ASP),289

Bildsten,L.et al.1997,ApJS,113,367

Bradt,H.V.,Rothschild,R.E.,&Swank,J.H.1993,A&AS,97,355 Brainerd,J.&Lamb,F.K.1987,ApJ,317,L33

Camilo,F.2004,this volume

Chakrabarty,D.&Morgan,E.H.1998,Nature,394,346

Chakrabarty,D.,Morgan,E.H.,Muno,M.P.,Galloway,D.K.,Wijnands,R., van der Klis,M.,&Markwardt,C.B.2003,Nature,424,42

Cook,G.B.,Shapiro,S.L.,&Teukolsky,S.A.1994,ApJ,421,L117 Cumming,A.&Bildsten,L.2000,ApJ,544,453

Cumming,A.,Zweibel,E.,&Bildsten,L.2001,ApJ,557,958

Cutler,C.2002,Phys.Rev.D,66,4025

Frank,J.,King,A.R.,&Raine,D.2002,Accretion Power in Astrophysics,3rd ed.(Cambridge:Cambridge U.Press)

Ghosh,P.&Lamb,F.K.1979,ApJ,234,296

Haensel,P.,Lasota,J.P.,&Zdunik,J.L.1999,A&A,344,151

Heindl,W.A.&Smith,D.M.1998,ApJ,506,L35

Jahoda,K.,Swank,J.H.,Giles,A.B.,Stark,M.J.,Strohmayer,T.,Zhang, W.,&Morgan,E.H.1996,Proc.SPIE,2808,59

Joss,P.C.&Li,F.K.1980,ApJ,238,287

Kyla?s,N.&Phinney,E.S.1989,in Timing Neutron Stars,ed.H.¨Ogelman&

E.P.J.van den Heuvel(Dordrecht:Kluwer),731

Markwardt,C.B.et al.2004,in preparation

McLaughlin,M.A.et al.2004,this volume(astro-ph/0404181)

Meszaros,P.,Ri?ert,H.,&Berthiaume,G.1988,ApJ,325,204

Morgan,E.H.et al.2004,in preparation

Muno,M.P.,Galloway,D.K.,&Chakrabarty,D.2004,ApJ,612,in press (astro-ph/0312205)

Psaltis,D.&Chakrabarty,D.1999,ApJ,521,332

Psaltis,D.&Lamb,F.K.1998,in Neutron Stars and Pulsars,ed.N.Shibazaki et al.(Tokyo:Univ.Acad.Press),179

Millisecond Pulsars in X-Ray Binaries11 Strohmayer,T.&Bildsten,L.2004,in Compact Stellar X-Ray Sources,ed.

W.H.G.Lewin&M.van der Klis(Cambridge:Cambridge U.Press),in press(astro-ph/0301544)

Strohmayer,T.E.&Markwardt,C.B.1999,ApJ,516,L81

Strohmayer,T.E.,Jahoda,K.,Giles,A.B.,&Lee,U.1997,ApJ,486,355 Strohmayer,T.E.,Markwardt,C.B.,Swank,J.H.,&in’t Zand,J.J.2003, ApJ,596,L67

Strohmayer,T.E.,Zhang,W.,Swank,J.H.,Smale,A.,Titarchuk,L.,Day, Charles,&Lee,U.1996,ApJ,469,L9

Titarchuk,L.,Cui,W.,&Wood,K.S.2003,ApJ,576,L49

van der Klis,M.2000,ARA&A,38,717

van der Klis,M.,Swank,J.H.,Zhang,W.,Jahoda,K.,Morgan,E.H.,Lewin, W.H.G.,Vaughan,B.,&van Paradijs,J.1996,ApJ,469,L1

van der Klis,M.,Wijnands,R.A.D.,Horne,K.,&Chen,W.1997,ApJ,481, L97

Vaughan,B.A.et al.1994,ApJ,435,362

Wagoner,R.V.1984,ApJ,278,345

Wijnands,R.2004,in The Restless High-Energy Universe,ed.E.P.J.van den Heuvel et al.(Elsevier),in press(astro-ph/0309347)

Wijnands,R.&van der Klis1998,Nature,394,344

Wijnands,R.,van der Klis,M.,Homan,J.,Chakrabarty,D.,Markwardt,C.B., &Morgan,E.H.2003,Nature,424,44

Wood,K.S.,Ftaclas,C.,&Kearney,M.1988,ApJ,324,L63

(完整版)X射线光电子能谱分析(XPS)

第18章X射线光电子能谱分析 18.1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES 分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS 方法可广泛应用于化学化工,材料,机械,电子材料等领域。 18.2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示: E k = hν- E b - φs (18.1)

从劳厄发现晶体X射线衍射谈

从劳厄发现晶体X射线衍射谈起 摘要:文章从劳厄发现晶体X射线衍射的前因后果谈起。劳厄的这个发现产生了两个新学科,即X射线谱学和X射线晶体学。文中还回顾了布拉格父子对这两个新学科所作的重大贡献,并阐述了X射线晶体学的深远影响。 今年是劳厄(von Lane M)发现晶体X射线衍射九秩之年。 从1895年伦琴(R0ntgen W C)发现X射线到1926年薛定愕(Schrodinger)奠定量子力学基础的30多年是现代物理学诞生和成长的重要时期。在此期间的众多重大发现中,1912年劳厄的发现发挥了极为及时而又十分深远的影响,是很值得我们通过回顾和展望来纪念它的。 我们先来了解一下劳厄发现的前因后果。1912年劳厄发现晶体X射线衍射时是在德国慕尼黑大学理论物理学教授索未菲(Sommerfeld)手下执教。除理论物理教授索未菲外,在这个大学中还有发现X射线的物理学教授伦琴和著名的晶体学家格罗特(Groth)。当时,劳厄对光的干涉作用特别感兴趣,索末菲则在考虑X射线的本质和产生的机制问题,而格罗特是晶体学权威之一,并著书Chemische KristallograPhic (化学晶体学)数卷。身在这样的学府中,劳厄当时通过耳闻目睹也就对 晶体中原子是按三维点阵排布以及X射线可能是波长很短的电磁波这样的想法不会感到陌生或难于接受了。而且看来正当而立之年的他是很想在光的干涉作用上做点文章的。真可谓机遇不负有心人了。这时,索末菲的博士生埃瓦尔德(Ewald P P)来请教劳厄,谈到他正在研究关于光波通过晶体中按三维点阵排布的原子会产生什么效应。这对劳厄有所触发并想到:如果波长短得比晶体中原子间距离更短时又当怎样?而X射线可能正是这样的射线。他意识到,说不定晶体正是能衍射X射线的三维光栅呢。现在劳厄需要考虑的大事是做实验来证实这个想法。当时索末菲正好有个助教弗里德里希(Friedrich W) ,他曾从伦琴教授那里取得博士学位。 他主动要去进行这样的实验。经过几次失败后,他终于取得了晶体的第一个衍射图「(见图1)」。晶体是五水合硫酸铜(CuSO4·5H2O)。 劳厄的发现经过进一步的工作很快取得了一箭双雕的效果:既明确了X射线的本质,测定了波长,开创了X射线谱学,又使测定晶体结构的前景在望,从而将观察晶体外形所得结论经过三维点阵理论发展到230个空间群理论的晶体学,提升为X射线晶体学。这个发现产生的两个新学科,几乎立即给出了一系列在科学中有重大影响的结果。英国的布拉格父子(Bragg W H和Bragg W L)在奠定这两个新学科的基础中起了非常卓越的作用。他们使工作的重心从德国转到英国。将三个劳厄方程(衍射条件)压缩成一个布拉格方程(定律)的小布拉格曾把重心转移的原因归之于老布拉格设计的用起来得心应手的电离分光计”。既然晶体是X射线的衍射光栅,那么,为了测定X射线的波长,光栅的间距当如何得出?1897年巴洛(Barlow W)预测过最简单的晶体结构型式,其中有氯化钠所属的型式。根据当时已知的NaCI的化学式量(58.46)和阿伏伽德罗常数(6.064×1023)以及晶体密度(2.163g/cm2),可以推算出氯化钠晶体(10)原子面的间距d=2.814×10-8cm。 布拉格父子的工作是有些分工的:老布拉格用他的电离分光计侧重搞谱学,很快发现X射线谱中含有连续谱和波长取决于对阴极材料的特征谱线。此后,测定晶体结构主要依靠特征射线。同时还观察到同一跃迁系特征射线的频率是随对阴极材料在元素周期系中的排序递增的,这种频率的排序给出了原子序数。这是对化学中总结出来的元素周期律作出的呼应。小布拉格的工作是沿着X射线晶体学的方向发展的。他一生中从氯化钠和金刚石一直测到蛋白质的晶体结构。从1913年起,他在两年中一连测定了氯化钠、金刚石、硫化锌、黄铁矿、荧石和方解石等的晶体结构。这一批最早测定的晶体结构虽然极为简单,但很有代表性,而且都足以让化学和矿物学界观感一新。同时为测定参数较多和结构比较复杂的晶体结构也进行了理论和技术方面的准备。X射线晶体学能不断采用新技术和解决周相问题的新方法,使结构测定的对象

射线数字成像专业书籍

射线数字成像专业书籍

射线数字成像专业书籍《实时射线成像检测》王建华李树轩编著 目录: 前言 第1章射线成像的物理基础 1.1物质构成 1.1.1元素 1.1.2原子 1.2同位素 1.2.1核素 1.2.2同位素 1.2.3核素分类 1.2.4原子能级 1.3原子核结构 1.3.1核力 1.3.2核稳定性 1.3.3放射性衰变

1.4射线种类和性质 1.4.1射线分类 1.4.2X射线和γ射线的性质 1.4.3X射线和γ射线的不同点 1.4.4射线胶片照相中使用的射线 1.5射线的产生 1.5.1X射线的产生 1.5.2γ射线的产生 1.5.3高能X射线 1.5.4中子射线 1.6射线与物质的相互作用 1.6.1光电效应 1.6.2康普顿效应 1.6.3电子对效应 1.6.4瑞利散射 1.6.5各种效应相互作用发生相对的几率 1.7射线的衰减规律 1.7.1吸收、散射与衰减 1.7.2射线的色和束 1.7.3单色窄束射线的衰减规律 1.7.4宽束、多色射线的衰减规律(包括连续X射线)

测试题(是非题) 第2章实时成像 2.1实时成像的基础 2.1.1简述 2.1.2实时成像的原理 2.1.3射线成像的特点 2.1.4射线成像的应用 2.1.5实时成像局限性 2.2实时成像技术 2.2.1实时成像系统 2.2.2射线成像设备 2.2.3成像系统的构成 2.2.4成像转换装置(成像器) 2.3射线辐射转换器 2.3.1X射线荧光检验屏 2.3.2X射线图像增强器 2.4射线数字化成像技术 2.4.1计算机射线照相技术 2.4.2线阵列扫描成像技术 2.4.3光纤CCD射线实时成像检测系统(简称光纤CCD系统) 2.4.4数字平板直接成像技术

锂离子电池研究现状

锂硫电池的研究现状 近年来,随着不可再生资源的逐渐减少,清洁能源的利用逐渐得到重视,而电池作为储能装置也受到越来越多的考验。锂硫电池与传统的锂离子电池相比,优势主要在于硫的高比容量,单质硫的理论比容量为1600mAh/g ,理论比能量2600Wh/kg。并且硫是一种廉价且无毒的原材料。而与此同时,硫作为锂电池的正极材料也存在着诸多问题[1]: 1、单质硫以及最终放电产物都是绝缘的,如果与正极中掺入的导电物质结合不好,就会导致活性物质不能参与反应而失效; 2、单质硫在反应过程中会生成长链的聚硫化物离子S n2-,这种离子容易溶解在电解液中,并与锂负极反应,产生“穿梭效应”,引起自放电并使库伦效率降低; 3、在每次放电过程结束之后,都会有一些Li2S2/Li2S沉淀在正极上,并且这些不溶物随着循环次数的增加,在正极表面发生团聚,并且正极结构也会发生变化,导致这部分活性物质不能参与电化学反应而失效,并且使电池的内阻增加; 4、硫正极随充放电的进行会产生约22%的体积变化,从而导致电池物理结构破坏而失效。 针对硫作为正极材料的种种弊端,研究者们分别采用了多种方法予以解决,其中将硫与碳材料复合的研究较多。针对几种典型方法,分别举例介绍如下:一、石墨烯-硫复合材料 Wang等人采用石墨烯包覆硫颗粒的方法制作复合材料电极[2]。如图1所示,他们首先采用化学方法制备了硫单质,并利用一种特殊的表面活性剂Triton X-100在硫颗粒的表面修饰了一些PEG高分子,然后再用导电炭黑和石墨烯的分散液对硫颗粒进行包覆。这种方法的优点在于:首先,石墨烯和导电炭黑具有优异的导电性能,可以克服硫以及硫反应产物绝缘的问题;第二,导电炭黑、石墨烯和PEG高分子对硫颗粒进行了包覆,可以解决硫在电解液中溶出的问题;第三,PEG高分子具有一定的弹性,可以在一定程度上缓解体积变化带来的影响。 二、碳纳米管-硫复合材料 Zheng等人用AAO做模板制备了碳纳米管阵列[3],随后将硫加热使其浸入到碳纳米管中间,然后将AAO模板去掉,得到碳纳米管-硫复合材料,如图2所示。这种方法的优点在于碳纳米管的比表面积大,有利于硫化锂的沉积。并且长径比较大,可以较好地将硫限制在管内,防止其溶解在电解液中。碳纳米管的导电性好管壁又很薄,有利于离子导通和电子传输。同时,因为制备过程中先沉积硫,后去除模板,这样有利于使硫沉积到碳管内,减少硫在管外的残留,从而防止这部分硫的溶解。

X射线光电子能谱仪

X射线光电子能谱分析 1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 m 大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成

光电子能谱分析法基本原理

第十四章 X-射线光电子能谱法 14.1 引言 X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。 XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下: ⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析 ⑵表面灵敏度高,一般信息采样深度小于10nm ⑶分析速度快,可多元素同时测定 ⑷可以给出原子序数3-92的元素信息,以获得元素成分分析 ⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团 ⑹样品不受导体、半导体、绝缘体的限制等 ⑺是非破坏性分析方法。结合离子溅射,可作深度剖析 目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。 14.2 基本原理 XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。 该过程可用下式表示: hγ=E k+E b+E r(14.1) 式中: hγ:X光子的能量(h为普朗克常数,γ为光的频率);

射线数字成像技术的应用

射线数字成像技术的应用 在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。 近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。 过大量的工程实践与应用,对管道焊缝射线数字化检测与评估系统进行了应用研究分析探索。 1 射线数字成像技术的应用背景 随着我国经济的快速发展,对能源的需求越来越大,输油输气管道建设工程也越来越多,众多的能源基础设施建设促进了金属材料焊接技术及检测技术的进步。 目前,在管道建设工程中,管道焊接基本实现了自动化和半自动化,而与之配套的射线检测主要采用胶片成像技

术,检测周期长、效率低下。“十二五”期间,将有更多的油气管道建设工程相继启动,如何将一种可靠的、快速的、“绿色”的射线数字检测技术应用于工程建设中,以替代传统射线胶片检测技术已成为目前管道焊缝射线检测领域亟需解决的问题。 2 国内外管道焊缝数字化检测的现状 2.1 几种主要的射线数字检测技术 1)CCD型射线成像(影像增强器) 2)光激励磷光体型射线成像(CR) 3)线阵探测器(LDA)成像系统 4)平板探测器(FPD)成像系统 几种技术各有特点,目前适用于管道工程检测的是CR 和FPD,但CR不能实时出具检测结果,且操作环节较繁琐、成本较高,因此平板探测器成像系统成为射线数字检测的主要发展方向。 2.2 国内研发情况 国内目前从事管道焊缝射线数字化检测系统研发的机构主要有几家射线仪器公司,但其产品主要用于钢管生产厂的螺旋焊缝检测。通过实践应用比较,研究应用电子学研究所研发的基于平板探测器的管道焊接射线数字化检测与评估系统已能够满足管道工程检测需要,并通过了科技成果鉴

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望 周俊飞 (衢州学院化学与材料工程学院浙江衢州324000) 摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。薄膜型 全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离 子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高 安全性锂二次电池。作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特 征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要 科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。 关键词:储能;全固态锂离子电池;固体电解质;界面调控 1 全固态锂电池概述 全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。这体现了无机全固态锂电池在安全性方面的独特优势。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12] 2 全固态锂电池储能应用研究进展 在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。。 全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电

全固态3D薄膜锂离子电池的研究进展

全固态3D薄膜锂离子电池的研究进展 作者:邓亚锋钱怡崔艳华刘效疆来源:本站浏览数:289 发布时间:2013-8-8 16:28:16 0 引言 全固态薄膜锂离子电池主要由正/负极薄膜、电解质和集流器薄膜组成.整个电池厚约10 μm,可设计成任意形状和大小集成在IC电路中,是便携式电子设备、微电子机械系统(MEMS)以及微型国防技术装备(如微型智能武器)的理想能源。全固态平面薄膜电池(图1)受限于几何结构,能量和功率密度难以满足快速发展的MEMS、微型医疗器械、无线通信、传感器等领域对微电源的要求。全固态三维薄膜锂离子电池(简称3D锂电池)通过独特的构架设计(图2),增大单位立足面积内电极活性物质负载量,并缩短锂离子扩散半径,提高了电池的容量和充放电速率。是解决未来微电子器件能量需求的一种有效方式,引起了人们的极大关注。 1 不同构架的全固态3D薄膜锂电池 1.1 叉指碳柱3D电池 叉指碳柱3D电池由加利福尼亚大学Wang小组于2004年首次提出(图3),在Si/SiO2衬底上涂覆感光胶,光刻得到图形,再经过高温热解及后处理,即制得正/负极叉指状碳柱3D电池。叉指碳柱既可以直接作为电极,又可以作为集流器,在其表面沉积各种电化学活性物质。2008年,Min等研究了在叉指碳柱上电镀十二烷基苯磺酸盐掺杂聚吡咯(PPYDBS)导电聚合物薄膜的方法。结果表明,覆盖约10 μm厚PPYDBS的叉指阴极(C-PPYDBS),电极电位从碳电极的3.2 V提高到了3.7 V(相对于Li/Li+),但自放电较为严重,电池的放电容量远小于充电电容。 为改善叉指碳柱电极性能,Teixidor等制备出包覆中间相碳微球的叉指碳柱(C-MCMB),有效提高了电极不可逆容量,但可逆容量仍较低。Chen等在叉指碳柱上包覆碳纳米管(CNT/C-MEMS)使单位立足面积电容达到8.3 F/cm2,充放电循环性能得到显著提高。 叉指碳柱电极成本低、热力学和化学稳定性好、易制成各种形貌、能包覆不同的活性材料(图4),光刻-热解工艺较为成熟,适合工业化生产。但是,叉指结构放电不均匀、漏电流较大、碳柱在锂离子嵌入和脱出过程中易变形破损,这些问题需进一步研究解决。 1.2 微通道衬底3D电池 1998年,以色列特拉维夫大学的Peled小组首次报道了微通道衬底3D 电池(3D-MCP);在Si片或玻璃上蚀刻出均匀分布、直径为15~50 μm的微通

全固态薄膜锂离子二次电池的研究进展

论 著8 全固态薄膜锂离子二次电池的研究进展 耿利群任岳*朱仁江陈涛 (重庆师范大学物理与电子工程学院,重庆 400047) 摘 要:本文综述了全固态薄膜锂离子二次电池的研究进展,主要阐述了薄膜锂电池的结构设计以及正极、负极和固体电解质材料研究现状,并对其今后的发展趋势及研发热点进行了展望。 关键词:全固态薄膜锂离子二次电池;固体电解质;电池结构 DOI:10.3969/j.issn.1671-6396.2013.01.004 1 引言 随着电子信息工业和微型加工技术快速发展,对其所需的微型能源则提出了特殊微型化的要求。其中全固态薄膜锂离子二次电池因其高的能量密度、强的安全性、长的循环寿命、宽的工作电压和重量轻等优点,成为微电池系统需求的最佳选择[1]。本文主要介绍了全固态薄膜锂离子二次电池的关键性薄膜材料及电池结构的研究现状,并对其的开发应用及研究前景作了分析。 2 全固态薄膜锂离子二次电池结构的研究 薄膜电池结构的设计,对整个电池性能将产生直接的影响;同样对提高电池的能量密度、循环寿命和锂离子的传输速率也起到至关重要的作用。所以优化薄膜电池结构的设计,则是对构造高性能薄膜锂离子电池做到了强有力的支撑。 1993年美国橡树岭国家实验室(ORNL)Bates等[2]研制出了一种经典的薄膜锂离子电池叠层结构(见图1)。在衬底上先沉积两层阴阳极电流收集极薄膜,而后依次沉积阴极、固体电解质和阳极薄膜,最后在薄膜电池外表面上涂一层保护层,以此来防止阳极上金属锂和空气中的一些物质发生化学反应。 图1 薄膜锂离子电池结构剖面示意图 Baba等[3]研发出另一种典型的薄膜锂离子电池结构(见图2)。其较图1薄膜锂电池结构设计更为简单,制作更为容易。在不锈钢衬底上依次沉积各层薄膜电池材料,而在图示中有两个引线端子则是为了便于薄膜电池的连接使用。这种结构设计很好地提高了整个电池的有效面积,进而也极大地改善了薄膜电池的性能。 Nakazawa等[4]利用直流溅射和射频溅射的方法,研制出一种“直立型”全固态薄膜锂离子电池结构(见图3)。该研究小组利用该薄膜电池结构设计,成功制备出有效面积更大的全固态薄膜锂离子电池,这样也使得薄膜电池的能量密度和循环寿命等电化学性能得到大幅度提升。 图2 全固态薄膜锂离子电池结构剖面示意图 图3 “直立型”全固态薄膜锂离子电池剖面示意图 Hart等[5]设计了柱状电极交替排列的微型锂电池结构(见图4)。并对几种不同的正极、负极排列方式进行了相关的研究计算,得出了此薄膜电池的结构能够大大提升薄膜电池本身的能量密度。然而Eftekhari[6]则研制出了一种3-D微型锂电池结构的LiMn2O4电极,与以往微型锂电池结构的LiMn2O4电极在电池容量方面得到了提升。 图4 3-D微电池柱状结构示意图 [正极(灰色) 、负极(白色)交替排列分布]

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

射线数字成像检测技术

射线数字成像检测技术 韩焱 (华北工学院现代元损检测技术工程中心,太原030051) 摘要:介绍多种射线数字成像(DR)系统的组成及成像机理,分析其性能指标、优缺点及应用领域。光子放大的DR系统(如图像增强器DR系统)实时性好,但适应的射线能量低,检测灵敏度相对较低;其它系统的检测灵敏度较高但成像时间较长。DR系统成像方式的主要区别在于射线探测器,除射线转换方式外,影响系统检测灵敏度的主要因素是散射噪声和量子噪声;可采用加准直器和光量子积分降噪的方法提高检测灵敏度。 关键词:射线检验;数字成像系统;综述 中图分类号:TGll5.28 文献标识码:A 文章编号:1000-6656(2003109-0468-04 DIGITAL RADIOGRAPHIC TECHNOLOGY HAN Yan (Center of Modern NDT &E, North China Institute of Technology, Taiyuan 030051, China) Abstract: The structure and imaging principle of digital radiographic (DR) systems are introduced. And thecharacteristics, performances, advantages, disadvantages and applications of the systems are analyzed. The DR sys-tern with photon amplification such as the DR system with intensifier can get real-time imaging, but it fits for lowerenergy and its inspection sensitivity is lower. The systems working with high energy can obtain higher sensitivity,while is time-eonsurning. The imaging way of a DR system depends on the detector used, and the factors influencinginspection sensitivity are the quantum noise from ray source and scatter noise besides the transform way of rays.Quantum integration noise reducer and collimator can be used to improve the inspection sensitivity of the system. Keywords:Radiography; Digital imaging system; Survey 射线检测技术作为产品质量检测的重要手段,经过百年的历史,已由简单的胶片和荧屏射线照相发展到了数字成像检测。随着信息技术、计算机技术和光电技术等的发展,射线数字成像检测技术也得到了飞速的发展,新的射线数字成像方法不断涌现,给射线探伤赋予了更广泛的内涵,同时也使利用先进网络技术进行远程评片和诊断成为可能。 目前工业中使用的射线数字成像检测技术主要包括射线数字直接成像检测技术(Digital Radio—graphy,简称DR)和射线数字重建成像检测技术,如工业CT(Industry Computed Tomography,简称ICT)。以下将在介绍DR检测系统组成的基础上,重点分析系统的成像原理、特点、特性及应用场合。 1 DR检测系统简介 DR检测系统组成见图1。按照图像的成像方式分为线扫描成像和面扫描成像;根据成像过程可分为直接和间接式DR系统。以下重点介绍直接DR系统。 图1 DR检测系统组成框图 1.1 直接式DR系统 直接DR成像系统主要分为图像增强器成像系统、平板型成像系统和线阵扫描成像系统等。 图2为图像增强器式DR系统,主要通过射线视频系统与数字图像处理系统集成实现。系统采用射线--可见光--电子--电子放大--可见光的光放大技术,是将射线光子由转换效率较高的主射线转换屏转换为可见光图像,可见光光子经光电转换变为电子,而后对电子进行放大,放大后的电子聚集在小屏上再次

薄膜锂电池

能源材料课程业 ——薄膜锂电池的研究进展 院系:材料科学与工程学院 专业:金属材料与成型加工 班级:2012级金属材成1班 学号:20120800828 姓名:吴贵军

薄膜锂电池的研究进展 摘要:微电子机械系统(MEMS)和超大规模集成电路(VLSI)技术的发展对能源的微型化、集成化提出了越来越高的要求.全固态薄膜锂电池因其良好的集成兼容性和电化学性能成为MEMS和VLSI能源微型化、集成化的最佳选择.简单介绍了薄膜锂电池的构造,举例说明了薄膜锂电池的工作原理.从阴极膜、固体电解质膜、阳极膜三个方面概述了近年来薄膜锂电池关键材料的研究进展.阴极膜方面LiCoO2依旧是研究的热点,此外对LiNiO2、LiMn2O4、LiNixCo1-xO2、V2O5也有较多的研究;固体电解质膜方面以对LiPON膜的研究为主;阳极膜方面以对锂金属替代物的研究为主,比如锡的氮化物、氧化物以及非晶硅膜,研究多集中在循环效能的提高.在薄膜锂电池结构方面,三维结构将是今后研究的一个重要方向.。 关键词:薄膜锂电池;微系统;薄膜:微电子机械系统随着电子集成技术的飞速发展,SO C (System on chi p) 成为 现实,电子产品在不断地小型化、微型化。以整合集成电路及机械系统,如各种传感器于同一块晶片上的技术,即微机电技术,受到了普遍重视。微小型飞行器、微小型机器人和微小型航天器等都在源源不断地出现和进一步地改进。这些微型系统的功能强大,必然对其能源系统提出了微型化的

要求。当电池系统被微型化,电池底面积小于10 m m2、功率在微瓦级以下时,被称为微电池。微电池的制备通常是将传统的电池微型化、薄膜化。目前,用于微电池的体系有:锌镍电池、锂电池、太阳能电池、燃料电池、温差电池和核电池。锂电池是目前具有较高比能量的实用电池体系,因此人们对薄膜化的锂电池投入了大量的研究。 优点: (1)成本低,根据Photon 的预测,预计到2012 年下降到2.08 美元/w;预计薄膜电池的平均价格能够从2.65 美元/w 降至1.11 美元/w,与晶体硅相比优势明显;而相关薄膜电池制造商的预测更加乐观,EPV 估计到2011 年,薄膜组件的成本将大大低于1 美元/w;Oerlikon 更估计2011 年GW 级别的电站其组件成本将降低于0.7 美元/w,这主要是由转化率提高和规模化带来的。 (2)弱光性好 (3)适合与建筑结合的光伏发电组件(BIPV),不锈钢和聚合物衬底的柔性薄膜太阳能电池适用于建筑屋顶等,根据需要制作成不同的透光率,代替玻璃幕墙。 缺点: (1)效率低,单晶硅太阳能电池,单体效率为14%-17%(AMO),而柔性基体非晶硅太阳电池组件(约1000平方厘米)的效率为 10-12%,还存在一定差距。

X射线数字成像检测系统郑金泉.doc

实用标准文档 X射线数字成像检测系统

目录 一、目的意义 (3) 二、系统介绍 (3) 2.1 CR 技术与 DR技术的共同点 (4) 2.2 CR 技术与 DR技术的不同点 (4) 2.3 对比分析 (5) 2.4 系统组成 (5) 2.5 X 射线数字平板探测器 (6) 2.6 X 射线源 (7) 2.7 图像处理系统 (8) 2.8 成像板扫描仪 (9) 2.9IP 成像板 (9) 三、 DR检测案例 (10) 3.1 广西 220kV 振林变 (10) 3.2 广西 220kV 水南变 (11) 3.3 温州 220kV 白沙变 (13) 3.4 广西 110kV 城东变 (15) 3.5 广西乐滩水电站 (16) 四、 CR检测案例 (18) 4.1 百色茗雅 220kV变电站 (18)

一、目的意义 气体绝缘全封闭组合电器(GIS)设备结构复杂,由断路器、隔离开关、接 地开关、互感器、避雷器、母线、连接件和出线终端等组成,内部充有SF6绝缘气体,给解体检修工作带来很大的困难,且检修工作技术含量高,耗时长,停电 所造成的损失大。通过对 GIS 设备事故的分析发现,大部分严重事故,未能通过现有的检测手段在缺陷发展初期被发现,导致击穿、烧损等严重事故的发生。 通过 GIS 设备局放监测,结合专家数据库和现场经验,可大致判断 GIS 设备局放类型,进行大致的定位,但无法明确GIS 设备内部的具体故障。结合X 射线数字成像检测系统,对 GIS 设备进行多方位透视成像,配合专用的图像处理与 判读技术,实现其内部结构的“可视化”与质量状态快速诊断,极大地提高 GIS 设备故障定位与判别的准确性,提高故障诊断效率,为整个设备的运行安全与质量监控提供一种全新的检测手段。对 GIS 设备局放可能造成的危害及其影响范围和程度,提出相应策略,采取相应的措施,对电网的安全、稳定、经济运行具有重要意义。 二、系统介绍 按照读出方式(即X 射线曝光到图像显示过程)不同,可分为: 数字射线成像( DR-Digital Radiography) 计算机射线成像( CR-Computed Radiography) 图 1-1 检测原理图

X射线光电子能谱(XPS)谱图分析

一、X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质 发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用 下式表示: hn=Ek+Eb+Er (1) 其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的 反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米 能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真 空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为: hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样, 如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的 轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以 了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小 可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析 元素的化合价和存在形式。 二、电子能谱法的特点 (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电 发射电子的能量分布,且直接得到电子能级结构的信息。(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称 作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层 电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定 性的标识性强。 (3)是一种无损分析。 (4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏

相关文档