文档库 最新最全的文档下载
当前位置:文档库 › 外文翻译-钢轨盘式制动器发热点试验分析

外文翻译-钢轨盘式制动器发热点试验分析

外文翻译-钢轨盘式制动器发热点试验分析
外文翻译-钢轨盘式制动器发热点试验分析

英文原文

An experimental investigation of hot spots in railway disc

brakes

Abstract

An experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermographic measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. Based on thermography, a classification of hot spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Influence of parameter such as pad stiffness and pad contact length on hot spots developments is studied. Observations give new highlights on the conditions of hot spots appearance. Discussion of the theoretical approaches compared to experimental observations is proposed.

? 2003 Elsevier B.V. All rights reserved.

Keywords: Hot spots; Disc brake; Infrared thermography; Formation mechanism

1. Introduction

The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localised contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage and early failure. Hot spots are high thermal gradients on the rubbing surface. It has been shown that the thermomechanical solicitation due to these hot spots may induce a cycling of tensile and compressive stresses with plastic strain variations. Consequently, thermal low cycle fatigue may occur and first results show a relation with the developments of cracks on the disc surface. These high local temperatures may also lead to unacceptable braking performances such as brake fade or

undesirable low frequency vibrations called hot judder .

Experimental observations of hot spots have been reported in many practical applications, particularly in railway and aircraft brakes. Nevertheless, hot spots occurrence is not well understood up to now in spite of the various approaches presented in previous works.

In this paper, a classification of the different types of hot spots observed in

railway disc brakes is firstly described. Explanation of theses several hot spots phenomena is discussed upon the existing theories. In order to validate the conformity of theses theories with practical observations, a specific

experimental test program has been done on a full-scale test bench.

A series of brake drag tests has been done on TGV brake discs. The temperature field on the rotor surface has been measured with an infrared camera coupled with a high-speed data acquisition system. Various friction materials and different geometric combinations have been examined in order to predict their influence on the hot spots development.

Analysis of the experimental observations allows to define scenarios of hot spots occurrence from local to macroscopic large thermal gradients.

The conditions of hot spots development seems to agree with a recent approach proposed by authors .

2. Hot spots classification

Anderson and Knapp first proposed a classification of the hot spots observed in automotive brake systems . From experimental investigations on the rubbing surface of railway brake discs in a testing bench, Dufrénoy et al. have given a similar classification which takes into account the specific difference between automotive and railway brakes .

Thermographic measurements with an infrared camera have been carried out on a line under a fixed angular position of the disc. Acquisition of the angular velocity is done simultaneously from the testing bench. The conversion of the data to polar coordinates reconstitutes an image of the disc for each revolution. These experimental results illustrate the proposed classification.

? Asperity type result from discrete asperity contacts. Temperatures rise rapidly but briefly on very small areas of the rubbing surface.

? Gradients on hot bands correspond to small contact sites which appear along a single rubbing path.

? Hot bands appear as reduced contact friction areas of the pad in the radial direction. It is seen on the disc as narrow rings of high temperatures in the direction of sliding. They can move along the radial direction during braking, according to the evolution of the bearing surface.

? Macroscopic hot spots (MHS) are large thermal gradients regularly distributed on the disc surface. They are fixed on the disc and appear as a buckling pattern of the disc. This phenomenon reduces drastically the contact surface area with high local temperatures.

? Regional hot spots are low thermal gradients on the whole surface of the disc, due to inhomogeneous cooling. Such distributions appear at the end of brakings due to

thermal diffusion.

The most damaging thermal gradients correspond to types 2, 3 and 4.

According to Anderson and Knapp, type 2 corresponds to local frictionally excited thermoelastic instabilities (TEI). TEI theories have been investigated for a long time, mainly from Barber?s developments . It is based on the contact friction variations due the interactions between thermal

expansion, frictional heating, conduction of heat out of the contact zone and wear. From TEI theory, hot spots appears above a critical sliding speed which depends on the thermal properties.

For type 3, previous work explained the hot bands apparition as a reduced contact area of the pad. A thermomechanical model was developed, which takes into account the contact calculation between the pads and the disc, the thermal distortions of the components, the wear of the pad and the thermomechanical behaviour of the materials . This model predicts the formation and the evo lution of the “fire rings”. Good agreement has been obtained with experimental observations.

Type 4 presents the high thermal gradients, commonly considered as major in the mechanisms of disc failure . Experimental investigations have been done with simultaneous thermographs of the two sides of the disc. It has shown that the MHS are located alternatively on the two sides of the disc in the direction of sliding . The antisymmetrical distribution of MHS and the levels of temperature

indicate a circumferentia lly …buckled? deformation pattern with plastic flow and metallurgic transformations.

MHS occurs generally for high braking power and high velocity but also for lighter braking applications. Practically,five or six MHS per side are commonly observed. The number of hot spots depends of the contact length between the pad and the disc and seems to correspond to the ratio of the disc mean perimeter to the contact length .

Metallurgic analysis on a railway brake disc have also shown that the crystalline structure changes (martensite formation) at a MHS site. Martensite may produce severe local strains due to the associated increase of specific volume. Cracks at the periphery of hot spot sites are supposed to initiate during cooling after the martensite formation .

Usual explanations of the MHS phenomenon are based on an assumption of elastic or plastic buckling or on the concept of frictionally excited TEI .

The elastic or plastic buckling theory gives largest critical loads in the case of railway brake disc. The critical speeds obtained by the TEI approaches are in the range of practical operating speeds for automotive applications. Nevertheless, application to the TGV disc brakes seems not to agree with experimental results.

An alternative approach has been recently proposed by authors. This model is based on the structural inelastic distortions analysis under thermomechanical loading. The hot spots occurrence is presented as a scenario consisting of four steps of a progressive waviness distortion (PWD) of the disc according to contact length of the pad.

In order to better understand the conditions of appearance of the various hot spot types and their evolution from onetype to another one, a specific experimental test programhas been done on a full-scale test bench. Comparison with theoretical explanations will be discussed.

3. Experimental apparatus

A railway disc brake system is tested on a full-scale test bench of Flertex S.A. The energy to dissipate is provided to the brake disc by mechanical inertia and electric engine. Fig. 3. Flertex full-scale test bench.

Observations have been made using thermal imaging equipment provided by Cedip. Rotor temperature profiles were observed on a thermal imaging screen of the front side of the disc. The infrared system was set to take temperature readings in snap shot mode at a frequency of 90 Hz. It corresponds to one shot every 120? of rotation at the highest rotational velocity used (1788 rpm). Minimum integration time is 12_s that gives an angular error of 0.13? at the maximal angular velocity.

The experimental apparatus and data acquisition system is illustrated in, with on the right the 120? acquisition window. The main drawback of this equipment is the sensibility of temperature measurement with the emissivity of the disc. Emissivity is non-uniform due to the formation of thin layers of third body on the disc during braking. In this study, the mean emissivity of the disc is fixed to 0.75.

4. Test procedure

In order to consider separately the influence of energy and sliding speed, two types of test have been achieved, firstly with increasing speed and constant energy and secondly with both increasing speed and energy. Taking into account the constraints and capacities of the test bench, two programs have been defined:

? railway initial speed from 60 to 300 km/h with constant dissipated energy of 6.4 or 15 MJ per disc;

? railway initial speed from 60 to 120 km/h with dissipated energy from 1.39 to 16.7 MJ per disc.

The disc is made of 28CrMoV5-08 steel manufactured by a forging process. The inner and outer diameters are, respectively, 380 and 640mm with a thickness of 45 mm. The brake pads were made of organic resin bounded composite material provided by Flertex S.A. The pad geometry is rectangular with a surface of 400 cm2. The shape of the pad was optimised in order to satisfy a uniform heating of the disc. the pad is

made of three parts:

? metallic integral support;

? substrate with low elastic modulus;

? frictional material.

Three kinds of pad, respectively, A, B and C, were tested.

The pad A is a commercial standard model. Pad B has been specially developed for the tests. It is the same as pad A but with a softer substrate, with a Young?s modulus of 30MPa against 90MPa for pad A. Pad C is the same as A with a reduced length. Pads B and C allow to investigate, respectively, the influence of the pad stiffness and the contact length on hot spots development.

The general test procedure was firstly to define the inertia (mechanical and electrical) to simulate the required energy and secondly to bring the brake rotor to the chosen speed and finally to apply the brake pressure corresponding to the required braking maximal power that decreases linearly with time. After each braking, the disc cooled down to a temperature of 80 ?C before the next run. Data from

infrared camera have been monitored and recorded continuously during the tests. The environmental conditions such as room temperature and humidity were kept constant as far as possible.

5. Experimental results

The continuous observation of braking indicates that the scenario of hot spot development is not identical for every tested coupled disc pad. However, among all observed scripts, one of them is more frequently observed, it will be qualified of “classic”.

5.1. Classical scenario of hot spots evolution

The braking often starts by hot bands formation on the surface of the disc, relatively uniform in the angular direction and that can move radially on the disc. Then, small thermal gradients on hot bands can appear. Their angular disposition is very regular and fixed on the disc. Next, macroscopic hot spots (MHS) appear on the surface, also very regularly distributed. They are fixed on the disc from one braking to the next as described in Fig corresponding to the braking following the one illustrated from Fig. These MHS are then qualified “stationary”. One can imagine that plastic deformation caused in one hot spot event will predispose the system to future hot spotting at the same location.

5.2. Alternative scenario of hot spots evolution

Some variations of MHS evolution scripts may been observed. Gradients on hot bands and fire rings may appear simultaneously on the disc.

Hot bands occur generally at the beginning of the braking. Different kind of hot bands, called diffusion, may been observed at the end of the braking. These thermal

制动器热-结构分析

基于HyperWorks的某通风盘式制动器热-结构分析 朱楚才史建鹏郭军朝 东风汽车公司汽车工程研究院,武汉,430058 摘要:通过对通风盘式制动器进行热-结构顺序耦合分析,了解制动盘在制动过程中的温度场分布及热应力场分布等情况,为制动盘的优化设计提供了参考。 关键词:通风盘式制动器,顺序耦合热-结构分析,温度场,热应力 1概述 制动性能是汽车的一项极其重要的性能,而制动器则是其执行部件。乘用车的盘式制动器是一种摩擦制动器,它利用两个运动表面相互接触时所产生的摩擦阻力,短时内将汽车运动所产生的动能和势能转化为热能,从而达到使汽车减速或停止运动的目的。 了解制动盘制动时的温度场分布,有助于制动盘结构的优化设计与改进。同时,受制动盘的散热能力的影响,制动时产生的热能并不能在瞬间全部散出,制动盘内会有热能聚集并产生温升,从而在盘体内产生热应力,热应力是影响制动盘的使用寿命的重要因素。详细了解制动过程中制动盘内的温度场分布状态,及热应力的分布情况,对制动盘结构的合理设计具有重要的意义。 2传热模型的建立 2.1传热分析有限元法基本原理 热传导分析可以在热载荷下求解未知的温度和热流通量,温度是体现物体热能的量,而热流通量表示热能的流量。物体分子间的热能交换称为热传导,物体和周围流体间的热能交换称为热对流,热载荷一般由流进或流出物体的能量流来定义。 在线性静态分析中,材料热物性如热传导率、对流换热系数,都是线性的,关注的重点是最后平衡状态的温度和热流分布。基本的有限元方程式如下: ([Kc] + [H]){T} = {p} (1) 其中,[Kc]为热传导率矩阵,[H]为边界自然对流矩阵,{T}为未知的节点温度,{p}为热

基于的汽车盘式制动器多学科设计优化

万方数据

19农业机械学报2010年 可观,工作难度也很大;本文应用多学科优化设计方法进行汽车盘式制动器的设计。 1模型的建立 汽车盘式制动器由制动盘和制动钳体组成,如图1所示。制动时,缸筒中的高压油推动活塞,进而推动摩擦片与制动盘发生摩擦,将汽车动能转化为制动盘的内能,以使汽车减速制动。 油 图1浮钳盘式制动器的结构 Fig.1Structureoffloatingclampdiskbrake制动盘与摩擦片的几 何模型如图2所示,汽车 盘式制动器的优化问题可 描述为:设计汽车盘式制 动器的制动盘和摩擦片, 使得制动器质量最小,制图2制动盘与 动时间最短以及制动过程摩擦片几何模型 中制动盘最高温度最低,Fig.2Geometrymodelof同时要满足摩擦片压力不brakediscandbrakepads超过许用值、油缸油压不超过许用值以及制动摩擦力矩不超过车轮与地面间附着力矩等约束条件。据此建立盘式制动器多学科设计优化数学模型。 1.1设计变量 确定盘式制动器设计变量为7个,即 X=(R1,R2,D。,口,0,Po,D)= (髫1,髫2,省3,鬈4,菇5,髫6,髫7) 式中冠.——摩擦片内径,mm R2——摩擦片外径,[Rift D。——活塞直径,mm 口——制动盘的1/2厚度,mm 口——摩擦片半角,(o)P。——油压,MPa D——制动盘直径,mm 1.2制动器各学科优化分析模型 1.2.1运动学优化模型 运动学优化目标为制动时间最短,约束条件包括:制动力矩21f不应大于车轮与路面的附着力矩;制动片的压力q不应超过规定值q…;以及油缸内的油压P。不得超过规定的范围P~。运动学优化问题描述为 min^(X1)=tbr.k。 s.tX6≤p。“ qm.。一0墅}≥o ‰?I一琢丽到 嘶卜亟鲁盟≥。 Xl=(髫l,并2,茗3,髫5,茗6) 式中形。——单个车轮承受的总重,N 妒——附着系数,给定妒=1 r——轮胎滚动半径,mm 广一制动盘与摩擦片间的摩擦因数,取厂= O.38 1.2.2结构优化模型 结构优化目标为制动盘和制动片总质量最小,并满足结构上的设计约束要求:摩擦片不应与轮毂发生干涉;摩擦片的安装位置不应超出制动盘的范围之外;油缸不应与轮毂发生干涉,设油缸的中心在摩擦片的平均半径处;制动盘的外径不能大于规定的最大值。结构优化问题描述为 min厶(X2)=m。。 ,). s.t.髫l—i--II≥O }一菇2t>0 半一等_一丁Dh≥。 22re2’ D…一茗7≥0 X2=(菇1,髫2,菇3,菇7) 式中Dh——轮毂直径,Dh=65mm tc——油缸壁厚,t。=5mm D。。。——制动盘最大直径 1.2.3热力学优化模型 热力学优化目标为制动过程中制动盘的最高温度最小,约束条件为最高温度不能超过制动盘的许用最高温度L。。。即热学科优化问题描述为 min六(X3)=瓦。。 s.t.L。≤L。 X3=(菇1,嚣2,髫,,菇4,耳5,聋6,髫7) 1.3MDO优化模型 在上述各学科分析基础上,通过一个MDO框架将各学科集成(图3),其实施模型见图4所示。 其中各子系统学科分析模型见前,MDO模型的目标函数为(推导略) 八X)=24tb,止。+4m。。。+0.3T,。。= —24W—1v2+4。。。+0.3T.4m0 3 。 T ——+…。+.. ∞ofg 18” 4万方数据

前盘式制动器拆装实习教学案

中级工强化训练-实习教案 前盘式制动器的拆装及检修 一、实训课时:节 二、主要内容及目的 (1)熟悉盘式制动器的构造和拆装过程。 (3)熟悉使用仪器测量制动盘厚度和摩擦厚度并判断好坏。 (4)掌握盘式制动器的检修方法。 (5)熟悉盘式制动器的构造名称。 三、技术标准和要求 1、外侧摩擦片及内侧摩擦片磨损极限为7.5m(包括底板)。 2、、当制动衬片磨损至厚度小于(或等于)1mm时,必须更换制动蹄总成。 四、实训器材 五菱小型货车前桥车轮制动器4个,塞尺4把,游标卡尺4把,常用工具4套。 五、操作步骤及工作要点: (一)、前盘式制动器零件 前盘式制动器零件 、制动钳总成 2.制动钳螺栓 3.转向节 4.活塞 5.制动盘防尘罩 制动盘 7.前轮轮毂轴承 8.卡簧 9.固定螺栓 10.制动分泵 11.

(二)、拆卸和安装 1、拆装制动盘(制动蹄片) 拆卸: (1)拧松但不拆下前轮螺栓举升 车辆用安全架稳定车辆,并拆下车轮。 (2)拆下制动钳体定位螺栓。 (3)从支座上拆下制动钳体。 (4)拆下制动块。 注意:用金属钩将卸下的钳体挂起,避免制动软管被过度扭曲及拉伸。不踩制动踏板将制动块卸下。 安装步骤 安装顺序与拆卸顺序相反。 (1)安装制动钳体及制动块。 (2)安装制动钳体并紧固其导向销 螺栓至规定力矩。

(3)按要求紧固前车轮螺母 (4)完成以上步骤后,进行测试。 2、拆装制动钳总成 拆卸步骤: (1)安全地升起车辆并拆下车轮。 (2)拆下钳体上的制动软管装配螺栓。在此之前准备一储液容器,因为在此操作中将会有制动液从制动软管中流出。 (3)拆下制动钳体导向销螺栓。 (4)从支架上拆下制动钳体。

盘式制动器仿真分析

《制动器的动力学仿真》 专业:机械设计制造 学号: 姓名: 2015年1月12日

目录 第一章、概述 (1) 1.1 制动器的分类 (1) 1.2 国内外针对盘式制动器的研究 (2) 1.2.1 国外研究现状 (2) 1.2.2 国内研究现状 (2) 第二章基于ADAMS 建模的理论基础 (3) 2.1 系统动力学 (3) 第三章动力学仿真 (3) 3.1 刚柔体混合动力学模型 (3) 3.2 改变弹簧弹性系数的仿真分析 (6) 3.3 结果分析 (9)

第一章、概述 1.1 制动器的分类 制动器即为刹车,通常称之为刹车、闸,它能使机械系统中的执行构件运动运动或减速慢行。其重要装置主要有传动装置、制动构件和操纵装置以及动力能源装置等。并且某些制动器存在有自隙调整机构。制动器可分为行车制动器和驻车制动器,即分别为脚刹和手刹,其中脚刹一般都用于行车过程中,但如果制动失效时,我们需要使用手刹。但车在停稳时,需使用手刹的方式以防止车向前滑行或者向后滑动。 制动器的分类方法还有很多: 例如制动器按接触方式能够被分成非摩擦式与摩擦式这两大类。其中,前者按结构形式分类,主要可以分成磁涡流式制动器(利用励磁电流的改变来使制动力矩大小得以改变)、磁粉式制动器(磁化磁粉产生的剪力进行制动)与水涡流式制动器等[3];还能够根据制动件的结构的组成形式进行分类,又能够把它分为外抱块式制动器、内张蹄式制动器、带式制动器、盘式制动器(碟刹)等;按制动件的工作状态一般可以分为常处于闭合制动器(只有施加外力才能把使制动不工作,正常为紧闸状态)和常处于张开状态的制动器(只有在受到外力时才可会正常工作即具有制动作用,正常为松闸状态);按操纵的形式进行分类时,又可以分为人力、液压、气压和电磁力操纵的制动器;按制动系统的作用进行分类,又可以把它分为驻车与行车这两种类型的制动系统以及应急、辅助类型的制动系统等。而当前各辆的汽车上都一定备置脚刹同手刹;按制动操纵的能源装置进行分类,可以把它分为人力、动力和伺服类型等;按制动能量的传输方式分类,可以分为机械式、液压式、气压式、电磁式及组合式(同时含量中已上两种供能方式)等。

制动器时间优化设计报告

汽车盘式制动器的制动时间优化设计摘要:利用matlab编程及工程优化的算法,建立以制动的最短时间为目标函数的数学模型,对汽车的制动时间进 行科学的优化设计。有效减少汽车盘式制动器的制动 时间,从而提高汽车的制动与安全性能。 关键词:盘式制动器、最短制动时间、优化设计、单目标优化 盘式制动器以其结构简单、尺寸紧凑,制动性能好,在同样大小的制动力矩条件下,其结构尺寸和质量都比鼓式制动器小,热稳定性和水稳定性好,无机械衰退问题,制动盘高温下形成热裂和热点的可能性小,不会如制动鼓那样的热膨胀引起制动踏板行程损失以及具有安全可靠,迅速平稳,摩擦衬片使用寿命长,重量轻,维修方便等一系列优点,被广泛应用于工程机械和各种汽车上。但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向稳定性。 1.目标函数与设计变量的确定 盘式制动器的设计本质上是一个多目标优化问题。在在制动器设计中有效提高制动效果、缩短制动时间是工程上普遍关注的问题。缩短制动时间是缩短制动距离的有效措施之一,能够有效提高汽车的制动效能,提高汽车的制动性及安全性能。汽车制动时间是重要的技术指标。相同类型、级别的汽车,制动时间较短则汽车的安全性较高以制动时间最短为目标函数, 2.建立盘式制动器优化设计的数学模型 为分析问题的方便,作如下假设引入几个简化条件: 1)制动盘为实体的 2)制动钳或盘是浮动的,一边消除盘上的 弯曲应力。 3)所有吸收的热量均匀分布在整个制动器 上。 盘式制动器的结构剖面图如图所示。如果将 制动器的摩擦衬片的圆形摩擦面划分为无数个与 盘心同心的圆弧单元,则该单元的摩摄与该处的 压力p与线速度v成正比。虽然摩擦衬片上的压力 开始是均匀的,但是随着单元所在半径r的加大, 其滑动线速度也会加大而导致单元磨损的加重。

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

汽车液压盘式制动器结构优化设计

汽车液压盘式制动器结 构优化设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

摘要 汽车制动系统是汽车最重要的主动安全系统,制动器则是制动系统的执行机构,其性能好坏直接影响汽车的安全。盘式制动器作为鼓式制动器的替代产品,具有热稳定性好、反应灵敏等优势,但是盘式制动器本身也存在一些问题,并且鼓式制动器存在的一些问题,虽然盘式制 动 器有一定程度改善,但并未得到完全解决,如热衰退、制动噪声等。本文开篇阐明了盘式制动器发展与现状,然后是设计的背景,性质及任务。通过对轿车盘式制动器的深入学习和设计实践,主要是对轿车盘式制动器的零部件结构选型及设计计算,更好地学习并掌握盘式制动器的结构原理与设计计算的相关知识和方法。介绍了盘式制动器的各种类型,性能等,分析了盘式制动器和摩擦衬片的特性. 关键词:盘式制动器;设计;性能分析

Abstract Automobile brake system is the most important initiative safety system, brake is the enforcer of brake system, whose performance affects the vehicle’s safety directly. As the substitution of drum brake, disc brake has advantages of fine thermal stability, delicate feedback, and so on. But it also has some defects, and though the problems of drum brake have been improved, they are not resolved completely, such as thermal fade and brake noise. This paper illustrated disc brake’s development at beginning, then the design’s background, quality and mission. Through the disc brake in-depth study and design practice, mainly for c ar’s disc brake structure selection and design calculation, can better study and master the disc brake structure and working principle and the related knowledge and methods. Introduce the brake disc’s kind and performance. Analyze the disc brake and rub linings’behavior. Key words: disc brake; design; Performance Analysis

制动盘的热分析

制动盘的热分析 摘要 制动是一个把车辆的动能转变成机械能并必将以热的形式耗散的过程。制动时,在制动盘和衬垫间产生的摩擦热可导致过高的温度。更重要的是在接触过程中切向压力和相对滑动速度是很重要的。本次主要通过ANSYS分析了制动盘的全热行为。盘式制动器的温度分布的建模是用来确认在制动操作时所涉及到的所有的因数和输入参数,例如制动类型,制动盘的几何设计和常用的材料。通过仿真所得到的结果是比较满意的。 关键词:干接触,制动盘,热流,传热系数 1.简介 在制动系统的研究中,热分析还处在一种原始阶段。在制动阶段,温度和热梯度很高,这会产生压力和变形,这种影响会在外观和裂缝的加重上显示出来[1,2]。然后很重要的是在盘式制动器中精确地确定温度场。 停车制动时,温度没有时间来被稳定在制动盘。一个瞬态分析是必要的。这对鉴定热梯度也是必不可少的,这就是需要三维建模的问题了。热负荷表现在热通量进入制动盘通过刹车衬垫。在制动盘和衬垫的接触面产生的大量的热量毫无疑问的引起了在域内对转子的不均匀的温度分布,然而衬垫的的环境在相互的滑动中被不断的加热[3].这种在盘式制动器的接触表面确定温度分布的瞬态热分析方法被执行了。这种制动盘和固定衬垫相互滑动所产生的摩擦热效应分布不均匀的问题使用有限元力学模型试验有几种可能发生在汽车的应用传热系数上。对在制动盘循环制动时的温度分布能够有一个比较,在制动过程中每一种情况分析下的能量转化在最后释放时的周期是相等的。 程序的改变是用来发展移动热源,就像热流对流冷却的分界线。在转子旋转时准确模拟它的加热的困难通过使用代码而被忽略,这可以保证使成型的曲线负责让热通量在随后的某个时刻进入制动盘[4]。在本次研究中,我们将会在三维空间呈现出一个数值模拟来分析全热行为和通风的盘式刹车。基于有限元计算方法的热量的计算将利用软件ANSYS 11。 2.热量进入制动盘

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

盘式制动器检修

盘式制动器检修

————————————————————————————————作者: ————————————————————————————————日期: ?

《汽车底盘构造与维修》 教???案 (2015~2016学年第一学期) 适用汽车检测与维修专业 院系(部)汽车工程系 班级14汽技1、2班教师李玉超

教案首页 本次课标题:盘式制动器构造与检修 授课日期2015年11月10日授课班级14汽技1、2课时8 上课地点底盘一体化教室三 教学目标 能力目标知识目标 1. 掌握盘式制动器的日常维护检查方式; 2. 能够对盘式制动器各总成进行拆装; 3.能够对盘式制动器主要部件进行检 修; 4. 能够正确的进行制动液的排空作业; 5. 能够根据制动系统故障现象,进行故障 诊断与排除。 1. 掌握盘式制动器的结构和工作原理; 2.掌握盘式制动器主要部件的检修方法; 3. 掌握盘式制动器的主要故障及故障原因。 教学任务1. 讲解盘式制动器的分类和结构。 2. 讲解盘式制动器的工作原理。 3. 讲解盘式制动器日常维护检查方式。 4. 演示并讲解盘式制动器主要部件的检修方法及注意事项。 5. 演示并讲解制动器油路排空的作业方法及注意事项。 6. 讲解制动系统故障现象及故障诊断与排除的方法。 重 点难点1.演示并讲解盘式制动器主要部件的检修方法及注意事项。2.演示并讲解制动器油路排空的作业方法及注意事项。3.讲解制动系统故障现象及故障诊断与排除的方法。 作 业 或 考 核 能力拓展:独立的进行盘式制动器主要部件的检修训练。 课前准备1. 考核工单准备 2. 带盘式制动器的汽车一部 3.游标卡尺、磁性表座、百分表头等常专用工具各4套

盘式制动器的发展与现状

工学院毕业设计(论文综述) 题目:普通轿车前轮盘式制动器的设计 专业:车辆工程 班级: 07车辆(4)班 姓名:徐玉林 学号: 21 指导教师:李同杰 日期: 2010年12月 盘式制动器的现状与发展趋势 车辆工程07级(4)班 学号:21 姓名:徐玉林 指导教师:李同杰 摘要:现今盘式制动器在汽车上的应用越来越普遍,其优越性也越来越明显。本文 主要介绍了盘式制动器的发展历程和现状以及其发展趋势,并对国外先进的制动器 制造和应用技术进行大体的介绍,同时针对我国汽车工业的发展提出了建议和展 望。 关键词:现状发展趋势 Pro/E 盘式制动器 一、盘式制动器介绍 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,点击放大图片主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。

盘式制动器由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。[1] 结构型式主要有点盘式和全盘式。点盘式:由于摩擦面仅占制动盘的一小部分,故称点盘式。有固定卡钳式和浮动卡钳式两种。为了不使制动轴受到径向力和弯矩,点盘式制动缸应成对布置。制动转矩较大时,可采用多对制动缸。必要时可在中间开通风沟,以降低摩擦副温升,还应采取隔热散热措施,以防止液压油温高变质。全盘式:这种制动器结构紧凑,摩擦面积大。 现代轿车的制动器的鼓式和盘式两大类型,它们各有千秋,但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中高级轿车,一般都采用了盘式制动器。汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经常处于高温状态,就会阻碍能量的转换过程,造成制动性能下降。越是跑得快的汽车,制动起来所产生的热量越大,对制动性能的影响也越大。解决好散热问题,对提高汽车的制动性能也就起了事倍功半的作用。所以,现代轿车的车轮除了使用铝合金车圈来降低运行温度外,还倾向于采用散热性能较好的盘式制动器。当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮盘式制动,后轮鼓式制动的方式。四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。[2] 一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳

盘式制动器工作原理

盘式制动器工作原理 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动。制动钳上的两个摩擦片分别装在制动盘的两侧。分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好象用钳子钳住旋转中的盘子,迫使它停下来一样。这种制动器散热快,重量轻,构造简单,调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。有些盘式制动器的制动盘上还开了许多小孔,加速通风散热提高制动效率。反观鼓式制动器,由于散热性能差,在制动过程中会聚集大量的热量。制动蹄片和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。 当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。 所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮

盘式制动,后轮鼓式制动的方式。 四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。但由于结构问题使它在制动过程中散热性能差和排水性能差,容易导致制动效率下降,因此在近三十年中,在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。

制动盘优化设计原稿

交通与汽车工程学院 课程论文说明书 课程名称: 车辆工程专业科技创新实践活动课程代码: 3510429 题目: 制动盘优化设计 年级/专业/班: 2011级/车辆工程/汽设一班 学生姓名: 刘陈 学号: 312011********* 开始时间: 2014 年 03 月 18 日 完成时间: 2014 年 05 月 25 日 课程论文成绩: 学习态度及平时成绩(30)技术水平与实际 能力(20) 创新(5) 说明书(计算书、图纸、分析 报告)撰写质量(45) 总分 (100) 指导教师签名:年月日

前言 (1) 1汽车刹车盘国内外研究现状与目标 (1) 1.1国外研究现状 (1) 1.2国内研究现状 (2) 2制动盘组织分析与性能要求 (2) 3制动盘温升对摩擦系数的影响 (3) 4制动盘直径D (3) 5制动盘厚度h (3) 6 制动盘常存在的问题 (4) 6.1气孔 (4) 6.2缩松 (4) 6.3砂眼缺陷 (4) 7制动盘catia图形 (4) 结论 (7) 致谢 (7) 参考文献 (8)

前言 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。本次设计的主要内容就是运输车辆中的制动器,目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。其中盘式制动器较为广泛。盘式制动器有着制动效果更好,不易受外界条件影响,且制动较平稳等优势。 1汽车刹车盘国内外研究现状与目标 制动盘在汽车的制动系统中发挥着至关重要的作用,性能优良的制动盘是汽车安全行驶的前提条件之一。虽然经过多年的应用与发展,但是从早期的石棉制动盘到目前广泛使用的铸铁制动盘,在环保、质量等方面都存在一些缺陷,并不能完全满足市场需求。汽车产业的迅猛发展,汽车产量的大幅度增加,降低能源消耗、加强环境保护对汽车用材料轻量化的要求,迫使人们不停的开展对汽车制动盘的研究。 1.1国外研究现状 国外早期的制动盘是用石棉纤维填充酚醛树脂制造而成的,其中石棉由硅酸盐矿物质得,含有一定数量的结晶水。由于强制制动时制动盘表面瞬间温度可达到500到600摄氏度,所含的结晶水快速遗失,往往造成制动盘制动性能发生热衰退,同时制动盘自身磨损,再加上石棉在加工、使用中其粉尘具有致癌作用,因此石棉制动盘渐渐被禁用。 从20世纪60年代开始,美、欧、日等国家大面积推广使用的第二代刹车盘是半金属石墨复合材料制造的一。其主要成分是钢纤维、石墨、金属粉及其辅料,用改性酚醛树腊粘结成型。半金属刹车盘比石棉刹车盘耐磨性提高25%以上,摩擦系数高、导热性好加工易成型。同时,这种刹车盘也出现钢纤维在潮湿环境中易生锈、刹车时噪音大等缺点。 后来,由于铸铁具有一定的强度和良好的耐磨性,材料和制造成本都较低,

盘式制动器的高温裂纹

盘式制动器的高温裂纹 摘要盘式制动器在一般的制动中受到很大的热压力,在紧急制动受到非同寻常的 热压力。大减速度的客车通常每个衬块每秒中产生达900度的高温。这种高温将产生两种结果:(1)热震动,产生表面裂缝,(2)制动盘产生较大的塑性变性。在转动圈数相对较少的大减速制动中,如果没有热震动,,将在旋转体的最厚处和盘式制动器的径向产生可见的裂缝。由此分析发现,制动器失效是短周期热力学疲劳的结果。用热流方程分析有限元素作出制动器温度纵断面图。如果得到制动温度,将用这个温度来估计紧急制动时增大的压力。研究表明,在大减速度制动时由于热压应力较大,而导致塑性变形发生。算出拉力位移量,然后用Coffin—Manson法则来估计制动失效的圈数。 关键字:热疲劳;热裂缝;制动失效;热压力;疲劳。 1.简介 在大减速度制动后,在制动盘上可观察到热裂缝。热裂缝可分为两类:一类是热裂缝部分的穿过制动盘表面;另一类是透过性热裂缝,他完全透过制动盘体。虽然热裂缝是由紧急制动引起的,但是仍没办法防止其发生。本文将对盘水制动器的制动盘热裂缝做一个彻底的分析。在此,将以载重汽车F-250皮卡的前制动盘热裂缝为例进行分析,如图1所示。当卡车拖拽的挂车装满货物时,如果频繁的刹车,当听到“嘭”的一声或显著的滴答声,表示制动器失效。 制动盘是由灰铸铁按照图2的几何尺寸制造而成。选择会铸铁是由于其熔点低,传热和散热较快。制动盘由连接车轮和轴的头部.内制动片和外制动片组成。外制动片直接与头部相连,,而内制动片则通过一系列的通风叶片连与外制动片。在制动盘的头部加工一道沟槽,用以改变该部的应力集中现象。内制动片不是直接与头部相连,它通过冷却叶片连接。制动是内外盘面被制动衬块压紧。频繁的摩擦阻止车轮旋转,同时产生大量的热。当制动数秒后,制动盘上产生了大量的热而邻近的空间内却与常温无异。热裂缝在客车上不常见,但是在卡车和动力车辆上却相对常见。许多车辆还暴露出相当极端的问题。值得注意的是,这些情况不是所谓的滥用,而是显示了制动技术的局限。虽然这篇文章是由卡车的制动器失效的例子引出的,接下来就这个问题作一个人和车辆都使用的一般性论述。 图1 图2 2.车辆力学 制动就是以及时和重复的方式消耗掉车辆的动能。为了估计制动中升高的温度,就必须算出施加于制动盘上的力。图3展示了车辆的解析图,求质心的瞬时平衡,得如下公式: ()()() 2 1 2 1 2 1 sin cos x x l V g h V K h x b mg F G G Z? + ? + -- - ? - = ?α α (1a) ()()() 2 1 2 2 2 2 sin cos x x l V g h V K h x a mg F G G Z? + ? + -- - ? + = ?α α (1b) 图3

项目二 盘式制动器的拆装与检查

项目二盘式制动器的拆装与检查 【知识点】 1.盘式制动系主要部件与工作原理 【技能点】 1.盘式制动器的检查 2.盘式制动器的更换 【参考学时及教学组织安排】 本项目总学时为6学时,其中理论教学1课时;示范1课时,学生练习4课时。 理论教学采用多媒体辅助教学,并结合实物讲解,使学生掌握盘式制动系主要部件与工作原理。 实践教学采用项目教学法,根据实训设备的台套数,学生分组进行盘式制动器的检查和盘式制动器的更换的项目教学。老师讲解并示范操作步骤和注意事项,适时下达操作指令,并进行工位间巡视、检查、指导和纠正错误。 【项目实施所需设备、器材】 整车或者台架

世达工具一套抹布 一字起扭力扳手 尖嘴钳鲤鱼钳

润滑脂风炮及套筒 【任务一:盘式制动器的认知】 1.车轮制动器的功用 车轮制动器的功用是将气压或液压转变为制动器制动力,以迫使车轮停转,从而使路面对车轮产生一个与汽车行驶方向相反的汽车制动力,在该力作用下,使汽车迅速减速、维持一定的车速或停车。 2.盘式制动器 (1)盘式制动器的分类: 根据其固定元件的结构形式可分为:钳盘式制动器和全盘式制动器。 钳盘式制动器目前运用在各级轿车及轻型货车上;全盘式制动器只用于重型汽车上。 钳盘式制动器又可以分为:定钳盘式制动器(如图4-1所示)和浮钳盘式制动器(如图4-2所示)。 图4-1定钳盘式制动器结构示意图图4-2 浮钳盘式制动器结构示意图

1-进油口;2-制动盘;3-制动钳体;4-活塞;5-制动 块1-制动钳体;2-活塞;3-活塞密封圈;4-活动制动块; 5-固定制动块;6-制动盘 (2)浮钳盘式制动器的构造 浮钳盘式制动器主要有制动盘、内外摩擦衬块、制动钳壳体、制动钳支架、前制动轮缸活塞及弹簧等组成,结构如图4-3所示。 图4-3 浮钳盘式制动器的结构示意图 1-螺栓;2-橡胶衬套;3-塑料套;4-制动盘;5-制动钳支架;6-摩擦块;7-活塞防尘罩;8-油封; 9-活塞;10-制动钳壳体 (3)浮钳盘式制动器的工作原理 ①浮钳盘式制动器工作时,如图4-4所示。 踩下制动踏板,液压作用于制动轮缸时,制动轮缸内活塞移动,把制动钳内的摩擦衬块压向制动盘,同时,制动轮缸内也受到同样的液压,把制动钳朝制动盘方向推动,而位于相反一侧的制动摩擦衬块也压向制动盘,产生制动力,迫使制动盘停止转动。 ②浮钳盘式制动器不工作时,如图4-5所示。 放松制动踏板,制动轮缸内的液压消失,使原被推压在活塞上而产生变形的橡胶圈恢复原状,把活塞推回原位,使制动摩擦衬块与制动盘之间保持原有的间隙。

制动器的拆装

制动器的拆装 一、实验目的 1、熟悉盘式制动器与鼓式制动器的结构与拆装过程 2、掌握盘式制动器与鼓式制动器的自调原理 二、实验原理 根据盘式制动器与鼓式制动器的工作原理、结构特点,以及组成部分和制动力传递路线进行各式制动器的分拆装实训 三、实验设备、仪器及材料 1、浮钳盘式制动器、鼓式制动器各1个 2、工作台架1张 3、常用、专用工具全套 4、各式量具全套 四、实验步骤 盘式制动器的拆装: 1、拆下制动钳体与分泵总成,并取出内、外制动块总成 2、拆下制动钳支架 3、拆下制动盘 4、(分泵总成视情况进行分解拆装) 5、按技术要求,反顺序装回 鼓式制动器的拆装: 1、拆下制动鼓 2、依次拆下左、右制动蹄压力弹簧帽、压力弹簧、夹紧销

3、拆下制动蹄总成 4、拆下轮毂总成,并卸下轮毂轴承 5、拆下制动轮缸(制动分泵)总成 5、拆下制动底板总成 6、按技术要求,反顺序装回 五、实验注意事项 1、把活塞装入制动钳缸孔,注意在装配时,不要使活塞歪斜,以免损伤缸孔表面。 2、将活塞防尘罩装入制动钳上,并装上防尘罩固定环,在装防尘罩时,活塞外端应伸出轮缸端约10mm,这样有助于安装。 3、把制动钳装在转向节上后,并按规定拧紧力矩紧固螺栓,螺栓的拧紧力矩为70~100N.m。 4、用轴销螺栓,将制动钳体装在制动钳上,并检查滑动是否灵活,然后按规定力矩拧紧轴销螺栓,轴销螺栓的紧固力矩为22~32N.m。 5、安装制动软管。并注意不要扭曲软管,确保软管不与任何部件干涉。软管接头螺栓的紧固力矩为20~35N.m。 6、在制动底板和后轴的接触面涂防水密封胶,然后将制动底板装在后轴上。螺栓紧固力矩为18~28N.m 7、把制动油管与轮缸连接起来,将力矩拧紧油管接头螺母。螺母的紧固力矩为14~18N.m。 8、装垫圈和后轴螺母,并按规定力矩紧固槽螺母,然后装好开口销,并弯折开口销。槽螺母紧固力矩为80-l20N.m。9、装后车轮,装防尘罩,在几处用锤轻轻地敲防尘罩凸缘,直到凸缘紧紧与制动鼓接触为止,并按规定力矩拧紧车轮螺母。其拧紧力矩为40~70N.m。

制动盘优化设计原稿

交通与汽车工程学院课程论文说明书 课程名称: 车辆工程专业科技创新实践活动课程代码: 3510429 题目: 制动盘优化设计 年级/专业/班: 2011级/车辆工程/汽设一班 学生姓名: 学号: 6117 开始时间:2014 年03 月18 日 完成时间:2014 年05 月25 日课程论文成绩: 学习态度及平时成绩(30)技术水平与实际 能力(20) 创新(5) 说明书(计算书、图纸、分析 报告)撰写质量(45) 总分 (100)

指导教师签名:年月日

前言 (1) 1汽车刹车盘国外研究现状与目标 (1) 1.1国外研究现状 (1) 1.2国研究现状 (2) 2制动盘组织分析与性能要求 (2) 3制动盘温升对摩擦系数的影响 (3) 4制动盘直径D (3) 5制动盘厚度h (3) 6 制动盘常存在的问题 (4) 6.1气孔 (4) 6.2缩松 (4) 6.3砂眼缺陷 (4) 7制动盘catia图形 (4) 结论 (7) 致 (7) 参考文献 (8)

前言 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。本次设计的主要容就是运输车辆中的制动器,目前广泛使用的是摩擦式制动器,摩擦式制动器就其摩擦副的结构形式可分成鼓式、盘式和带式三种。其中盘式制动器较为广泛。盘式制动器有着制动效果更好,不易受外界条件影响,且制动较平稳等优势。 1汽车刹车盘国外研究现状与目标 制动盘在汽车的制动系统中发挥着至关重要的作用,性能优良的制动盘是汽车安全行驶的前提条件之一。虽然经过多年的应用与发展,但是从早期的石棉制动盘到目前广泛使用的铸铁制动盘,在环保、质量等方面都存在一些缺陷,并不能完全满足市场需求。汽车产业的迅猛发展,汽车产量的大幅度增加,降低能源消耗、加强环境保护对汽车用材料轻量化的要求,迫使人们不停的开展对汽车制动盘的研究。 1.1国外研究现状 国外早期的制动盘是用石棉纤维填充酚醛树脂制造而成的,其中石棉由硅酸盐矿物质得,含有一定数量的结晶水。由于强制制动时制动盘表面瞬间温度可达到500到600摄氏度,所含的结晶水快速遗失,往往造成制动盘制动性能发生热衰退,同时制动盘自身磨损,再加上石棉在加工、使用中其粉尘具有致癌作用,因此石棉制动盘渐渐被禁用。

定钳盘式制动器的CAD图纸 装配 零件图

定钳盘式制动器的CAD图纸装配零件图 目录 一、性能与用途 (1) 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑 (12) 六、特别警示 (13) 七、故障原因及处理方法 (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3: 制动器限位开关结构图 (17) 附图4: 盘式制动器的工作原理图 (18) 附图5: 盘式制动器安装示意图 (19) 附图6: 制动器信号装置安装示意图 (20)

一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。 二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形

相关文档
相关文档 最新文档