文档库 最新最全的文档下载
当前位置:文档库 › Maxwell与Fluent电磁热流耦合分析

Maxwell与Fluent电磁热流耦合分析

Maxwell与Fluent电磁热流耦合分析
Maxwell与Fluent电磁热流耦合分析

14.5耦合实例4——Maxwell和FLUENT电磁热流耦合

例,

14.5.1

析钢块在上述工况下的温度场分布情况、风的流线图及风的温度分布云图。

图14-164几何模型

14.5.2软件启动与保存

Step1:启动Workbench。如图14-165所示,在Windows XP下单击“开始”→“所有程序”→ANSYS14.0→Workbench 14.0命令,即可进入Workbench主界面。

图14-165 Workbench启动方法

Step2:保存工程文档。进入Workbench后,单击工具栏中的按钮,将文件保

存为“MagtoThemtoFluid”,单击Getting Started窗口右上角的(关闭)按钮将其关闭。

注意:本节算例需要用到ANSOFT Maxwell14.0软件,请读者进行安装;

由于ANSOFT Maxwell软件不支持保存路径中存在中文名,故在进行文档保存时,保存的路径不不能含有中文字符,否则会发生错误。

14.5.3导入几何数据文件

Step1:创建几何生成器。如图14-166所示,在Workbench左侧Toolbox(工具箱)的Analysis Systems中单击Maxwell 3D并按住左键不放将其拖到右侧的Project Schematic窗口中,此时即可创建一个如同EXCEL表格的项目A。

Step2:双击A2(Geometry)进入如图14-167所示的电磁分析环境,此时启动了Maxwell 3D软件。

图14-166项目A

Step3:依次选择菜单Modeler→Import,在出现的Import File对话框中选择ThermaltoFluid.x_t几何文件,并单击打开按钮。

图14-167电磁分析环境

Step4:此时模型文件已经成功显示在Maxwell软件中,如图14-168所示,同时弹出Modal Analysis对话框,在对话框左侧的栏中显示的几何图形为Good表示数据读取无误,单击Close按钮。

图14-168读取的模型

Step5:选中图中的外面的立方体几何,如图14-169所示,然后进行如下操作:

选中外面的立方体,使其处于加亮状态;

单击Properties栏中的Transparent后面的按钮;

在弹出的对话框中将滑块从0位置移动到1的位置,这是外面的立方体几何将变成透明状态。

图14-169设置透明度

14.5.4求解器与求解域的设置

Step1:设置求解器类型。如图14-170所示,选择菜单栏中的Maxwell 3D→Solution Type…命令。

Step2:在弹出如图14-171所示的Solution Type对话框中选择Eddy Current(涡电流分析),单击OK按钮关闭Solution Type的对话框。

图14-170设置求解器类型图14-171确定求解器类型

14.5.5赋予材料属性

Step1:赋予材料属性。在模型树中选择Box3模型名,单击右键在弹出的快捷菜单中选择Assign Material…命令,如图14-172所示,此时会弹出Select Definition对话框。

Step2:在如图14-173所示的Select Definition对话框中选择Aluminum材料并单击“确定”按钮,此时模型树中Box3的上级菜单由Not Assigned变成Aluminum,求解域默认为真空Vacuum。

图14-172赋予材料属性图14-173材料库

Step3:同样,如图14-174所示,将Box4模型设置为steel stainless。

图14-174材料库

Step4:同样,如图14-175所示,将Box5模型设置为Vacuum。

图14-175材料库

14.5.6添加激励

Step1:创建激励。单击键盘f键,然后用鼠标左键选择如图14-176所示一个端面,单击右键在弹出的快捷菜单中选择Assigned Excitation→Current命令。

图14-176创建激励

Step2:此时会弹出如图14-177所示Current Excitation对话框,在该对话框作如下输入:在Value中输入500;

在后面的单位选项栏中选择A;

在Type栏中选择Stranded,单击OK按钮,完成参数的设置。

Step3:同样,将线圈另外一个端面也设置为500A的电流,与上面操作步骤不同之处为:此处的电流方向设置为子里向外的,如图14-178所示,此时只需单击Swap Direction按钮即可完成相应的操作。

图14-177设置激励数值图14-178设置激励

Step4:右键单击Box4,如图14-179所示,在弹出的快捷菜单中依次选择Assign Excitation →Set Eddy Effects…命令,并勾选弹出的对话框中的Box4项,设置涡流效应。

图14-179涡流设置

Step5:选择Box4几何,右键单击Project Manager→Mesh Operation,在弹出如图14-180所示快捷菜单中依次选择Assign→On Selection→Skin Depth Based…,在弹出的对话框中如图下设置:

在Skin Depth Based Refinement对话框中单击Calculate Skin Depth…命令;

在弹出的Calculate Skin Depth对话框中的Frequency栏中输入2500,单位选择Hz,并单击OK按钮;

在Skin Depth Based Refinement对话框中单击OK按钮。

图14-180集肤深度

Step6:右键单击Project Manager→Analysis,如图14-181所示,在弹出的快捷菜单中选择Add Solution Setup命令,添加求解器。

Step7:此时弹出如图14-182所示求解器设置对话框,选择Solve选项卡,在选项卡中作如下设置:

在Adaptive Frequency栏中输入2500,设置频率为2500Hz;

勾选Use higher order shape function选项,选择高级形函数;

其余保持默认,单击确定按钮。

图14-181添加求解器图14-182求解器设置

14.5.7模型检查与计算

通过上面的操作步骤,有限元分析的前处理工作全部结束,为了保证求解能顺利完成计算,需要先检查一下前处理的所有操作是否正确。

Step1:模型检查。单击工具栏上的按钮出现如图14-183所示的Validation Check 对话框,绿色对号说明前面的基本操作步骤没有问题。

注意:如果出现了,说明前处理过程中某些步骤有问题,请根据右侧的提示信息进行检查。

Step2:求解计算。右键单击Project Manager中的Analysis→Setup1命令,在弹出的快捷菜单中选择如图14-184所示的Analyze命令,进行求解计算,求解需要一定的时间。

图14-183模型检查图14-184求解模型

14.5.8后处理

Step1:显示磁场分布云图。求解完成后,选中几何模型树中的Planes→Global:XZ平面,单击右键在弹出如图14-185所示的快捷菜单中选择Field→H→Mag_H命令,此时将弹出Create Field Plot对话框。

图14-185后处理操作

Step2:在弹出如图14-186所示的Create Field Plot对话框中的Quantity中选择Mag_H,在In Volume中选择AllObject。并单击Done按钮如图14-186所示。

图14-185选择后处理实体图14-186磁场分布云图

Step3:同理操作如图14-187所示为磁场矢量图。

图14-187磁场矢量图

Step4:钢块的涡电流密度分布云图如图14-188所示。

Step5:钢块损耗分布。选中Box4,单击右键在弹出的快捷菜单中依次选择Field→Other→Ohmic-Loss命令,如图14-189所示为Box4的损耗分布。

图14-188涡电流密度分布云图图14-189后处理操作

Step6:选择Maxwell 3D→Fields→Calculator…,在弹出如图14-190所示计算器中作如下操作:

单击Quantity按钮,在下拉列表中选择Ohmic Loss选项;

单击Geometry…按钮,在弹出的Geometry对话框中点选Volume,然后选择Box4选项,并单击OK按钮;

单击∫按钮,最后单击Eval按钮进行计算,计算得到的损耗值为221.7w。

图14-190总损耗值

Step7:关闭Maxwell平台。

14.5.9创建流体力学分析和数据共享

Step1:回到Workbench窗口中,在如图14-191所示的表格A4(Solution)上单击右键,在弹出的快捷菜单中选择Transfer Data To New→Fluid Flow (FLUENT)命令,此时会在A表的右侧出现一个B表,同时出现A4与B4连接曲线,这说明A4的结果数据可以作为B4的外载荷使用。

图14-191创建耦合的流体动力分析模型

Step2:几何模型数据读入。单击A2(Geometry)直接拖拽到B2(Geometry)栏中如图14-192所示。

图14-192几何数据传递

14.5.9DM中几何数据文件

Step1:双击项目B中的B2(Geometry)进入如图14-193所示的流体分析环境,此时启动了DM软件。选择mm单位,并单击OK按钮。

图14-193几何创建平台

Step2:在DesignModeler平台的工具栏中单击按钮生成几何文件。

Step3:此时模型文件已经成功显示在DM软件中,如图14-194所示,。

Step4:抑制几何。单击Box3和Box5两个文件名,单击右键,在弹出的如图14-195所示的快捷菜单中选择Suppress Body命令。

图14-194几何模型图14-195 抑制几何模型

Step5:创建流体域。单击工具栏中的Tools→Enclosure命令,在弹出的如图14-196所示的面板中作如下操作:

在Shape栏中选择Cylinder选项,设置区域类型为圆柱;

在Cylinder Alignment栏中选择Z-Axis选项,设置圆柱方向为沿着Z轴;

在FD1,Cushion…栏中输入50;

在FD2,Cushion…栏中输入500;

在FD3,Cushion…栏中输入500;

在Target Bodies栏中选择Selected Bodies选项;

在Bodies栏中选择实体,此时Bodies栏中显示1,表示一个实体被选中,其余默认即可,并单击工具栏中按钮完成流体域的创建,如图14-197所示。

图14-196 创建流体域图14-197 流体域

Step6:平面命名inlet。选择几何实体的左侧(Z坐标最小处)面,单击右键,在弹出的如图14-198所示快捷菜单中选择Named Selection命令:

在出现的Details View面板中的Named Selection栏中输入inlet;

在Geometry栏中单击Apply按钮,此时Geometry栏中出现1Face字样,表示一个面被选中;

其余保持默认,单击工具栏中的按钮确定平面命名。

图14-198 inlet命名

Step7:平面命名outlet。选择几何实体的左侧(Z坐标最大处)面,单击右键,在弹出的如图14-199所示快捷菜单中选择Named Selection命令:

在出现的Details View面板中的Named Selection栏中输入outlet;

在Geometry栏中单击Apply按钮,此时Geometry栏中出现1Face字样,表示一个面被选中;

其余保持默认,单击工具栏中的按钮确定平面命名。

图14-199 outlet命名

Step8:平面命名outwall。选择流固几何交界面的流体三个侧面,单击右键,在弹出的如图14-200所示快捷菜单中选择Named Selection命令:

在出现的Details View面板中的Named Selection栏中输入outwall;

在Geometry栏中单击Apply按钮,此时Geometry栏中出现1Face字样,表示一个面被选中;

其余保持默认,单击工具栏中的按钮确定平面命名。

图14-200outwall命名

Step9:关闭DesignModeler平台。

14.5.10传递数据

Step1:传递数据。右键Workbench平台中项目A中的A4(Solution),在弹出如图14-201所示快捷菜单中选择Update命令,更新数据。

图14-201更新数据

14.5.11网格设置

Step1:双击项目B中的B3(Mesh)选项,此时弹出如图14-202所示的网格剖分平台。

Step2:右键单击Mesh命名,在弹出的如图14-203所示快捷菜单,在菜单中依次选择Insert→Sizing命令,此时会出现“Details of‘Edge Sizing’”面板,在面板中可以进行网格尺寸设置。

图14-202网格划分平台图14-203快捷菜单

Step3:在如图14-204所示的“Details of‘Edge Sizing’”面板作如下操作:

在Geometry栏中确保圆柱体两个圆边被选中,此时Geometry栏中显示2Edges,表示供选择了2条边;

在Type栏中选择Number of Division选项;

在Number of Division栏中输入100,将网格划分成100份;

其余保持默认。

Step4:在如图14-205所示的“Details of‘Edge Sizing 2’”面板作如下操作:

在Geometry栏中确保钢块和流体域中与钢块重合的所有边被选中,此时Geometry栏中显示24Edges,表示供选择了24条边;

注:可以使用框选命令,具体使用方法请参考第二章节相关内容。

在Type栏中选择Number of Division选项;

在Number of Division栏中输入10,将网格划分成10份;

其余保持默认。

图14-204面板设置

图14-205面板设置

Step5:右键单击Mesh命令,弹出的如图14-206所示的快捷菜单中依次选择Insert→Inflation命令。

图14-206面板设置

Step6:在Geometry栏中选择流体几何,在Boundary栏中选择流体外表面如图14-207所示。

Step7:右键并单击工具栏中的生成网格如图5-208所示。

图14-207膨胀层设置

a)流体网格b)实体网格截面

图14-208网格模型

Step8:网格设置完成后,关闭Mechanical网格划分平台,回到Workbench平台。

Step9:在Workbench平台中右键单击项目A中的A3(Mesh)命令,在弹出的如图14-209所示的快捷菜单中选择Update命令,更新网格划分数据。

图14-209更新数据

14.5.12进入Fluent平台

Step1:Fluent前处理操作。双击项目A中的A4(Setup)命令,此时弹出如图14-210所示的Fluent启动设置对话框,保持对话框中的所有设置为默认即可,单击OK按钮。

Step2:此时出现如图14-211所示Fluent设置界面。

图14-210启动对话框图14-211Fluent平台

Step3:单击命令树中的General命令,在操作面板中单击Check按钮,检查最小体积是否出现负数。

Step4:选择Models命令,在Models面板中双击Viscous命令,在弹出如图14-212所示Viscous Models对话框中选择K-epsilon(2eqn)命令,其余保持默认,并单击OK按钮确认模型选择。

图14-212模型选择

Step5:选择Models命令,在Models面板中双击Energy命令,在弹出如图14-213所示Energy对话框中勾选Energy Equation选项,并单击OK按钮确认选择。

图14-213设置能量方程

14.5.13材料选择

Step1:材料库。单击命令树中的Materials命令,然后在Materials面板选择Solid,在单击Create/Edit…按钮,在弹出如图14-214所示的Create/Edit Materials对话框选择右侧的FLUENT Database…按钮,在弹出的FLUENT Database Materials对话框中的Material Type栏中选择Solid选项,然后在左侧的FLUENT Solid Materials栏中选择steel选项并单击Copy按钮。

图14-214材料库

14.5.14设置几何属性

Step1:设置几何属性。选择命令树中的Cell Zone Conditions命令,在Cell Zone Conditions 面板中的Zone栏中选择box4几何名,然后将Type设置为Solid,如图14-215所示。

Step2:在弹出如图14-216所示的Solid对话框中作如下操作:

在Materials栏中选择steel,设置实体为steel;

勾选Source Terms选项设置源;

单击Edit…按钮,在弹出的Energy sources对话框中的Number of 输入Energy sources 栏中输入1,表示设置为1个热源,并单击OK按钮。

图14-215设置几何属性图14-216设置热源

Step3:在弹出如图14-217所示,设置Solid几何体为fluid,材料为air,其余默认即可。

图14-217设置几何属性

14.5.15流体边界条件

Step1:单击命令树中的Boundary命令,在Boundary Condition面板的Zone中选择inlet 选项,在Type栏中选择velocity-inlet选项。

Step2:设置入口速度。在弹出的如图14-218所示的velocity-inlet对话框中作如下设置:在velocity Magnitude(m/s)栏中输入入口流速为20m/s;

其余保持默认并单击OK按钮。

图14-218设置入口速度

Step3:单击命令树中的Boundary命令,在Boundary Condition面板的Zone中选择outlet 选项,在Type栏中选择Outflow选项,如图14-219所示。

图14-219设置自由出流

Step4:单击命令树中的Boundary命令,在Boundary Condition面板的Zone中选择wall-6选项,在Type栏中选择wall选项,在弹出的Thermal选项卡中的Material Name栏中选择steel并单击OK按钮,如图14-220所示。

图14-220设置耦合面

Step5:导入热源。如图14-221所示,单击File菜单中的EM Mapping→Volumetric Energy Source…命令。

Step6:在弹出的如图14-222所示的Maxwell Mapping对话框中单击OK按钮。

Step7:经过一段时间的处理,在Fluent的TUI窗口中出现如图14-223所示的损耗数据,数据显示总损耗为221.7w,此数据与之前Maxwell中计算的得到的数据一致。

图14-221菜单图14-222热源数据

图14-223损耗值

14.5.16求解器设置

Step1:选择命令树中的Solution Initialization命令,在如图14-224所示的操作面板中作如下操作:

在Initialization Methods栏中选择Standard Initialization选项;

在Compute from栏中选择inlet选项,其余默认即可,并单击Initialize按钮。

Step2:选择命令树中的Run Solution命令,在如图14-225所示的操作面板中作如下操作:

在Number of Iteratioins栏中输入200,其余保存默认即可,单击Calculate按钮。

图14-224初始化图14-225步长设置

Step3:如图14-226(a)所示为Fluent正在计算过程。

Step4:求解完成后会出现如图14-226(b)所示的对话框,单击OK确认。

(a)求解过程(b)求解完成提示框

图14-226求解计算

Step5:后处理操作。选择命令树中的Results→Graphics and Animations,如图14-227所示,在Graphics and Animations面板中的双击Contours选项。

Step6:在弹出的如图14-228所示的Contours对话框中作如下操作:

在Contours of栏中选择Velocity…;

在Surfaces栏中单击按钮,选择所有边界;

其余保持默认即可并单击Display按钮。

图14-227后处理命令图14-228后处理操作Step7:如图14-229所示为流速分布云图。

图14-229流速云图

Step8:如图14-230所示为流速矢量云图。

图14-230流速矢量云图

Step9:如图14-231所示为温度分布云图。

图14-231温度分布云图

Step10:关闭Fluent平台。

14.5.17CFD—Post后处理操作

Step1:如图14-232所示为CFD-Post专业后处理器平台。

图14-232 CFD-Post专业后处理器平台

Step1:在工具栏中单击Location→Plane命令,如图14-233所示,保持平面名称默认,创建平面。

Step2:在出现的如图14-234所示的Details of Plane1面板中作如下设置:

在Method栏中选择ZX Plane;

在Y栏中输入0.0[m],其余保持默认并单击Apply按钮。

EMC传导和耦合应用(DOC)

电磁兼容传导耦合理论及其应用 学生张** 年级2010级 班级0210** 班 学号021012** 专业电子信息工程 学院电子工程学院 西安电子科技大学 2013年5月

电磁兼容传导耦合原理及其应用 张** 摘要:本文就现实中普遍存在的电子,电气设备电磁骚扰现象引发的电磁干扰出发,先介绍了电磁兼容这个学科的发展及意义,然后重点介绍了电磁干扰耦合传输理论。最后从传导耦合和辐射耦合两个方面并结合相关案例分析如何在这两个耦合途径上减少电磁干扰的发生。 关键词:电磁兼容传输耦合传导耦合辐射耦合

目录 引言 (1) 第一章电磁兼容发展及意义 (1) 1.1电磁兼容技术的发展 (1) 1.2 电磁兼容的地位和意义 (1) 第二章电磁干扰耦合传输理论 (1) 2.1传导耦合 (2) 2.2 辐射耦合 (2) 第三章传导耦合理论应用实例及分析 (2) 3.1电力线载波 (3) 3.2 变频器 (3) 3.2抑制传导干扰的有效办法 (4) 第四章辐射耦合理论应用实例及分析 (5) 3.1雷电电磁辐射对微电子设备的影响 (5) 3.2感性负载的瞬态噪声抑制及其触点的保护 (5) 3.2抑制辐射干扰的有效办法 (5) 第五章结束语 (6) 参考文献 (7)

引言 随着现代科学技术的发展,各种电子,电气设备不仅数量及种类不断增加,而且向小型化,数字化,高速化和网络化的方向高速发展,然而电子,电气设备在正常工作时还会产生一些有用无用的电磁能量,影响其他设备,系统或者生物,使得电磁环境日益复杂,造成了电磁污染,形成电磁骚扰。电磁骚扰有可能使电气,电子设备和系统的工作性偏离预期,产生误差。严重时还会摧毁电气电子设备,危害人体。正是在这种背景下,电磁兼容性设计成为了现代工程设计中的重要组成部分。 第一章电磁兼容发展及意义 1.电磁兼容技术的发展 电磁兼容是指“设备在共同的电磁环境中能一起执行各自功能的共存状态,即该设备不会由于受到处于同一电磁环境中的其他设备的电磁发射导致或遭受不允 许的降级,它也不会使同一电磁环境中其它设备因受其电磁发射而导致或遭受不允 许的降级。 1881年英国科学家希维赛德发表了“论干扰”的文章,标志着电磁兼容性研究的开端,1889年英国邮电部门研究了通信中的干扰问题,使电磁兼容性研究开 始走向工程化,1944年德国电气工程师协会制订了世界上第一个电磁兼容性规范 VDE0878,1945年美国颁布了第一个电磁兼容性军用规范JAN-I-225。世界多数发 达国家早已开始以法令、法规形式进行管理控制,在我国电磁兼容理论和技术的研 究起步较晚,从1983年开始陆续颁布了一系列有关电磁兼容性标准和规范。自此 以后,电磁兼容技术迅速发展成为非常活跃的学科领域之一。 2.电磁兼容的地位及意义 经验证明,如果记在产品开发阶段解决电磁干扰问题的费用为1个单位,那么等到产品设计定型后再解决其问题,费用将增加10倍;而到产品批量生产后再解 决时,费用将增加100倍;到用户发现问题后才解决时,费用可能高达1000倍。 而在产品开发阶段同时进行电磁兼容性设计,就可望把80%~90%的电磁兼容性问 题解决在产品定型之前。只按常规进行产品功能设计,不仅在技术上带来一系列的 难题,而且还会造成人力、财力的极大浪费。 就产品本身功能和市场占有而言,电磁兼容性设计的意义也是不可估量的。其一,电子设备工作的可靠性依赖于其电磁抗干扰性。电磁兼容性表征电子设备在电 磁环境中正常工作的能力。其二,电子设备国内外市场的开拓需要其具有良好的电 磁兼容性。电磁兼容性达标认证已由一个国家范围向全球地区发展,成为一个国际 标准。其三,安全因素,存在电磁辐射的电子产品可能会引起如设备误操作、通讯 设施电磁泄密、电爆装置误爆、误燃等危险。 第二章电磁干扰耦合传输理论 产生电磁干扰三要素:电磁干扰源,干扰传播途径,敏感设备。由此可知,任何电磁干扰的产生必然存在电磁骚扰(或者骚扰电磁能量)的耦合与传输途径。这里,耦合的概念指的是电路、设备、系统与其它电路、设备、系统之间的电磁量联系,耦合起着把电磁能量从

基于MpCCI的Abaqus和Fluent流固耦合案例1

CAE联盟论坛精品讲座系列 基于MpCCI的Abaqus和Fluent流固耦合案例 主讲人:mafuyin CAE联盟论坛总监 摘要:通过MpCCI流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus和Fluent相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks建立了一个管径为1m的弯管,结构尺寸如图1a所示,管的结构如图1b所示,流体的模型如图1c所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in=600K 外壁面 压力出口 P=0Pa;T out=300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。

某电机多物理场耦合分析

某电机多物理场耦合分析 1、概述 为了验证ANSYS耦合场分析功能在电机设计中的应用,采用ANSYS的多物理场耦合分析功能,对某机车牵引电机(包括定子、转子)的耦合场分析作了如下工作: 1建立起电机用于电磁、流体、热、结构分析的统一的几何模型和有限元计算模型; 2首先进行电机磁场分析,计算获取了电机设计中所关心的磁场和磁密分布、矩角特性、电感等参数,并获得电机的电磁发热、电磁力和电磁力矩分布; 3利用电机磁场分析得到的热生成,进行电机的流体-热耦合分析,考核电机的通风冷却性能,得到电机的温度分布; 4使用电机磁场分析得到的电磁力和电磁力矩分布、以及温度分布,进行结构分析,得到考虑温度和电磁影响下的电机的应力和变形情况。同时对电机定子、以及定转子耦合情况进行振动模态分析。 所有分析相互间的载荷和边界条件的传递均由程序自动完成。 2、引言 众所周知,在电机设计与研究中,要涉及到电磁、绝缘、发热、通风冷却和力学等多种多样的问题,是一个典型的综合性研究学科,各学科之间是相互关联、相互影响的,是典型的多场耦合问题学科。由于多场耦合问题的研究十分复杂和困难,传统的电机分析研究方法,是把这些相互关联的问题分离,按各学科分类进行独立的研究。ANSYS是世界上唯一真正能够在同一个界面下,使用统一的数据库进行完善的电磁场、流场、温度场、结构(应力场)耦合分析的商业软件。应用ANSYS的这种多场耦合能力可以很方便地研究电机的多场耦合问题。 为了实际考核ANSYS的电磁、热、流体(通风冷却)、结构这些多物理场及其耦合分析在电机设计和研究中的应用能力,ANSYS公司成都办事处对某牵引电机进行了多物理场耦合研究分析。研究分析的内容为: 运用ANSYS软件建立起电机(包括定子和转子)用于电磁、流体、热、结构分析的统一的几何模型和有限元计算模型;首先进行电机磁场分析,计算获取电机设计中所关心的磁场和磁密分布、矩角特性、电感等参数,并获得电机的电

电磁耦合原理及公式

电磁耦合原理及公式 悬赏分:0 - 解决时间:2006-9-10 21:41 定子与转子如何产生感应电压 提问者:jinshoufeng - 一级 最佳答案 磁铁和电流都能够产生磁场,电流的磁场是由电荷的运动形成的,那么磁铁的磁场是如何产生的呢?法国学者安培根据环形电流的磁性与磁铁相似,提出了著名的分子电流的假说。他认为,在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为一个微小的磁体,它的两侧相当于两个磁极。这两个磁极跟分子电流不可分割地联系在一起。安培的假说,能够解释各种磁现象。一根软铁棒,在未被磁化的时候,内部各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外界不显磁性。当软铁棒受到外界磁场的作用时,各分子电流的取向变得大致相同,软铁棒就被磁化了,两端对外界显示出较强的磁作用,形成磁极。磁体受到高温或者受到猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械运动的影响下,分子电流的取向又变得杂乱了。在安培所处的时代,人们对原子结构还毫无所知,因而,对物质微粒内部为什么会有电流是不清楚的。直到20世纪初期,人类了解了原子内部的结构,才知道分子电流是由原子内部的电子的运动形成的。安培的磁性起源的假说,揭示了磁现象的电本质。它使我们认识到,磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的。 但是仅凭“电荷运动产生磁场”还不足以说明以下三个问题:1.运动电荷周围的磁场为何其磁力线方向符合右手螺旋法则而不是左手螺旋法则?2.通电直导线周围有环形磁场,为何磁力线方向也符合右手螺旋法则而不是左手螺旋法则?3.原子磁矩如何确定N极和S极?唯一的解释只能是“电荷运动时自旋”,自旋产生磁场,磁力线方向与自旋方向有关。“电荷运动时自旋”这一判断虽然是来自于推理,但能够解释一切电磁现象,下面一一讲述: 一、电生磁 电荷静止时不自旋,只产生电场,不产生磁场。 电荷运动时自旋,并在周围产生环形磁场。正电荷运动时的自旋方向和磁场方向为:右手半握,拇指伸开,拇指指向正电荷前进方向,其余四指就指向自旋方向,磁力线方向与自旋方向相同。负电荷运动时的自旋方向和磁场方向为:左手半握,拇指伸开,拇指指向负电荷前进方向,其余四指就指向自旋方向。磁力线方向与自旋方向相反。 通有直流电流的直导线中,电子排着队向前运动,因电子自旋的作用,导线周围有环形磁场。电子自旋方向和磁场方向为:左手半握,拇指伸开,拇指指向负电荷前进方向,其余四指就指向自旋方向,磁力线方向与自旋方向相反。 若将通有直流电流的直导线弯曲成圆形,则环形磁场闭合,对外表现为磁矩。电流方向和磁极方向的关系符合右手螺旋法则:右手半握,拇指伸开,除拇指外的四指指向电流方向,则拇指指向N极方向。 电子绕原子核运动,可视为通有直流电流的圆形导线,对外表现为原子磁矩。电子运动方向和磁极方向的关系符合左手螺旋法则:左手半握,拇指伸开,除拇指外的四指指向电子运动方向,则拇指指向N极方向。 二、电作用于磁

mawell与fluent电磁热流耦合分析

14.5耦合实例4——Maxwell和FLUENT电磁热流耦合 例, 14.5.1 析钢块在上述工况下的温度场分布情况、风的流线图及风的温度分布云图。 图14-164几何模型 14.5.2软件启动与保存 Step1:启动Workbench。如图14-165所示,在Windows XP下单击“开始”→“所有程序”→ANSYS14.0→Workbench 14.0命令,即可进入Workbench主界面。 图14-165 Workbench启动方法 Step2:保存工程文档。进入Workbench后,单击工具栏中的按钮,将文件保

存为“MagtoThemtoFluid”,单击Getting Started窗口右上角的(关闭)按钮将其关闭。 注意:本节算例需要用到ANSOFT Maxwell14.0软件,请读者进行安装; 由于ANSOFT Maxwell软件不支持保存路径中存在中文名,故在进行文档保存时,保存的路径不不能含有中文字符,否则会发生错误。 14.5.3导入几何数据文件 Step1:创建几何生成器。如图14-166所示,在Workbench左侧Toolbox(工具箱)的Analysis Systems中单击Maxwell 3D并按住左键不放将其拖到右侧的Project Schematic窗口中,此时即可创建一个如同EXCEL表格的项目A。 Step2:双击A2(Geometry)进入如图14-167所示的电磁分析环境,此时启动了Maxwell 3D软件。 图14-166项目A Step3:依次选择菜单Modeler→Import,在出现的Import File对话框中选择ThermaltoFluid.x_t几何文件,并单击打开按钮。 图14-167电磁分析环境 Step4:此时模型文件已经成功显示在Maxwell软件中,如图14-168所示,同时弹出Modal Analysis对话框,在对话框左侧的栏中显示的几何图形为Good表示数据读取无误,单击Close按钮。

abaqus与fluent流固耦合

基于MPCCI的流固耦合成功案例 基于MPCCI的流固耦合成功案例 (一)机翼气动弹性分析 1 问题陈述 机翼绕流问题是流固耦合中的经典问题。以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。这个强硬的假设很难准确的描述流场的实际情况。更无法预测机翼的振动。MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。我们通过MPCCI,能很好的预测真实情况下的机翼绕流问题。采用ABAQUS结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Fluent软件来计算由于固体运动和变形对整个流场的影响。 2 模拟过程分析顺序 MpCCI的图形用户界面可以方便的读入结构和流体的输入文件。后台调用ABAQUS和FLUENT。在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。启动MpCCI进行耦合。 3 边界条件设置

图1 无人机模型和流体计算模型 结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。在固体中除了固定端的面外,其他三个面为耦合面。流体部分采用四面体网格,采用理想气体作为密度模型。流体的入口和出口以及对称性边界条件如下图所示。 图2 固体有限元模型 4 计算方法的选择 通过结合ABAQUS和FLUENT,使用MPCCI计算流固耦合。在本例中,固体在流场作用下产生很大的变形和运动。在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCCI传输给FLUENT的耦合界面,FLUENT 计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQUS。在MPCCI的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。采用ABAQUS中的STANDARD算法,时间增量步长为0.1毫秒。 5 计算结论 通过MPCCI结合ABAQUS和FLUENT,成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

fluent单项流固耦合

流固耦合(Fluid-solid interaction,FSI)计算,通常用于考虑流体与固体间存在强烈的相互作用时,对流体流场与固体应力应变的考察。FSI计算按数据传递方式可分两类:单向耦合与双向耦合。所谓单向耦合,主要是指数据只从流体计算传递压力到固体,或者只从固体计算传递网格节点位移到流体。双向耦合则在每一时刻都同时向对方发送相应的物理量(流体计算发送压力数据,固体计算发送位移数据)。 ANSYS Workbench中可以利用Fluent与DS进行单向流固耦合计算。我们这里来举一个最简单的单向耦合例子:风吹挡板。我们假定挡板位移可忽略不计,固体变形对流场影响可以忽略,所考虑的是流体压力作用在固体上,固体的应力分布。当然这里的压力可以换成温度等其他物理量。 1、新建工程。注意是从Fluent –> Static Structure。连接图如1所示。 图1 计算工程关 系图2 进入DM建模 2、进入Fluent中的DM进行模型创建,如图2所示。 流固耦合计算中的几何模型与单纯的流体模型或固体模型不同,它要求同时具有流体和固体模型,而且流体计算中只能有流体模型,固体计算中只能有固体模型。建好后的模型如图3,4,5所示。由于固体模型需要从这里导入,所以我们保留固体与流体模型。

图3 实体模型 图4 固体模型

图5 流体模型 3、进入FLUENT网格设置。 在FLUENT工程视图中的Mesh上点击右键,选择Edit…,如图6所示,进入网格划分meshing界面,如图7所示。我们这里需要去掉固体部分,只保留流体几何。 图6 进入网格划 分图7 禁用固体模型

用ANSYS和FLUENT进行管壳式换热器整体分析

用ANSYS和FLUENT进行管壳式换热器整体分析 作者:郭崇志林长青 利用数值模拟计算软件进行管壳式换热器的流体力学和传热性能计算及评估已经成为开发和研究管壳式换热器的重要手段之一,由于结构和流道复杂,导致准确地进行换热器的流体力学性能和传热性能计算和评估有一定的困难。而对换热器的结构性能进行准确分析一般都需要进行流固耦合模拟,如果要同时进行换热器的流体流动与传热和结构性能分析就更加困难。 有关管壳式换热器的温度场研究,目前大多数文献集中于研究管板的温度场及所产生温差应力、以及由此导致的结构强度等问题,通常利用ANSYS 大型商用软件行管壳式换热器管板结构的温度场研究,采用简化的三维实体模型较多,一般利用已知的平均温度或利用已知的换热(膜)系数对几何结构模型加载,而这些已知条件通常来源于手册提供的数据或者经验数据,并非来源于严格的换热器流体力学与传热工艺的数值计算,因此是产生结果计算偏差的主要原因之一。 目前文献对于给定工艺条件下管壳式换热器的整体温度场研究的并不多,由于准确的温度场是研究温差应力及其危害的前提,因此本文利用FLUENT 和ANSYS 软件对一台固定管板换热器的约束构件之间的整体结构在正常运行工况下的数值模拟问题进行了研究,首先从计算流体力学与传热的角度出发,利用FLUENT软件进行换热器流体流动与传热的工艺状况数值模拟。然后把FLUENT 软件的数值模拟结果导入ANSYS中作节点插值,完成温度场的重建,作为进行换热器的热分析以及结构分析的边界条件。从而实现了管壳式换热器的FLUENT 和ANSYS 联合仿真模拟,综合整个过程可以很好地完成同一条件下换热器的流体力学与传热和结构性能分析,使得换热器的工艺性能计算与结构分析计算完整地结合在一起,计算精度更高。 1 CFD数值模拟 本文研究的换热器结构示意如图1所示,在对实际结构进行合理简化的基础上,以影响流动和传热的主要结构建立了某固定管板式换热器温度场数值计算模型,采用分段模拟、整体综合的方法,利用FLUENT软件对该换热器在正常操作工况下的流动与传热情况进行数值模拟[8] ,得到计算流道上有关各个构件的壁温场分布。

电磁场名词解释

电场:任何电荷在其所处的空间中激发出对置于其中别的电荷有作用力的物质。磁场:任一电流元在其周围空间激发出对另一电流元(或磁铁)具有力作用的物质。 标量场:物理量是标量的场成为标量场。 矢量场:物理量是矢量的场成为矢量场。 静态场:场中各点对应的物理量不随时间变化的场。 有源场:若矢量线为有起点,有终点的曲线,则矢量场称为有源场。 通量源:发出矢量线的点和吸收矢量线的点分别称为正源和负源,统称为通量源。 有旋场:若矢量线是无头无尾的闭曲线并形成旋涡,则矢量场称为有旋场。方向导数:是函数u (M在点M0处沿I方向对距离的变化率。 梯度:在标量场u(M中的一点M处,其方向为函数u(M在M点处变化率最大的方向,其模又恰好等于此最大变化率的矢量G,称为标量场u(M在点M处的梯度,记作grad u(M。 通量:矢量A沿某一有向曲面S的面积分为A通过S的通量。 环量:矢量场A沿有向闭曲线L的线积分称为矢量A沿有向闭曲线L的环量。亥姆霍兹定理:对于边界面为S的有限区域V内任何一个单值、导数连续有界的矢量场,若给定其散度和旋度,则该矢量场就被确定,最多只相差一个常矢量;若同时还给出该矢量场的边值条件,则这个矢量场就被唯一确定。(前半部分又称唯一性定理).:q dq 电荷体密度:’=期小飞矿,即某点处单位体积中的电量。 传导电流:带电粒子在中性煤质中定向运动形成的电流。 运流电流:带电煤质本身定向运动形成形成的电流。 位移电流:变化的电位移矢量产生的等效电流。 电流密度矢量(体(面)电流密度):垂直于电流方向的单位面积(长度)上的电流。 静电场:电量不随时间变化的,静止不动的电荷在周围空间产生的电场。 电偶极子:有两个相距很近的等值异号点电荷组成的系统。 磁偶极子:线度很小任意形状的电流环。 感应电荷:若对导体施加静电场,导体中的自由带电粒子将向反电场方向移动并积累在导体表面形成某种电荷分布,称为感应电荷。 导体的静电平衡状态:把静电场中导体内部电场强度为零,所有带电粒子停止定向运动的状态称为导体的静电平衡状态。 电壁:与电力线垂直相交的面称为电壁。 磁壁:与磁力线垂直相交的面称为磁壁。 介质:(或称电介质)一般指不导电的媒质。 介质的极化:当把介质放入静电场中后,电介质分子中的正负电荷会有微小移动,并沿电场方向重新排列,但不能离开分子的范围,其作用中心不再重合,形成一个个小的电偶极子。这种现象称为介质的极化。 媒质的磁化:外加磁场使煤质分子形成与磁场方向相反的感应磁矩或使煤质的固有分子磁矩都顺着磁场方向定向排列的现象。 极性介质:若介质分子内正负电荷分布不均匀,正负电荷的重心不重合的介质。 极化强度:定量地描述介质的极化程度的物理量。 介质的击穿:若外加电场太大,可能使介质分子中的电子脱离分子的束缚而成为 自由电子,介质变成导电材料,这种现象称为介质的击穿。 击穿强度:介质能保持不被击穿的最大外加电场强度。

(整理)FLUENT14双向流固耦合案例.

说明:本例只应用于FLUENT14.0以上版本。 ANSYS 14.0是2011年底新推出的版本,在该版本中,加入了一个新的模块System Coupling,目前只能用于fluent与ansys mechanical的双向流固耦合计算。官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。 模块及数据传递方式如下图所示。 一、几何准备 流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。在geometry模块中同时创建流体模型与固体模型。到后面流体模型或固体模块中再进行模型禁用处理。 模型中的尺寸:v1:32mm,h2:120mm,h5:60mm,h3:3mm,v4:15mm。

由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice切割。这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。 二、流体部分设置 1、网格划分 双击B3单元格,进入meshing模块进行网格划分。禁用固体部分几何。设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。这里设定全局尺寸为1mm。划分网格后如下图所示。 2、进行边界命名,以方便在fluent中进行边界条件设置 设置左侧面为速度进口velocity inlet,右侧面为自由出流outflow,上侧面为壁面边界wall_top,正对的两侧面为壁面边界wall_side1与wall_side2(这两个边界在动网格设定中为变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为system coupling类型)。 操作方式:选择对应的表面,点击右键,选择菜单create named selection,然后输入相应的边界名称。注意:FLUENT会自动检测输入的名称以使用对应的边界类型,当然用户也可以在fluent进行类型更改。完成后的树形菜单如下图所示。

基于LSDYNA及FLUENT的板壳结构流固耦合分析

基于 LS-DYNA 及 FLUENT 的板壳结构流-固耦合分析
汪丽军 北京航空航天大学,交通科学与工程学院 100191
[摘 要]: 本文采用 ANSYS 显示动力分析模块 LS-DYNA 及流场分析模块 FLUENT,对水下的板壳 结构运动及其界面的流-固耦合现象进行了仿真分析。流场计算得到的界面压强数据以外载荷 的形式施加于结构表面,使其产生位移及变形;同时,结构的变化又进一步影响了流场的分 布。通过往复的双向耦合迭代,得到了板壳结构的动力学响应以及流场的分布情况。仿真结 果与试验结果的对比表明,此方法适用于解决兼有大位移及较大变形特征的流-固耦合问题。 [关键词]: 板壳结构 流-固耦合 有限元方法 ANSYS
Analysis of Fluid-Structure Interaction for Plate/Shell Structure Based on LS-DYNA and FLUENT
Wang Lijun School of Transportation Science & Engineering, Beihang University 100191
Abstract: In this paper,the movement of plate under water and the fluid-structure interaction(FSI) is simulated numerically by combining explicit dynamic solver LS-DYNA and computational fluid dynamics solver FLUENT in ANSYS. The pressure obtained from the calculation of flow field are applied as external loads on the surface of the plate, then the structural deformation and displacement can be calculated as well, which will affect the shape and pressure distribution of the flow field reversely. After sequential coupling iterations the dynamic response of the structure and flow field distribution are obtained consequently. By comparing numerical and experimental results it is proved that this proposed coupling method is suitable for solving such a kind of FSI problems considering both large displacement and comparatively large deformation. Keyword: Plate/shell structure, Fluid-Structure Interaction, Finite element method,ANSYS
1
前言
在自然界中,流-固耦合现象广泛存在于航空、航天、汽车、水利、石油、化工、海洋 以及生物等领域。很多实际问题中流体载荷对于结构的影响不可忽略;同时,结构的位移 和变形也会对流场的分布产生重要影响。例如各种水下运动机构都需要考虑这种现象。

双向流固耦合实例Fluent与structure

双向流固耦合实例( Fluent 与 structure) 说明:本例只应用于FLUENT14.0 以上版本。 ANSYS 14.0 是2011 年底新推出的版本,在该版本中,加入了一个新的模块System Coupling ,目前只能用于fluent 与ansys mechanical 的双向流固耦合计算。官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT 终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。 模块及数据传递方式如下图所示。 一、几何准备流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。在geometry 模块中同时创建流体模型与固体模型。到后面流体模型或固体模块中再进行模型禁用处理。 模型中的尺寸:v1:32mm ,h2:120mm ,h5:60mm ,h3:3mm ,v4:15mm 。由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice 切割。这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。 二、流体部分设置 1、网格划分 双击B3 单元格,进入meshing 模块进行网格划分。禁用固体部分几何。设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。这里设定全局尺寸为1mm 。划分网格后如下图所示。

2 、进行边界命名,以方便在 fluent 中进行边界条件设置 变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为 操作方式:选择对应的表面,点击右键,选择菜单 create named selection ,然后输入相 应的边界名称。 注意: FLUENT 会自动检测输入的名称以使用对应的边界类型, 在 fluent 进行类型更改。完成后的树形菜单如下图所示。 本部分操作完毕后,关闭 meshing 模块。返回工程面板。 3 、进入 fluent 设置 FLUENT 主要进行动网格设置。其它设置与单独进行 FLUENT 仿真完全一致。 设置使用瞬态计算,使用 K-Epsilon 湍流模型。 这里的动网格主要使用弹簧光顺处理(由于使用的是六面体网格且运动不规律),需要使 用 TUI 命令打开光顺对六面体网格的支持。使用命令 /define/dynamic-mesh/controls/smoothing-parameters 。 动态层技术与网格重构方法在六面体网格中失效。因此,建议使用四面体网格。我们这里 由于变形小,所以只使用光顺方法即可满足要求。 点击 Dynamic mesh 进入动网格设置面板。如下图所示,激活动网格模型。 设置左侧面为速度进口 velocity inlet ,右侧面为自由出流 outflow ,上侧面为壁面边界 wall_top ,正对的两侧面为壁面边界 wall_side1 与 wall_side2 这两个边界在动网格设定中为 system coupling 类型) 当然用户也可以

电磁兼容基本知识介绍电磁耦合机理

1、传导耦合 导线经过有干扰的环境,即拾取干扰信号并经导线传导到电路而造成对电路的干扰,称为传导耦合,或者叫直接耦合。 在音频和低频的时候由于电源线、接地导体、电缆的屏蔽层呈现低阻抗,故电流注入这些导体时容易传播,当噪声传导到其他敏感电路的时候,就能产生干扰作用。 在高频的时候:导体的电感和电容将不容忽视,感抗随着频率的增加而增加,容抗随着频率的增加而减小。jwL,1/jwC 解决方法:防止导线的感应噪声,即采用适当的屏蔽和将导线分离,或者在骚扰进入明暗电路之前,用滤波的方法将其从导线中除去; 2、共阻抗耦合 当两个电路的电流经过一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路。 3、感应耦合 a)电感应容性耦合 干扰电路的端口电压会导致干扰回路中的电荷分布,这些电荷产生电场的一部分会被敏感电路拾取,当电场随时间变化,敏感回路中的时变感应电荷就会在回路中形成感应电流,这种叫做电感应容性耦合。 解决方法:减小敏感电路的电阻值,改变导线本身的方向性屏蔽或者分隔来实现。 b)磁感应耦合 干扰回路中的电流产生的磁通密度的一部分会被其他回路拾取,当磁通密度随时间变化时就会在敏感回路中出现感应电压,这种回路之间的耦合叫做磁感应耦合。 主要形式:线圈和变压器耦合、平行双线间的耦合等。铁心损耗常常使得变压器的作用类似于抑制高频干扰的低通滤波器。平行线间的耦合是磁感应耦合的主要形式 要想减少干扰,必须尽量减少两导线之间的互感。 4、辐射耦合 辐射源向自由空间传播电磁波,感应电路的两根导线就像天线一样,接受电磁波,形成干扰耦合。干扰源距离敏感电路比较近的时候,如果辐射源有低电压大电流,则磁场起主要作用;如果干扰源有高电压小电流,则电场起主要作用。 对于辐射形成的干扰,主要采用屏蔽技术来抑制干扰。

最新fluent流固耦合传热设置问题

FLUENT流固耦合传热设置问题 看到很多网友对于fluent里模拟流固耦合传热(同时有对流和导热)有很多疑问,下面说说我的解决方法。 1,首先要分清你的问题是否是流固耦合传热。 (1)如果你的传热问题只是流体与固体壁面的传热,不涉及到固体壁面内部的导热,那么这就是一个对流传热问题,不是流固耦合传热问题, 这时候你只需要设置壁面的对流换热系数即可。如下图 注意右边这几个参数的含义:从上往下依次为:壁面外部的对流传热系数;外部流体温度;壁面厚度;壁面单位体积发热率。 这里没有内部流体的对流传热设置,因为fluent会根据流体温度以及壁面温度,利用能量守恒,自动计算内壁流体与壁面的对流换热情况。 (2)流固耦合传热问题。在建模的时候你应该定义两个区域,流体区域和固体区域,并且在切割区域的时候,你应该选中connect,如下图所 示 边界条件设置:交界面为wall。在导入fluent以后,fluent就会自动生成wall-shadow。这样在流固交界面上就生成了一对耦合的面,如下图所示,

。 2,耦合传热设置问题 (1)首先就是求解器的设置问题,应该选择耦合求解器,虽然计算速度会慢一些,但是这更符合实际情况,更容易收敛,误差更小。如果是非 稳态过程还应选择unsteady。如下图所示 (2)交界面设置问题,这个是关键。不用过多的设置只需要选择coupled。 这样fluent就会自动计算耦合面的传热问题。如下图所示

(3)当然还要选择能量方程。其他诸如湍流模型、材料设置、进出口条件等等,需要你根据实际情况设定,这里不再雷述。1.在国际单位制中,电荷的单位是 A. 伏特 B. 安培 C. 库仑 D.瓦特 2.小明家装修房屋需要购买导线,关于导线种类的选择,最恰当的是: A.强度大的铁丝B.细小价格较便宜的铝丝 C.粗一点的铜丝D.性能稳定的镍铬合金丝 3.小明在研究通过导体的电流时,根据测量数据绘制出如图 所示的I-U图像。对此作出的判断中,错误 ..的是: A.通过R1的电流与它两端所加电压成正比 B.通过R2的电流与它两端所加电压不成正比 C.将它们串联接入到同一电路中时,通过R1的电流较小 D.将它们并联连接到两端电压为1.5V的电路中时,通过 干路的电流大约是0.46A 4.小灯泡L上标有“2.5V”字样,它的电阻随它两端电压变化的图像如图甲所示。将小灯泡L和电阻R0接入图乙所示的电路中,电源电压为6V,且保持不变。当开 关S闭合时,小灯泡L恰好能正常发光。 下列说法正确的是: A.开关S断开时,小灯泡L的电阻为0Ω B.开关S闭合时,小灯泡L的电阻为8Ω C.小灯泡L的额定功率为0.5W D.电阻R0的阻值为14Ω 5.假设导体没有电阻,当用电器通电时,下列说法正确的是() A.白炽灯仍然能发光B.电动机仍然能转动 C.电饭锅仍然能煮饭D.电熨斗仍然能熨衣服 6.在图8所示电路中,闭合开关S后,在滑片P 向右滑动过程中,各电表示数变化正确的 是() A.A1、A3示数不变,A2、V示数变小 B.A1、V 示数不变,A2、A 3示数变大R1 R2

电磁炉加热水分析—电磁 热 结构耦合分析

电磁炉加热水分析—电磁热结构耦合分析 ANSYS作为一个强大的耦合场分析软件,其多个场的模拟分析可以很好的结合,下面以电磁炉加热一碗水为例,模拟耦合场的经典应用. 注意:模拟中用到的分析数据:电磁线圈频率、电流、线圈圈数、导线面积、电流密度、材料参数和散热系数等相关分析均为假设数据,真实数据请查阅相关资料或根据产品性能添加。 图1 耦合场分析 实例介绍: 电磁炉是应用电磁感应原理对食品进行加热的。电磁炉的炉面是耐热陶瓷板,交变电流通过陶瓷板下方的线圈产生磁场,它利用高频的电流通过环形线圈,从而产生无数封闭磁场力,当磁场那磁力线通过导磁(如:铁质锅)的底部,会产生无数小涡流(一种交变电流,家用电磁炉使用的是15-30KHZ的高频电流),使锅体本生自行高速发热,达到加热食品的目的。

图2电磁炉加热基本原理 1.分析模型介绍 模型建立为一个底部圆环模拟线圈,其上一个平板模拟陶瓷板,其上铁碗,碗中半碗水,为了便于后续的分析,将模型分割为对称的4个部分如图所示 图3 分析模型 2.分析过程: 在Workbench中建立耦合场的分析模块,使用Magnetostatic建立磁场分析模块,使用瞬态热分析模块读取磁场分析的功耗,查看水升温的时间,建立结构分析模块读取热分析的温度分布,来获取结构相关的结果。

图4 Workbench耦合场分析流程 2.1电磁场分析 底板线圈使用电流密度添加电流模拟线圈电流,这样在线圈上不会产生涡流效应导致的电流分布不均匀现象,其值为 I=单根导线电流*线圈圈数/线圈截面积,由于线圈为高频交流电,根据电磁理论在碗底的铁质体上产生涡流,靠涡流生成的电流来加热碗底,并可以读取相应的热生成功率。 分析中注意的事项: 1)加载电流密度的圆环模型要建立圆心的圆柱坐标系,将其模型坐标系为圆柱坐标系,Y轴为圆环的圆周方向,模拟电流的流向。 2)静态磁场分析默认为117单元,是不产生涡流效果的,可以更改模型的单位类型关键字,将碗底的模型单元更改为117,1单元,或者更改为236单元,设置相应的关键字。 分析中加载电流密度并设置为谐波分析: bfe,conductor,js,2,current_density !加载电流密度 !高频求解 /solu anty,harm harfr,30000 solve

电磁炉加热水分析—电磁 热 结构耦合分析

电磁炉加热水分析—电磁热结构耦合分析 大龙猫1月17日1403 ANSYS作为一个强大的耦合场分析软件,其多个场的模拟分析可以很好的结合,下面以电磁炉加热一碗水为例,模拟耦合场的经典应用. 注意:模拟中用到的分析数据包括电磁线圈频率、电流、线圈圈数、导线面积、电流密度、材料参数和散热系数等相关分析均为假设数据,真实数据请查阅相关资料或根据产品性能添加。 实例介绍: 电磁炉是应用电磁感应原理对食品进行加热的。电磁炉的炉面是耐热陶瓷板,交变电流通过陶瓷板下方的线圈产生磁场,它利用高频的电流通过环形线圈,从而产生无数封闭磁场力,当磁场那磁力线通过导磁(如:铁质锅)的底部,会产生无数小涡流(一种交变电流,家用电磁炉使用的是15-30KHZ的高频电流),使锅体本生自行高速发热,达到加热食品的目的。 图2 电磁炉加热基本原理 1.分析模型介绍

模型建立为一个底部圆环模拟线圈,其上一个平板模拟陶瓷板,其上铁碗,碗中半碗水,为了便于网格划分和后续的分析,将模型分割为对称的4个部分如图3所示. 2.分析过程 在Workbench中建立耦合场的分析流程,使用Magnetostatic建立磁场分析模块,使用瞬态热分析模块读取磁场分析的功耗,查看水升温的时间,建立结构分析模块读取热分析的温度分布,来获取结构相关的结果。 2.1电磁场分析 底板线圈使用电流密度添加电流模拟线圈电流,这样在线圈上不会产生涡流效应导致的电流分布不均匀现象,其值为I=单根导线电流*线圈圈数/线圈截面积,由于线圈为高频交流电,根据电磁理论在碗底的铁质体上产生涡流,靠涡流生成的电流来加热碗底,并可以读取相应的热生成功率。 分析中注意的事项:

abaqus和Fluent的流固耦合模拟

耦合模拟 为耦合模拟ABAQUS需做如下工作: l定义耦合步 l定义耦合区域 l定义耦合区域需要交换的物理量 以上每一步骤将在下面详细叙述 定义耦合步 ABAQUS耦合模拟界面是和存在的ABAQUS程序联合使用的。在你想定义的耦合步中,无论耦合情况如何,你必须先有效的载荷和边界条件。然后你再说明需要耦合的是这步,其中的一些量需要和三方软件进行数据交换。如下的一些过程ABAQUS是可以进行耦合分析的: l准静态应力分析 l直接积分的隐式动态分析 l显式动态分析 l无耦合的热传导分析 l全积分热应力分析 与MPCCI server 数据交流始于耦合步,终于耦合步。 由于ABAQUS和其它三方软件在耦合分析过程中是实时的进行数据交换以及启动和终止三方程序,你可以在一个工作项目中只定义一个耦合步。 输入文件格式为:*CO-SIMULATION 定义接触区域 接触区域是系统之间的连接区域。这个表面对于ABAQUS而言必须是单元类型的面,任何对于MPCCI支持的单元类型均可以用于耦合步。而只有如下单元类型可以定义为接触区域,如表7.9.2-1 定义耦合区域的交换量 对于每个耦合区域你必须指定ABAQUS和其它三方软件进行交换的物理量,表7.9.2-2列出了可以用于交换和选择的物理量

输入输出的物理量的选择取决于分析的类型,如表7.9.2-3所示 输入文件的格式为: *CO-SIMULA TION,IMPORT surface_A,quantity_I1,quantity_I2,… surface_B,quatity_I3 *CO-SIMULA TION,EXPORT surface_A,quantity_E1 surface_B,quantity_E2 当前节点坐标和位移 因为在CFD代码中流体形状可以变化,不保持初始几何构型,所以在流固耦合(FSI)中选择当前节点坐标(COORD),而不是选择节点位移(U)。 不管是做小变形还是大变形,COORD的定义是当前节点坐标。这个定义和ABAQUS传统的定义有很大的区别,因为在传统的定义中再小变形情况下,初始坐标师部需要更新的。 位移再整体坐标系下总是交换的。如果对一个节点存在一个局部的变化,ABAQUS再将它们传给MPCCI server之前,先转化为整体坐标系下的位移。 集中力合法向压力 在流固耦合中,如果粘性剪切力需要导入,那么输入、输出的物理量就应该是集中节点力(CF)而不是法向压力(PRESS).在ABAQUS/Standard的耦合步中,从上一步到当前时间步,集中力和法向压力由一个斜坡的过渡。而在ABAQUS/Explicit的耦合步中,将保持常值,没有斜坡! 集中力总是在整体坐标系下进行数据交换的,如果一个节点存在一个局部坐标系,ABAQUS首先将集中力转化到局部坐标系下,然后再施加到结构上。 记中法向力可以在ABAQUS后处理中可视化。 热流和薄膜性质 对于流入一个表面热流分布可以用表面热流(HFL)这个概念。用薄膜性质(FILM)来模拟对流 这里q是进入表面的热流量,h是薄膜系数,为流体或者环境温度。薄膜系数可以通过热流和流体温度(FLUENT计算得到)以及壁温度(ABAQUS计算得到)来计算,如下 薄膜系数和流体温度传到ABAQUS内部,并保持为常值。当流体和壁的温度一致时,任意小的一个热传导系数付给ABAQUS。第一步耦合计算中,为了得到合理的薄膜常数,你应当保证在ABAQUS中壁温已经合适的初始化了,以及对初始的流体的温度场也有很好的估计。ABAQUS把初始化的壁温传给第三方软件。单位体系 ABAQUS对模型分析,没有特殊的单位要求。然而在耦合模拟中,ABAQUS运用的单位制必须和第三方

相关文档
相关文档 最新文档