文档库 最新最全的文档下载
当前位置:文档库 › 生物化学 第7章 生物氧化与氧化磷酸化

生物化学 第7章 生物氧化与氧化磷酸化

生物化学 第7章 生物氧化与氧化磷酸化
生物化学 第7章 生物氧化与氧化磷酸化

第七章生物氧化与氧化磷酸化

一、填空题:

1.电子传递链在原核细胞中存在于上,在真核细胞中存在于上。2.鱼藤酮能阻断电子由向的传递,利用这种毒性作用,可作为重要的。3.在动物体中形成ATP 的方式有和,但在绿色植物中还能进行。

4.电子传递链上的电子传递是一种反应,而A TP的合成过程则是一种反应。

5.电子传递链上电子传递与氧化磷酸化之间的偶联部位是之间,之间,______________之间。

6.典型的生物界普遍存在的生物氧化体系是由、和三部分组成的。7.解释氧化磷酸化作用机制被公认的学说是,是英国生物化学家于1961年首先提出的。

8.典型的呼吸链包括和两种,这是根据接受代谢物脱下的氢的不同而区分的。

9.动物体内高能磷酸化合物的生成方式有和两种。10.NADH呼吸链中氧化磷酸化发生的部位是在之间;之间;之间。11.磷酸甘油与苹果酸经穿梭后进入呼吸链氧化,其P/O比分别为和。

12.线粒体内膜外侧的α-磷酸甘油脱氢酶的辅酶是;而线粒体内膜内侧的α-磷酸甘油脱氢酶的辅酶是。

13.用特殊的抑制剂可将呼吸链分成许多单个反应,这是一种研究氧化磷酸化中间步骤的有效方法,常用的抑制剂及作用如下:

①鱼藤酮抑制电子由向的传递。

②抗霉素A抑制电子由向的传递。

③氰化物、CO抑制电子由向的传递。

二、选择题(只有一个最佳答案):

1.把电子从Cytc l传递到氧是哪类物质完成的( )

①铁硫蛋白②黄素蛋白③细胞色素④烟酰胺核苷酸类

2.下列化合物中不是电子传递链成员的是( )

①CoQ ②NAD+③CoA ④Cytc1

3.能被氧直接氧化的是( )

①CoQ ②Cytb ③Cyta ④Cyta3

4.不属于电子传递抑制剂的是( )

①一氧化碳②抗霉素③2,4-二硝基苯酚④氰化物

5.属于解偶联剂的是( )

①2,4-二硝基苯酚②硫化氢③叠氮化合物④抗霉素A

6.在真核生物中,1分子葡萄糖在有氧和无氧情况下分解时,净生成ATP分子数最近似的比值是( ) ①2 ②6 ③18 ④36

7.乙酰辅酶A彻底氧化时,其P/O比是( )

①2 ②0.5 ③3 ④1.5

8.电子传递链上的未端氧化酶是( )

①NADH脱氢酶②琥珀酸脱氢酶③细胞色素b ④细胞色素a3

9.下列化合物属于氧化磷酸化解偶联剂的是( )

①鱼藤酮②抗霉素A ③安密妥④2,4-二硝基苯酚

10.关于电子传递链的下列叙述中哪个是不正确的?()

①线粒体内有NADH+H+呼吸链和FADH2呼吸链。

②电子从NADH传递到氧的过程中有3个A TP生成。

③呼吸链上的递氢体和递电子体完全按其标准氧化还原电位从低到高排列。

④线粒体呼吸链是生物体唯一的电子传递体系。

11.一氧化碳中毒是由于抑制了哪种细胞色素?()

①Cytc ②Cytb ③Cytc ④Cyt aa3

12.各种细胞色素在呼吸链中的排列顺序是:()

①C→b1→C1→aa3→O2②C→C1→b→aa3→O2

③C1→C→b→aa3→O2④b→C1→C→aa3→O2

13.线粒体外NADH经α-磷酸甘油穿梭作用,进入线粒体内实现氧化磷酸化,其P/O值为()

①0 ②1 ③2 ④3

14.下列化合物哪个不是电子传递链中的成员()

①辅酶Q ②细胞色素c ③细胞色素b ④细胞色素P450

15.氰化物中毒是由于()

①作用于呼吸中枢,换气不足②干扰血红蛋白带氧能力

③破坏线粒体结构④抑制呼吸链

三、是非题(在题后括号内打√或×):

1.Cyta3的铁离子和铜离子将电子传递给氧。()

2.生物体中ATP的主要来源是通过氧化磷酸化作用形成的。()

3.解偶联剂可抑制电子传递链的电子传递。()

4.电子传递链上的各电子递体的排列是有一定顺序的。()

5.物质在空气中燃烧和在体内的生物氧化的化学本质是完全相同的。()

6.生物界NADH呼吸链应用最广。()

7.呼吸链中氧化还原电位跨度最大的一步是在Cytaa3-O2之间。()

8.A TP虽然含有大量的自由能,但它并不是能量的贮存形式。()

9.Fe-S蛋白是一类特殊的含有金属Fe和无机硫的蛋白质。()

10.辅酶Q在呼吸链中也可用作单电子传递体起作用。()

11.呼吸链中各电子传递体都和蛋白质结合在一起。()

12.细胞色素是指含有FAD辅基的电子传递蛋白。()

13.呼吸链中的递氢体本质上都是递电子体。()

14.胞液中的NADH通过苹果酸穿梭作用进入线粒体,其P/O比值约为2。()

15.ATP在高能化合物中占有特殊的地位,它起着共同的中间体的作用。()

16.所有生物体呼吸作用的电子受体一定是氧。()

四、问答题和计算题:

1、什么是生物氧化?有何特点?试比较体内氧化和体外氧化的异同。

2、氰化物为什么能引起细胞窒息死亡?

3、解释氧化磷酸化作用机理的化学渗透学说的主要论点是什么?

4、一分子丙酮酸在线粒体内氧化成CO2和H2O可生成多少分子ATP?(简要写出反应步骤和计算过程)

5、试述有氧条件下,原核生物中葡萄糖彻底氧化的过程,并估算1分子葡萄糖彻底氧化可产生的ATP 的量?

6、写出NADH电子传递链和FADH2电子传递链,并标明抑制剂在电子传递链上的抑制部位。

五、名词解释:

生物氧化氧化磷酸化底物水平磷酸化磷氧比呼吸链(或电子传递链)

参考答案:

第七章生物氧化与氧化磷酸化

一、填空题

11.电子传递链在原核细胞中存在于质膜上,在真核细胞中存在于线粒体内膜上。

12.鱼藤酮能阻断电子由NADH 向C O Q 的传递,利用这种毒性作用,可作为重要的杀虫剂。13.在动物体中形成A TP 的方式有氧化磷酸化作用和底物水平磷酸化作用,但在绿色植物中还能进行光合磷酸化作用。

14.电子传递链上的电子传递是一种放能反应,而ATP的合成过程则是一种吸能反应。15.电子传递链上电子传递与氧化磷酸化之间的偶联部位是NADH和CoQ 之间,Cytb和Cytc l之间,_ Cytaa3和O2__之间。

16.典型的生物界普遍存在的生物氧化体系是由脱氢酶、电子传递体和氧化酶三部分组成的。

17.解释氧化磷酸化作用机制被公认的学说是化学渗透学说,是英国生物化学家P.Mitchell 于1961年首先提出的。

18.典型的呼吸链包括NADH 和FADH2 两种,这是根据接受代谢物脱下的氢的初始受体不同而区分的。

19.动物体内高能磷酸化合物的生成方式有氧化磷酸化和底物水平磷酸化两种。

20.NADH呼吸链中氧化磷酸化发生的部位是在NADH和CoQ 之间;Cytb和Cytc l之间;Cytaa3和O2之间。

21.磷酸甘油与苹果酸经穿梭后进入呼吸链氧化,其P/O比分别为 2 和 3 。

22.线粒体内膜外侧的α-磷酸甘油脱氢酶的辅酶是NAD+;而线粒体内膜内侧的α-磷酸甘油脱氢酶的辅酶是FAD 。

23.用特殊的抑制剂可将呼吸链分成许多单个反应,这是一种研究氧化磷酸化中间步骤的有效方法,常用的抑制剂及作用如下:

①鱼藤酮抑制电子由NADH 向CoQ 的传递。

②抗霉素A抑制电子由Cytb 向Cytc l 的传递。

③氰化物、CO抑制电子由Cytaa3向O2的传递。

二、选择题

1.③

2.③

3.④

4.③

5.①

6.③

7.③

8.④

9.④10.④11.④12.④13.③14.④15.④

三、是非题

1.√

2.√

3.×

4.√

5.√

6.√

7.√

8.√

9.×10.√

11.√12.×13.√14.×15.√16.×

四、部分问答题参考答案:

1、解释氧化磷酸化作用机理的化学渗透学说的主要论点是什么?

解答:化学渗透学说是由英国化学家P.Mitchell于1961年提出来的,他认为:

①呼吸链中递氢体和递电子体是间隔文替排列的,并且在内膜中都有特定的位置,它们催化的反应是定向的。

②当递氢体从内膜内侧接受从底物传来的氢后,可将其中的电于传给其后的电子传递体,而将两个质子泵到内膜外侧,即递氢体具有“氢泵”的作用。

⑧因H+不能自由回到内膜内侧,致使内膜外侧的H+浓度高于内侧,造成H+浓度差跨膜梯度。此H+浓度差使膜外侧的pH较内侧低1.0单位左右,从而使原有的外正内负的跨膜电位增高。这个电位差中包含着电子传递过程中所释放的能量。

④线粒体内膜中有传递能量的中间物X-和IO-存在(X和I为假定的偶联因子),二者能与被泵出的H+结合成酸式中间物XH及IOH,进而脱水生成X~I,其结合键中含有来自H+浓度差的能量,其反应位于与内膜外侧相接触的三分子的基底部。

2、一分子丙酮酸在线粒体内氧化成CO2和H2O可生成多少分子ATP?(简要写出反应步骤和计算过程)解答:A.丙酮酸氧化脱羧形成乙酰辅酶A:

该过程发生在线粒体的基质中,释放出1分子CO2,生成一分子NADH+H+。

B.乙酰辅酶A参与三羧酸循环,产生二氧化碳:

主要事件顺序为:

(1)乙酰CoA与草酰乙酸结合,生成六碳的柠檬酸,放出CoA。

(2)柠檬酸先失去一个H2O而成顺乌头酸,再结合一个H2O转化为异柠檬酸。

(3)异柠檬酸发生脱氢、脱羧反应,生成5碳的a-酮戊二酸,放出一个CO2,生成一个NADH+H+。(4)a-酮戊二酸发生脱氢、脱羧反应,并和CoA结合,生成含高能硫键的4碳琥珀酰CoA,放出一个CO2,生成一个NADH+H+。

(5)碳琥珀酰CoA脱去CoA和高能硫键,放出的能量用于驱动GTP(哺乳动物中)或ATP(植物和一些细菌中)的合成。

(6)琥珀酸脱氢生成延胡索酸,生成1分子FADH2。

(7)延胡索酸和水化合而成苹果酸。

(8)苹果酸氧化脱氢,生成草酸乙酸,生成1分子NADH+H+。

小结:

一次循环,消耗一个2碳的乙酰CoA,共释放2分子CO2,8个H,其中四个来自乙酰CoA,另四个来自H2O,3个NADH+H+,1FADH2。此外,还生成一分子ATP。

三羧酸循环总反应:

乙酰CoA+3NAD++FAD+GDP+Pi —→2CO 2+3NADH+FADH 2+GTP (ATP )+2H + +CoA-SH

再加上丙酮酸氧化脱羧形成一分子NADH ,所以共产生:4个NADH 、1个FADH 2和1个GTP (ATP ) 一分子NADH 通过电子传递链的氧化,形成3分子ATP ;一分子FADH 2通过电子传递链的氧化,形成2分子ATP 。

一分子丙酮酸在线粒体内氧化成二氧化碳和水可生成ATP 分子的数目为:

3×4 + 2 + 1 = 15 即,可以生成15分子的ATP

3、试述有氧条件下,原核生物中葡萄糖彻底氧化的过程,并估算1分子葡萄糖彻底氧化可产生的ATP 的量?

解答:有氧条件下,原核生物中1分子葡萄糖完全氧化产生的A TP

糖酵解:1分子葡萄糖→2分子丙酮酸。

消耗2个ATP ,产生4 个ATP 和2个NADH ;

最终可净生成了8个A TP 。

丙酮酸氧化脱羧: 2分子丙酮酸 → 2分子乙酰CoA 。

生成2×1个NADH 。

通过呼吸链可生成2×3个A TP ,即6个ATP 。

三羧酸循环: 2分子乙酰CoA → CO2和H2O 。

产生2×1个GTP 、2×3个NADH 和2×1个FADH2;

最终可净生成了12×2个ATP ,即24个A TP 。

因此,有氧条件下,原核生物中1分子葡萄糖彻底氧化可产生38个ATP 。

4、写出NADH 电子传递链和FADH 2电子传递链,并标明抑制剂在电子传递链上的抑制部位。 解答:在具有线粒体的生物中,典型的电子传递链(呼吸链)可表示为:

2312O Cytaa Cytc Cytc Cytb FADH CoQ FMN NADH →→→→↓

→→→

根据最初受氢体(NADH 或FADH 2)不同,电子传递链分NADH 电子传递链和FADH 2电子传递链,另外需指出,某些生物体存在中间传递体略有不向的其它形式电子传递链。

标明抑制剂在电子传递链上的抑制部位:(1)鱼藤酮;安密妥、杀粉蝶菌素。阻断电子由NAD+向CoQ 的传递。鱼藤酮常作重要的杀虫剂;(2)抗霉素A :抑制电子从Cytb 到Cytcl 传递作用;(3)氰化物、一氧化碳、叠氮化合物、硫化氢等,阻断电子从Cytaa 3向O 2的传递。

华中农业大学生物化学本科试题库 第13章 生物氧化与氧化磷酸化

第13章生物氧化与氧化磷酸化单元自测题 (一)名词解释与比较 1. 生物氧化与燃烧 2. 氧化还原电势与氧化还原电势差 3. 自由能变化与标准自由能变化 4. 氧化磷酸化与底物水平磷酸化 5. 氧化磷酸化的解偶联与抑制 6. 甘油-3-磷酸穿梭系统与苹果酸-天冬氨酸穿梭系统 7. ATP/ADP交换体与F1F0-ATP酶 8. NADH呼吸链与FADH2呼吸链 9. 磷氧比与能荷 (二)填空题 1.生物氧化是在细胞中,同时产生的过程。 2.有机物在细胞内的生物氧化与在体外燃烧的主要区别是、和。 3.化学反应的自由能变化用表示,标准自由能变化用表示,生物化学中的标准自由能变化则用 表示。 4.△G<0时表示为反应,△G>0时表示为反应,△G =0时表示反应达到。 5.所谓高能化合物通常指水解时的化合物,其中最重要的是,被称为生物界的。 6.化学反应过程中自由能的变化与平衡常数有密切的关系,即△G0′=。 7.在氧化还原反应过程中,自由能的变化与氧化还原势(E0′)有密切的关系,即△G0′=。如细胞色素aa3把电子 传给分子氧的△G0′= kJ/mol。 8.真核细胞中生物氧化的主要场所是,呼吸链和氧化磷酸化偶联因子定位于。原核细胞的呼吸链存在于上。 9.电子传递链中的铁硫蛋白中铁与或无机硫结合而成。 10.NADH脱氢酶是一种蛋白,该酶的辅基是。 11.细胞色素和铁硫中心在呼吸链中以的变价进行电子传递,每个细胞色素和铁硫中心每次传递 个电子。 12. 在长期进化过程中,复合体Ⅳ已具备同时将个电子交给1分子氧气的机制。 13.在呼吸链中,氢或电子从氧化还原电势的载体依次向的载体传递。 14.呼吸链的复合物Ⅳ又称复合物,它把电子传递给02,又称为。 15.常见的呼吸链电子传递抑制剂中,鱼藤酮专一地抑制的电子传递;抗霉素A专一地抑制的电子传递;CN-、 N3-和CO则专一地阻断由到的电子传递。 16.电子传递链中唯一的小分子物质是,它在呼吸链中起的作用。 17.电子传递体复合体的辅基主要有、、、。 18.肌红蛋白和血红蛋白与细胞色素b、c、c1中的辅基是,细胞色素aa3中的辅基是。 19.氧化态的细胞色素和的血红素A辅基中的铁原子参与形成个配位键,它还保留个游离配位键,所以能 和结合,还能和、、结合而受使此酶活性受抑制。 20. 在呼吸链上位于细胞色素c1的前一个成分是,后一个成分是。 21. 在电子传递链中氧化还原电位差最大的一步在与之间。 22. 除了含有Fe以外,复合体Ⅳ还含有金属原子。 23. 杀粉蝶菌素作为呼吸链上类似物,能够阻断呼吸链。 24. 细胞内呼吸链类型主要有和。从NADH和FADH2分别将电子传递给氧的过程中自由能变分别为 和。经测定这两条呼吸链的P/O分别为、。 25. ATP→ ADP+Pi的△G O′为。由NADH→02的电子传递中,释放的能量理论上足以偶联ATP合成的3个部位 是、、。 26.解释电子传递和氧化磷酸化机制的三个假说是、、 . 27. 化学渗透学说主要认为在传递过程中被从线粒体内膜泵到膜外形成,由此形成的为ATP 合成提供能量。 28. 线粒体内膜上能够产生跨膜的质子梯度的复合体是、和。 29.线粒体ATP酶是由和两部分组成,质子从线粒体外返回基质要经过,ATP合成是在 中,合成一个ATP需质子。 30.质子驱动力(pmf)的大小与跨膜梯度(△pH)和膜电位(△ψ)有密切关系,pmf = 。 31.可以使用学说很好地解释F1F0-ATP酶的催化机理。 32.线粒体外的NADH可以通过和二个穿梭机制进入线粒体,然后被氧化。 33.在含有糖酵解、柠檬酸循环和氧化磷酸化酶活性的细胞匀浆液中,彻底氧化一摩尔丙酮酸、NADH、葡萄糖和磷酸烯醇式 丙酮酸各产生、、和 ATP 。 34. 生物氧化体系主要可由为、和三部分组成。 35. 生物氧化主要通过代谢物的反应实现的,生物氧化过程中产生的H2O是通过 形成的。 36. 理论上,OAA、苹果酸、还原性维生素C、葡萄糖氧化成C02和H20时的P/O值分别是、、、。

生物化学生物氧化试题及答案

【测试题】 一、名词解释 1、生物氧化 2、呼吸链 3、氧化磷酸化 4、 P/O比值 5、解偶联剂 6、高能化合物 7、细胞色素 8、混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别就是____、____、____,此三处释放的能量均超过 ____KJ。 11.胞液中的NADH+H+通过____与____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____与____。 13.体内可消除过氧化氢的酶有____、____与____。 14.胞液中α-磷酸甘油脱氢酶的辅酶就是____, 线粒体中α-磷酸甘油脱氢酶的辅基就是____。 15.铁硫簇主要有____与____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分就是____与____。 17.FMN或FAD作为递氢体,其发挥功能的结构就是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素就是____。 20.构成呼吸链的四种复合体中, 具有质子泵作用的就是____、____、____。 21.ATP合酶由____与____两部分组成,具有质子通道功能的就是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色素c 氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的 ____。 24.微粒体中的氧化酶类主要有____与____。 三、选择题 A型题 25.氰化物中毒时被抑制的细胞色素就是: A、细胞色素b560 B、细胞色素b566 C、细胞色素c1 D、细胞色素c E、细胞色素aa3 26.含有烟酰胺的物质就是: A、 FMN B、 FAD C、泛醌 D、 NAD+ E、 CoA 27.细胞色素aa3除含有铁以外,还含有: A、锌 B、锰 C、铜 D、镁 E、钾 28.呼吸链存在于: A、细胞膜 B、线粒体外膜 C、线粒体内膜 D、微粒体 E、过氧化物酶体 29.呼吸链中可被一氧化碳抑制的成分就是: A、 FAD B、 FMN C、铁硫蛋白 D、细胞色素aa3 E、细胞色素c 30.下列哪种物质不就是NADH氧化呼吸链的组分? A、 FMN B、 FAD C、泛醌 D、铁硫蛋白 E、细胞色素c 31.在氧化过程中可产生过氧化氢的酶就是: A、 SOD B、琥珀酸脱氢酶 C、细胞色素aa3 D、苹果酸脱氢酶 E、加单氧酶 32.哪种物质就是解偶联剂?

生物参考资料氧化与氧化磷酸化答案

生物氧化与氧化磷酸化 (一)名词解释 1.生物氧化(biological oxidation)物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及 电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2 和H2O 的同时,释放的能量使ADP 转变成ATP。 2.呼吸链(respiratory chain)有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。 3.氧化磷酸化(oxidative phosphorylation)在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP 的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP 的主要方式。 4.三羧酸循环: 在线粒体内乙酰辅酶A与草酰乙酸缩合为柠檬酸,进行一系列反应又生成草酰乙酸,同时乙酰基被彻底氧化为CO2 和H2O,并产生大量能量的过程。 5.底物水平磷酸化(substrate level phosphorylation)在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。如在糖酵解(EMP)的过程中,3-磷酸甘油醛脱氢后产生的1,3-二磷酸甘油酸,在磷酸甘油激酶催化下形成ATP 的反应,以及在2-磷酸甘油酸脱水后产生的磷酸烯醇式丙酮酸,在丙酮酸激酶催化形成ATP 的反应均属底物水平的磷酸化反应。另外,在三羧酸环(TCA)中,也有一步反应属底物水平磷酸化反应,如α-酮戊二酸经氧化脱羧后生成高能化合物琥珀酰~CoA,其高能硫酯键在琥珀酰CoA 合成酶的催化下转移给GDP 生成GTP。然后在核苷二磷酸激酶作用下,GTP 又将末端的高能磷酸根转给ADP 生成ATP。 6.能荷(energy charge)能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP 系统的能量状态。能荷=([ATP]+ 1/2[ADP])/([ATP]+[ADP]+[AMP]) 7.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 8.乳酸循环: 乳酸循环是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过 糖异生作用肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳 酸循环。 9.发酵: 厌氧有机体把糖酵解生成NADH 中的氢交给丙酮酸脱羧后的产物乙醛,使之 生成乙醇的过程称之为酒精发酵。如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。 10.糖酵解途径: 糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖 代谢最主要途径。 11.糖的有氧氧化: 糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的 过程。是糖氧化的主要方式。 12.肝糖原分解: 肝糖原分解指肝糖原分解为葡萄糖的过程。 13.磷酸戊糖途径: 磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄 糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸 戊糖为中间代谢物的过程,又称为磷酸已糖旁路。

生物化学检验复习重点

第六章酶学分析技术 1.酶的国际单位(IU)1IU指在规定的条件下(25°C,最适pH,最适底物浓度),每分钟转化1umol底物的酶量。 2.1katal:指在规定的条件下,每秒钟转化1umol底物的酶量。 3.抑制剂:凡是能降解酶促反应速度,但不引起酶分子变性失活的物质统称为酶的抑制剂。 4.连续检测法:是测定底物或产物随时间的变化量,在酶促反应的线性期每间隔一定时间测定一次产物或底物的变化 量,根据其变化量间接求出酶活性浓度,又称速率法。 5.同工酶:同一种属中由不同基因或等位基因所编码的多肽链单体、纯聚体或杂化体,具有相同的催化功能,但其分 子组成、空间构想、理化性质、生物学性质以及器官分布和细胞内定位不同的一类酶。 6.亚型:也称同工型,指基因在编码过程中由于翻译后修饰的差异所形成的多种形式的一类酶。 7.米氏常数Km:是酶反应速度为最大速度一半时的底物浓度,一般是在10ˉ6~10ˉ2mol/L之间,是酶的特异性常数 之一,只与酶的性质有关,而与酶浓度无关。 8.简述同工酶产生的机理:①不同基因位点编码②由等位基因变异编码产生③多肽链化学修饰产生 第七章蛋白质检验 1.急性时相反应:当人体因感染、自身免疫性疾病等组织损伤侵害、诱导炎症,使单核细胞和巨噬细胞等细胞通过释 放紧急反应性细胞因子IL-1、IL-6、TNF,再经血液循环,刺激肝脏细胞产生α1-抗胰蛋白酶、α1-酸性糖蛋白、触珠蛋白、铜蓝蛋白、C3、C4、纤维蛋白原、C-反应蛋白和血清淀粉样蛋白A等,使其血浆中浓度显著升高,而血浆前清蛋白、清蛋白、转铁蛋白浓度则出现相应下降,此炎症反应过程称为急性时相反应(APR).参与急性时相反应的蛋白称为急性时相反应蛋白。 2.M蛋白:又称单克隆免疫球蛋白,是一种单克隆B细胞异常增殖时产生的,具有相同结构和电泳行为的免疫球蛋 白分子或其分子片段,一般无抗体活性。 3.C-反应蛋白:在急性炎症病人血清中出现的可以结合肺炎球菌细胞壁C多糖的蛋白质,是第一个被认定为急性时 相反应的蛋白质。 1.血浆蛋白质的功能: 维持血浆胶体渗透压;运输功能;维持血浆的酸碱平衡,调节血浆pH;免疫与防御功能;凝血、抗凝血及纤溶等功能。此外还有营养、催化、代谢调控等功能 2.清蛋白的生理功能:营养作用;维持血浆胶体渗透压;维持血浆正常的pH;运输作用 3.清蛋白的临床意义: 增高:仅见于严重失水 降低:⑴清蛋白合成不足:①常见于急性或慢性肝脏疾病②蛋白质营养不良或吸收不良 ⑵清蛋白丢失:①肾病综合征,Alb可由尿中丢失②肠道炎症性疾病③烧伤及渗出性皮炎 ⑶清蛋白分解代谢增加:组织损伤或炎症 ⑷清蛋白的分布异常:门静脉高压,肝硬化 ⑸无清蛋白:遗传性缺陷 评价标准: >35g/L为正常,28~34g/L为轻度缺乏,21~27g/L为中度缺乏,<21g/L为严重缺乏 当清蛋白浓度低于28g/L时,会出现水肿。 4.双缩脲法测血清总蛋白: 原理:蛋白质分子的肽键在碱性条件下能与Cu2+作用生成紫红色复合物,其显色深浅与蛋白质的含量成正比。由于这种反应和两分子尿素缩合后的产物双缩脲与碱性铜溶液中的Cu2+作用形成紫红色产物的反应类似,故称为双缩脲反应。凡分子中含有两个或两个以上甲酰胺基的任何化合物都能发生此反应。 临床意义: 血清总蛋白升高见于: ⑴血液浓缩:严重腹泻、呕吐、高热、休克以及慢性肾上腺皮质功能减退等疾病时,⑴由于水分丢失使血液浓缩,血清总蛋白浓度可明显升高,但清蛋白/球蛋白比值变化不大,临床称为假性蛋白增多症。 ⑵合成增加:多见于球蛋白合成增加,如多发性骨髓瘤、巨球蛋白血症、冷沉淀等。 血清总蛋白降低见于: ⑴合成障碍:如慢性肝炎、急性肝细胞坏死、肝硬化等 ⑵血液稀释:如静脉注射过多低渗溶液或因各种原因引起的钠、水潴留。 ⑶蛋白质丢失:如大量失血,肾病综合征时的蛋白尿,溃疡性结肠炎。 ⑷其他:如慢性胃肠道疾病,消耗性疾病如严重肺结核、甲状腺功能亢进,肾病综合征、长期营养不良、恶性肿瘤。5.溴甲酚绿法BCG测定血清清蛋白 原理:BCG是一种阴离子染料,在pH4.2的缓冲液中与带正电荷的清蛋白结合成复合物,溶液由未结合前的黄色变成蓝绿色,在626nm波长处的吸光度与清蛋白浓度成正比,经与同样处理厄清蛋白标准液比较,即可求得清蛋白的含量。

(生物科技行业)生物氧化与氧化磷酸化

第五章 生物氧化与氧化磷酸化 第一节 生物氧化的特点及高能化合物 生物氧化的实质是脱氢、失电子或与氧结合,消耗氧生成CO 2和H 2O ,与体外有机物的化学氧化(如燃烧)相同,释放总能量都相同。生物氧化的特点是:作用条件温和,通常在常温、常压、近中性pH 及有水环境下进行;有酶、辅酶、电子传递体参与,在氧化还原过程中逐步放能;放出能量大多转换为ATP 分子中活跃化学能,供生物体利用。体外燃烧则是在高温、干燥条件下进行的剧烈游离基反应,能量爆发释放,并且释放的能量转为光、热散失于环境中。 (一)氧化还原电势和自由能变化 1.自由能 生物氧化过程中发生的生化反应的能量变化与一般化学反应一样可用热力学上的自由能变化来描述。自由能(free energy )是指一个体系的总能量中,在恒温恒压条件下能够做功的那一部分能量,又称为Gibbs 自由能,用符号G 表示。物质中的自由能(G )含量是不易测定的,但化学反应的自由能变化(ΔG )是可以测定的。 B A ?→← ΔG =G B —G A 当ΔG 为负值时,是放能反应,可以产生有用功,反应可自发进行;若ΔG 为正值时,是吸能反应,为非自发反应,必须供给能量反应才可进行,其逆反应是自发的。 ][] [ln B A RT G G o +?=? 如果ΔG =0时,表明反应体系处于动态平衡状态。此时,平衡常数为K eq ,由已知的K eq 可求得ΔG °: ΔG °=-RT ln K eq 2. 氧化还原电势 在氧化还原反应中,失去电子的物质称为还原剂,得到电子的物质称为氧化剂。还原剂失去电子的倾向(或氧化剂得到电子的倾向)的大小,

生物化学 第六章生物氧化

1生物化学第六章生物氧化 生物化学第六章生物氧化 1.相对浓度升高时可加速氧化磷酸化的物质是 A.FAD B.UTP C.NADPH D.NADP+ E.ADP 2.线粒体中呼吸链的排列顺序哪个是正确的 A.NADH-FMN-CoQ-Cyt-O 2 B.ADH 2-NAD +-CoQ-Cyt-O 2 C.FADH 2-FAD-CoQ-Cyt-O 2 D.NADH-FAD-CoQ-Cyt-O 2 E.NADH-CoQ-FMN-Cyt-O 2 3.2H 经过琥珀酸氧化呼吸链传递可产生的ATP 数为 A.1.5 B.2.5 C.4 D.6 E.12 4.体内细胞色素C 直接参与的反应是 A.叶酸还原 B.糖酵解 C.肽键合成 D.脂肪酸合成 E.生物氧化 5.大多数脱氢酶的辅酶是 A.NAD + B.NADP + C.CoA D.Cyt c E.FADH 2 6.电子按下列各途径传递,能偶联磷酸化的是 A.Cyt —Cytaa 3 B.CoQ--Cytb C.Cytaa 3—O 2 D.琥珀酸--FAD E.FAD —CoQ 7.生命活动中能量的直接供体是 A.三磷酸腺苷 B.脂肪酸 C.氨基酸 D.磷酸肌酸 E.葡萄糖 8.下列化合物不属高能化合物的是 A.1,3-二磷酸甘油酸 B.乙酰CoA C.AMP D.氨基甲酰磷酸 E.磷酸烯醇式丙酮酸 9.每mol 高能键水解时释放的能量大于 A.5KJ

B.20KJ C.21KJ D.40KJ E.51KJ 10.关于ATP在能量代谢中的作用,错误的是 A.ATP是生物能量代谢的中心 B.ATP可转变为其他的三磷酸核苷 C.ATP属于高能磷酸化合物 D.ATP与磷酸肌酸之间可以相互转变 E.当ATP较富余时,磷酸肌酸将-P转移给ADP生成ATP 11.氰化物中毒抑制的是 A.细胞色素 b B.细胞色素c C.细胞色素cl D.细胞色素aa3 E.辅酶Q 12.氰化物的中毒机理是 A.大量破坏红细胞造成贫血 B.干扰血红蛋白对氧的运输 C.抑制线粒体电子传递链 D.抑制呼吸中枢,使通过呼吸摄入氧量过低 E.抑制ATP合酶的活性 https://www.wendangku.net/doc/d216290345.html,-.CO中毒是由于 A.使体内ATP生成量减少 B.解偶联作用 C.使Cytaa3丧失传递电子的能力,呼吸链中断 D.使ATP水解为ADP和Pi的速度加快 E.抑制电子传递及ADP的磷酸化 14.下列化合物中除哪一项外都是呼吸链的组成成分 A.CoQ B.Cytb C.CoA D.NAD+ E.aa3 15.生物体内ATP最主要的来源是 A.糖酵解 B.TCA循环 C.磷酸戊糖途径 D.氧化磷酸化作用 E.糖异生 16.通常生物氧化是指生物体内 A.脱氢反应 B.营养物氧化成H2O和CO2的过程 C.加氧反应 D.与氧分子结合的反应 E.释出电子的反应 17.下列有关氧化磷酸化的叙述,错误的是 A.物质在氧化时伴有ADP磷酸北生成ATP的过程 B.氧化磷酸化过程存在于线粒体内 C.P/O可以确定ATP的生成数 D.氧化磷酸化过程有两条呼吸链 E.电子经呼吸链传递至氧都产生3分子ATP 2生物化学第六章生物氧化

生物化学生物氧化试题及答案

【测试题】 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____和____。 13.体内可消除过氧化氢的酶有____、____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 17.FMN或FAD作为递氢体,其发挥功能的结构是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素是____。 20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。 21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色素c氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的____。 24.微粒体中的氧化酶类主要有____和____。 三、选择题 A型题 25.氰化物中毒时被抑制的细胞色素是: A.细胞色素b560 B.细胞色素b566 C.细胞色素c1 D.细胞色素c E.细胞色素aa3 26.含有烟酰胺的物质是: A. FMN B. FAD C. 泛醌 D. NAD+ E. CoA 27.细胞色素aa3除含有铁以外,还含有: A.锌 B.锰 C.铜 D.镁 E.钾 28.呼吸链存在于: A.细胞膜 B.线粒体外膜 C.线粒体内膜 D.微粒体 E.过氧化物酶体 29.呼吸链中可被一氧化碳抑制的成分是: A. FAD B. FMN C. 铁硫蛋白 D. 细胞色素aa3 E.细胞色素c 30.下列哪种物质不是NADH氧化呼吸链的组分? A. FMN B. FAD C. 泛醌 D. 铁硫蛋白 E.细胞色素c 31.在氧化过程中可产生过氧化氢的酶是: A. SOD B.琥珀酸脱氢酶 C.细胞色素aa3 D.苹果酸脱氢酶 E.加单氧酶

生物化学-生物氧化 (1)

《生物化学(专1)》生物氧化 1.相对浓度升高时可加速氧化磷酸化的物质是A.FADB.UTPC.NADPHD.NADP+E.ADP 参考答案:E2.线粒体中呼吸链的排列顺序哪个是正确的 A.NADH-FMN-CoQ-Cyt-O2 B.ADH2-NAD+-CoQ-Cyt-O2 C.FADH2-FAD-CoQ-Cyt-O2 D.NADH-FAD-CoQ-C yt-O2 E.NADH-CoQ-FMN-Cyt-O2 参考答案:A3.2H经过琥珀酸氧化呼吸链传递可产生的ATP数为A.1.5B.2.5C.4D.6E.12 参考答案:A 4.体内细胞色素C直接参与的反应是A.叶酸还原B.糖酵解C.肽键合成D.脂肪酸合成E.生物氧化 参考答案:E5.大多数脱氢酶的辅酶是A.NAD+B.NADP+C.CoAD.Cyt cE.FADH2 参考答案:A6.电子按下列各途径传递,能偶联磷酸化的是A.Cyt— Cytaa3B.CoQ--CytbC.Cytaa3—O2D.琥珀酸--FADE.FAD—CoQ 参考答案:C7.生命活动中能量的直接供体是A.三磷酸腺苷B.脂肪酸C.氨基酸D.磷酸肌酸E.葡萄糖 参考答案:A8.下列化合物不属高能化合物的是A.1,3-二磷酸甘油酸B.乙酰CoAC.AMPD.氨基甲酰磷酸E.磷酸烯醇式丙酮酸 参考答案:C9.每mol高能键水解时释放的能量大于A.5KJB.20KJC.21KJD.40KJE.51KJ 参考答案:C10.关于ATP在能量代谢中的作用,错误的是A.ATP是生物能量代谢的中心B.ATP 可转变为其他的三磷酸核苷C.ATP属于高能磷酸化合物D.ATP与磷酸肌酸之间可以相互转变E.当ATP较富余时,磷酸肌酸将-P转移给ADP生成ATP 参考答案:E11.氰化物中毒抑制的是A.细胞色素bB.细胞色素cC.细胞色素clD.细胞色素aa3E.辅酶Q 参考答案:D12.氰化物的中毒机理是A.大量破坏红细胞造成贫血B.干扰血红蛋白对氧的运输C.抑制线粒体电子传递链D.抑制呼吸中枢,使通过呼吸摄入氧量过低E.抑制ATP合酶的活性 参考答案:https://www.wendangku.net/doc/d216290345.html,-.CO中毒是由于A.使体内ATP生成量减少B.解偶联作用C.使Cytaa3丧失传递电子的能力,呼吸链中断D.使ATP水解为ADP和Pi的速度加快E.抑制电子传递及ADP的磷酸化 参考答案:C14.下列化合物中除哪一项外都是呼吸链的组成成分 A.CoQ B.Cytb C.CoA D.NAD+ E.aa3

第六章生物氧化与氧化磷酸化作业题萧蓓蕾(0)

第六章生物氧化与氧化磷酸化 作业题 一、名词解释 1.氧化磷酸化 2. 底物水平磷酸化 3.电子传递链(呼吸链) 4.磷氧比(P/O) 5.解偶联作用 二、填空题 1.按H的最初受体不同可将呼吸链分为和两种呼吸链。 2.苹果酸经穿梭系统进入呼吸链氧化,其P/O比为。 3.鱼藤酮、抗霉素A和CN-、N3-、CO的抑制部位分别是、和。 4.NADH呼吸链中氧化磷酸化的偶联部位是、和。 5.胞浆中的NADH通过、穿梭机制进入线立体。 三、选择题 1.下列代谢物经相应特异脱氢酶催化脱下的2H,不能进入NADH呼吸链氧化的是:( ) A.柠檬酸 B.苹果酸 C.α-酮戊二酸 D.琥珀酸 2. 呼吸链的电子传递体中,不是蛋白质而是脂质的组分为( )。 A.NAD+ B.FMN C.CoQ D.Fe-S 3.呼吸链中细胞色素的排列顺序是( )。 A.c-c1-b-aa3 B.c1-c-b-aa3 C.b-c1-c-aa3 D.b-c-c1-aa3 4.氢原子经NAD呼吸链传递氧化成水时,磷氧比是:() A.3 B.2 C.1 D.1/2 5.P/O比值是指:() A.每消耗一分子氧所需消耗无机磷的分子数 B.每消耗一分子氧所需消耗无机磷的克数 C.每消耗一分子氧所需消耗无机磷的克原子数 D.每消耗一分子氧所需消耗无机磷的克分子数 E每消耗一分子氧所需消耗无机磷的克数 6.2,4-二硝基苯酚抑制细胞的功能,可能是由于阻断下列哪一种生化作用而引起?( ) A.NADH脱氢酶的作用 B.电子传递过程 C.氧化磷酸化 D.三羧酸循环 E、以上都不是 7.氰化物中毒是由于它抑制了电子传递链上的()。 A.Cyta B. Cytb C. Cytc D. Cytaa3 8.呼吸链磷酸化是在什么部位()。 A.线粒体内膜 B.线粒体外膜 C.线粒体基质 D.细胞质 9.氧化磷酸化作用是将生物氧化过程释放的自由能转移并生成()。 A.NADPH B.NADH C.ATP D.FADH2 10.下列叙述中哪一个是正确的?() A.线粒体内膜对H+离子没有通透性 B.线粒体内膜能由内向外通透H+离子 C. 线粒体内膜由外向内通透H+离子 D. 线粒体内膜能自由通透H+离子 11.辅酶Q是线粒体外膜()。 A.NADH脱氢酶的辅酶 B. 琥珀酸脱氢酶的辅酶 C.二羧酸载体 D. 呼吸链的氢载体 四、简答题 1.什么是呼吸链?简述NADH和琥珀酸(FADH2)呼吸链各组成成分是如何排列的。 2. 举例说明真核细胞中的NADH是如何进入线粒体中被再氧化的。 答案: 一、名词解释 1.氧化磷酸化:在生物氧化中,代谢物脱氢产生的NADH或FADH2经呼吸链氧化生成水时,所释放的自由能用于ADP磷酸化形成A TP,这样氧化与磷酸化相偶联的作用称为氧化磷酸化。 2. 底物水平磷酸化:直接利用代谢中间产物氧化所释放的能量产生ATP的磷酸化类型称为底物水平磷酸化。

兰州大学研究生生物化学-酶学考试题

兰州大学硕士生高级生化Ⅱ酶学部分考试题 一、名词解释(每词4分共20分) 1. 协同系数 即Hill系数。国际上常使用此系数来判断酶所属效应的类型。以log(v/(Vm-v))对log[S]作图,曲线的最大斜率h称为Hill系数,米氏酶等于1,正协同酶大于1,负协同酶小于1。 2. 共价催化 一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价催化方式进行的。 3. K型效应剂 影响米氏常数Km值的效应剂,它与V型抑制剂相对应。 4. 别构酶 当某些化合物与酶分子中的别构部位可逆地结合后,酶分子的构象发生改变,使酶活性部位对底物的结合与催化作用受到影响,从而调节酶促反应速度及代谢过程,这种效应称为别构效应。具有别构效应的酶称为别构酶。 5. 记忆酶 二、简答题(每题5分,共40分): 1. 发现酶活性受可逆抑制剂的抑制后,如何消除这种抑制作用? 如果这个抑制剂是小分子物质,可用酶制剂透析一下,或通过一个交联葡聚糖G50的分子筛J,也可通过超滤膜等方法来去除,但如抑制剂和酶一样,一也是大分子,则必需了解其性质,如为蛋白质可用各种层析法使其和被抑制的酶分开,如为核酸则可用相应的DNA酶或RNA酶将其分解。 2. 在纯化酶时,为什么亲和层析纯化效率高? 这是由亲和层析的性质决定的。因为亲和层析柱的原理是将对生物分子专一识别性或特异相互作用的物质即亲和配基固定在不同的介质上,然后利用生物分子之间的专一性识别性或特定的相互作用而将生物分子如(酶)分离。如酶与底物的识别结合。而这种结合在一定的条件下又是可逆的。 3. 当一个酶可以作用于多种底物时,如何判断哪一种底物是其天然底物? 可通过Km值判断。它表示酶促反应速度达到最大反应速度一半时所对应的底物浓度。在在固定的底物,一定的温度和pH条件下,一定的缓冲体系中测

第六章生物氧化与氧化磷酸化

第六章生物氧化与氧化磷酸化 1.解释下列名词 (1)生物氧化(2)氧化磷酸化(3)底物水平磷酸化(4)P/O (5)解偶联剂(6)线粒体穿梭系统(7)解偶联作用(8)呼吸链(9)能荷(10)电子传递链磷酸化(11)高能化合物 2.填空题 (1) 生物氧化是__________在细胞中__________,同时产生__________的过程。 (2) 高能化合物通常指水解时__________的化合物,其中最重要的是__________,被称能量代谢的__________。 (3) 真核细胞生物氧化的主要场所是________,呼吸链和氧化磷酸化偶联因子都定位于 ________。 (4) 呼吸链的复合物Ⅳ又称__________复合物,它把电子传递给O2,故又称它为__________。 (5) 由NADH→O2的电子传递中,释放的能量足以偶联ATP合成的3个部位是__________、__________和__________。 (6) 常见的呼吸链电子传递抑制剂中,鱼藤酮专一地抑制_________的电子传递;抗霉素A专一地抑制_________的电子传递;CN-、N3-和CO则专一地阻断由_________到_________的电子传递。 (7) 氧化磷酸化ATP合成酶在水解ATP时,每水解一分子ATP产生_____个质子从 线粒体基质移位到细胞浆。 (8) 2,4-二硝基酚(DNP)能够阻碍________的生成,而________照样进行。DNP在这里被称为________。 (9) 线粒体的氧化___________与磷酸化___________的偶联是通过___________来实现的。 3.选择题(1~n个答案): (1) 1分子丙酮酸完全氧化分解产生多少CO2和ATP a、3CO2,15ATP b、2CO2,12ATP c、3CO2,16ATP d、3CO2,12ATP (2) 下述哪些酶催化底物水平磷酸化反应 a、磷酸甘油酸激酶 b、磷酸果糖激酶 c、丙酮酸激酶 d、琥珀酸硫激酶 (3) 一分子葡萄糖完全氧化可以生成多少分子ATP a、35 b、38 c、30 d、24 (4) 下列哪种化合物不是高能化合物 a、6-磷酸葡萄糖 b、ATP c、琥珀酰辅酶A d、PEP (5) 下列哪一过程不在线粒体中进行 a、三羧酸循环 b、脂肪酸氧化 c、电子传递 d、糖酵解 e、氧化磷酸化 (6) 下列哪种物质导致氧化磷酸化解偶联 a、鱼藤酮 b、抗霉素A c、2,4-二硝基酚 d、寡霉素 (7) 下述哪种物质专一地抑制F0因子? A、鱼藤酮b、抗霉素A c、寡霉素d、苍术苷 (8) 氰化物中毒时呼吸链中受抑制的部位在 a、NADH→FMN b、FMN→CoQ c、CoQ→Cytaa3

生物氧化与氧化磷酸化

(一)名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4.三羧酸循环 5.底物水平磷酸化 6.能荷 7.糖异生 8.乳酸循环 9.发酵 10.糖酵解途径 11.糖的有氧氧化 12.肝糖原分解 13.磷酸戊糖途径 14.UDPG (二) 填空题 1.NADH 呼吸链中氧化磷酸化的偶联部位是_________、_________、_________。 2.举出4 种生物体内的天然抗氧化剂_________、_________、_________、_________。3.高能磷酸化合物通常指水解时_________的化合物,其中最重要的是_________,被 称为能量代谢的_________。 4.真核细胞生物氧化的主要场所是_________,呼吸链和氧化磷酸化偶联因子都定位 于_________。 5.化学渗透学说主要论点认为:呼吸链组分定位于_________内膜上。其递氢体有 _________作用,因而造成内膜两侧的_________差,同时被膜上_________合成酶 所利用、促使ADP + Pi → ATP 6.动物体内高能磷酸化合物的生成方式有_________和_________两种。 7.α淀粉酶和β–淀粉酶只能水解淀粉的_________键,所以不能够使支链淀粉完全水解。8.糖酵解过程中有3 个不可逆的酶促反应,这些酶是__________、____________ 和 _____________。 9.糖酵解抑制剂碘乙酸主要作用于___________酶。

10.调节三羧酸循环最主要的酶是____________、__________ _、______________。 11 磷酸戊糖途径可分为______阶段,分别称为_________和_______,其中两种脱氢酶 是_______和_________,它们的辅酶是_______。 12.糖酵解在细胞的_________中进行,该途径是将_________转变为_______,同时生 成________和_______的一系列酶促反应。 13.淀粉的磷酸解过程通过_______酶降解α–1,4 糖苷键,靠________和________ 酶降解α–1,6 糖苷键。 14.TCA 循环中有两次脱羧反应,分别是由__ _____和________催化。 15.乙醛酸循环中不同于TCA 循环的两个关键酶是_________和________。 16 在糖酵解中提供高能磷酸基团,使ADP 磷酸化成ATP 的高能化合物是 _______________ 和________________ 17.糖异生的主要原料为______________、_______________和________________。 18.催化丙酮酸生成磷酸烯醇式丙酮酸的酶是__________,它需要______________和 __________作为辅因子。 19.合成糖原的前体分子是_________,糖原分解的产物是______________。 20.糖类除了作为能源之外,它还与生物大分子间___________有关,也是合成 __________,___________,_____________等的碳骨架的共体。 21.糖酵解发生的部位是在细胞的部位,在糖酵解中提供高能磷酸基团,使ADP 磷酸化成ATP的高能化合物是和______________________ 。 22.三羧酸循环发生在细胞的部位,有两次脱羧反应,分别由__ ___ __________和 _ __催化。 23.鱼藤酮,抗霉素A,氰化物的抑制作用位点分别是___________________,______________,和。 24.写出下列符号的中文名称:ATP_________________________;Gly__________________; SH-CoA _______________;FMN _________________;DNFB_____________________。 25.TCA循环中有二次脱羧反应,分别是由_____和催化。脱去的CO2中的C原 子不是来自于乙酰辅酶A而是来自于_______________。 26.糖酵解产生的NADH+H+必需依靠________________系统或________________系统才能进 入线粒体,分别转变为线粒体中的________________和________________。 27.呼吸链中,细胞色素体系的功能是传递,它是依靠辅基中铁离子的 作用来完成的。 28.糖有氧氧化中,1分子葡萄糖在肝脏中彻底氧化为CO2和H2O,能净生成分子ATP, 其中ATP的生成方式以为主。 (三) 选择题 1.下列反应中哪一步伴随着底物水平的磷酸化反应: A.苹果酸→草酰乙酸B.甘油酸-1,3-二磷酸→甘油酸-3-磷酸 C.柠檬酸→α-酮戊二酸D.琥珀酸→延胡索酸 2.下述哪种物质专一性地抑制F0 因子: A.鱼藤酮B.抗霉素A C.寡霉素D.缬氨霉素

生物化学试题及标准答案(生物氧化与氧化磷酸化部分)

生物氧化与氧化磷酸化 一、选择题 1.生物氧化的底物是: A、无机离子 B、蛋白质 C、核酸 D、小分子有机物 2.除了哪一种化合物外,下列化合物都含有高能键 A、磷酸烯醇式丙酮酸 B、磷酸肌酸 C、ADP D、G-6-P E、1,3-二磷酸甘油酸3.下列哪一种氧化还原体系的氧化还原电位最大 A、延胡羧酸→丙酮酸 B、CoQ(氧化型) →CoQ(还原型) C、Cyta Fe2+→Cyta Fe3+ D、Cytb Fe3+→Cytb Fe2+ E、NAD+→NADH 4.呼吸链的电子传递体中,有一组分不是蛋白质而是脂质,这就是: A、NAD+ B、FMN C、FE、S D、CoQ E、Cyt 5.2,4-二硝基苯酚抑制细胞的功能,可能是由于阻断下列哪一种生化作用而引起 A、NADH脱氢酶的作用 B、电子传递过程 C、氧化磷酸化 D、三羧酸循环 E、以上都不是 6.当电子通过呼吸链传递给氧被CN-抑制后,这时偶联磷酸化: A、在部位1进行 B、在部位2 进行 C、部位1、2仍可进行 D、在部位1、2、3都可进行 E、在部位1、2、3都不能进行,呼吸链中断7.呼吸链的各细胞色素在电子传递中的排列顺序是: A、c1→b→c→aa3→O2 B、c→c1→b→aa3→O2 C、c1→c→b→aa3→O2 D、b→c1→c→aa3→O2 8.在呼吸链中,将复合物I、复合物II与细胞色素系统连接起来的物质是什么

A、FMN B、Fe·S蛋白 C、CoQ D、Cytb 9.下述那种物质专一的抑制F0因子 A、鱼藤酮 B、抗霉素A C、寡霉素 D、苍术苷 10.下列各种酶中,不属于植物线粒体电子传递系统的为: A、内膜外侧NADH:泛醌氧化还原酶 B、内膜内侧对鱼藤酮不敏感NADH脱氢酶 C、抗氰的末端氧化酶 D、a-磷酸甘油脱氢酶11.下列呼吸链组分中,属于外周蛋白的是: A、NADH脱氢酶 B、辅酶Q C、细胞色素c D、细胞色素a- a3 12.下列哪种物质抑制呼吸链的电子由NADH向辅酶Q的传递: A、抗霉素A B、鱼藤酮 C、一氧化碳 D、硫化氢 13.下列哪个部位不是偶联部位: A、FMN→CoQ B、NADH→FMA C、b→c D、a1a3→O2 14.ATP的合成部位是: A、OSCP B、F1因子 C、F0因子 D、任意部位 15.目前公认的氧化磷酸化理论是: A、化学偶联假说 B、构象偶联假说 C、化学渗透假说 D、中间产物学说16.下列代谢物中氧化时脱下的电子进入FADH2电子传递链的是: A、丙酮酸 B、苹果酸 C、异柠檬酸 D、磷酸甘油 17.下列呼吸链组分中氧化还原电位最高的是: A、FMN B、Cytb C、

生物化学第 三 章酶试题及答案

第三章酶 【测试题】 一、名词解释 1.酶13.最适pH 2.固定化酶14.不可逆性抑制 3.同工酶15.可逆性抑制 4.酶的特异性16.激活剂 5.酶的活性中心17.抑制剂 6.酶原及酶原激活18.核酶 7.抗体酶19.变构酶 8.活化能20.酶的共价修饰 9.诱导契合假说21.酶的Vmax 10.初速度22.结合酶 11.Km值23.酶活力 12.最适温度24.比活力 二、填空题 25.酶是由产生的对特异底物起高效催化作用的。 26.酶加速反应的机制是通过降低反应的,而不改变反应的。 27.结合酶,其蛋白质部分称,非蛋白质部分称,二者结合其复合物称。28.酶活性中心与底物相结合那些基团称,而起催化作用的那些基团称。 29.当Km值近似ES的解离常数KS时,Km值可用来表示酶对底物的。 30.酶的特异性包括特异性,特异性和特异性。 31.米曼二氏根据中间产物学说推导出V与[S]的数学方程式简称为,式中的..为米氏常数,它的值等于酶促反应速度达到一半时的。 32.在其它因素不变的情况下,[S]对酶促反应V作图呈线,双倒数作图呈线,而变构酶的动力学曲线呈型。 33.可逆性抑制是指抑制剂与酶进行结合影响酶的反应速度,抑制剂与酶的活性中心结合,抑制剂与酶的活性中心外的必需基团结合。 34.反竞争性抑制剂使酶对底物表观Km ,Vmax 。 35.无活性状态的酶的前身物称为,在一定条件下转变成有活性酶的过程称。其实质是的形成和暴露过程。 36.丙二酸是酶的抑制剂,增加底物浓度可抑制。 37、同工酶是指催化化学反应,而酶蛋白分子结构、理化性质及免疫学性质的一组酶。38.辅酶与辅基的区别在于前者与酶蛋白,后者与酶蛋白。 39.肌酸激酶的亚基分型和型。 40.最适温度酶的特征性常数,它与反应时间有关,当反应时间延长时,最适温度可以。41.某些酶以形式分泌,不仅可保护本身不受酶的水解破坏,而且可输送到特定的部位与环境转变成发挥其催化作用。 42.不可逆抑制剂常与酶以键相结合使酶失活。 43.当非竞争性抑制剂存在时,酶促反应动力学参数如下Km ,Vmax 。 44.当酶促反应速度为最大反应速度的80%时,底物浓度是Km的倍。 三、选择题 A型题 45.关于酶概念的叙述下列哪项是正确的?

生物化学第七章氨基酸代谢随堂练习与参考答案

生物化学(本科)第七章氨基酸代谢 随堂练习与参考答案 第一节蛋白质的营养作用第二节蛋白质的消化、吸收和腐败第三节氨基酸的一般代谢第四节氨的代谢第五节氨基酸转变的小分子生理活性物质第六节血红素与胆红素代谢1. (单选题)人体的营养非必需氨基酸是 A.色氨酸 B.甲硫氨酸 C.丙氨酸 D.苯丙氨酸 E.苏氨酸 参考答案:C 2. (单选题)不出现于蛋白质中的氨基酸是 A.半胱氨酸 B.胱氨酸 C.瓜氨酸

D.精氨酸 E.赖氨酸 参考答案:C 3. (单选题)营养充足的婴儿、孕妇、恢复期病人常保持 A.氮平衡 B.氮的负平衡 C.氮的正平衡 D.氮的总平衡 E.以上都不是 参考答案:C 4. (单选题)哺乳类动物体内氨的主要去路是 A.渗入肠道 B.在肝中合成尿素 C.经肾泌氨随尿排出 D.生成谷氨酰胺 E.合成氨基酸 参考答案:B

5. (单选题)生物体内氨基酸脱氨的主要方式是 A.氧化脱氨 B.还原脱氨 C.直接脱氨 D.转氨 E.联合脱氨 参考答案:E 6. (单选题)体内氨的储存及运输的主要形式之一是 A.谷氨酸 B.酪氨酸 C.谷氨酰胺 D.谷胱甘肽 E.天冬酰胺 参考答案:C 7. (单选题)合成尿素首步反应的产物是 A.鸟氨酸 B.氨基甲酰磷酸

C.瓜氨酸 D.精氨酸 E.天冬氨酸 参考答案:B 8. (单选题)高氨血症导致脑功能障碍的生化机制是氨增高可 A.抑制脑中酶活性 B.升高脑中pH C.大量消耗脑中α-酮戊二酸 D.直接抑制呼吸链 E.升高脑中尿素浓度 参考答案:B 9. (单选题)肾中产生的氨主要来自 A.氨基酸联合脱氨酸作用 B.谷氨酰胺的水解 C.尿素的水解 D.胺的氧化

相关文档
相关文档 最新文档