文档库 最新最全的文档下载
当前位置:文档库 › hive性能优化

hive性能优化

hive性能优化
hive性能优化

优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜。

理解hadoop的核心能力,是hive优化的根本。这是这一年来,项目组所有成员宝贵的经验总结。

长期观察hadoop处理数据的过程,有几个显著的特征:

1.不怕数据多,就怕数据倾斜。

2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的。map reduce作业初始化的时间是比较长的。

3.对sum,count来说,不存在数据倾斜问题。

4.对count(distinct ),效率较低,数据量一多,准出问题,如果是多count(distinct )效率更低。

优化可以从几个方面着手:

1.好的模型设计事半功倍。

2.解决数据倾斜问题。

3.减少job数。

4.设置合理的map reduce的task数,能有效提升性能。(比如,10w+级别的计算,用160

个reduce,那是相当的浪费,1个足够)。

5.自己动手写sql解决数据倾斜问题是个不错的选择。set hive.groupby.skewindata=true;这

是通用的算法优化,但算法优化总是漠视业务,习惯性提供通用的解决方法。Etl开发人员更了解业务,更了解数据,所以通过业务逻辑解决倾斜的方法往往更精确,更有效。

6.对count(distinct)采取漠视的方法,尤其数据大的时候很容易产生倾斜问题,不抱侥幸心

理。自己动手,丰衣足食。

7.对小文件进行合并,是行至有效的提高调度效率的方法,假如我们的作业设置合理的文

件数,对云梯的整体调度效率也会产生积极的影响。

8.优化时把握整体,单个作业最优不如整体最优。

迁移和优化过程中的案例:

问题1:如日志中,常会有信息丢失的问题,比如全网日志中的user_id,如果取其中的user_id 和bmw_users关联,就会碰到数据倾斜的问题。

方法:解决数据倾斜问题

解决方法1. User_id为空的不参与关联,例如:

Select *

From log a

Join bmw_users b

On https://www.wendangku.net/doc/db17091357.html,er_id is not null

And https://www.wendangku.net/doc/db17091357.html,er_id = https://www.wendangku.net/doc/db17091357.html,er_id

Union all

Select *

from log a

where https://www.wendangku.net/doc/db17091357.html,er_id is null.

解决方法2 :

Select *

from log a

left outer join bmw_users b

on case when https://www.wendangku.net/doc/db17091357.html,er_id is null then concat(‘dp_hive’,rand() ) else https://www.wendangku.net/doc/db17091357.html,er_id end = https://www.wendangku.net/doc/db17091357.html,er_id;

总结:2比1效率更好,不但io少了,而且作业数也少了。1方法log读取两次,jobs是2。2方法job数是1 。这个优化适合无效id(比如-99,’’,null等)产生的倾斜问题。把空值的key 变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上,解决数据倾斜问题。因为空值不参与关联,即使分到不同的reduce上,也不影响最终的结果。附上hadoop通用关联的实现方法(关联通过二次排序实现的,关联的列为parition key,关联的列c1和表的tag 组成排序的group key,根据parition key分配reduce。同一reduce内根据group key排序)。

问题2:不同数据类型id的关联会产生数据倾斜问题。

一张表s8的日志,每个商品一条记录,要和商品表关联。但关联却碰到倾斜的问题。s8的日志中有字符串商品id,也有数字的商品id,类型是string的,但商品中的数字id是bigint的。猜测问题的原因是把s8的商品id转成数字id做hash来分配reduce,所以字符串id的s8日志,都到一个reduce上了,解决的方法验证了这个猜测。

方法:把数字类型转换成字符串类型

Select * from s8_log a

Left outer join r_auction_auctions b

On a.auction_id = cast(b.auction_id as string);

问题3:利用hive 对UNION ALL的优化的特性

hive对union all优化只局限于非嵌套查询。

比如以下的例子:

select * from

(select * from t1

Group by c1,c2,c3

Union all

Select * from t2

Group by c1,c2,c3) t3

Group by c1,c2,c3;

从业务逻辑上说,子查询内的group by 怎么都看显得多余(功能上的多余,除非有count(distinct)),如果不是因为hive bug或者性能上的考量(曾经出现如果不子查询group by ,数据得不到正确的结果的hive bug)。所以这个hive按经验转换成

select * from

(select * from t1

Group by c1,c2,c3

Union all

Select * from t2

Group by c1,c2,c3) t3

Group by c1,c2,c3;

经过测试,并未出现union all的hive bug,数据是一致的。mr的作业数有3减少到1。

t1相当于一个目录,t2相当于一个目录,那么对map reduce程序来说,t1,t2可以做为map reduce 作业的mutli inputs。那么,这可以通过一个map reduce 来解决这个问题。Hadoop 的计算框架,不怕数据多,就怕作业数多。

但如果换成是其他计算平台如oracle,那就不一定了,因为把大的输入拆成两个输入,分别排序汇总后merge(假如两个子排序是并行的话),是有可能性能更优的(比如希尔排序比冒泡排序的性能更优)。

问题4:比如推广效果表要和商品表关联,效果表中的auction id列既有商品id,也有数字id,和商品表关联得到商品的信息。那么以下的hive sql性能会比较好

Select * from effect a

Join (select auction_id as auction_id from auctions

Union all

Select auction_string_id as auction_id from auctions

) b

On a.auction_id = b.auction_id。

比分别过滤数字id,字符串id然后分别和商品表关联性能要好。

这样写的好处,1个MR作业,商品表只读取一次,推广效果表只读取一次。把这个sql换成MR代码的话,map的时候,把a表的记录打上标签a,商品表记录每读取一条,打上标签b,变成两个对,。所以商品表的hdfs读只会是一次。

问题5:先join生成临时表,在union all还是写嵌套查询,这是个问题。比如以下例子:Select *

From (select *

From t1

Uion all

select *

From t4

Select *

From t2

Join t3

On t2.id = t3.id

)

Group by c1,c2;

这个会有4个jobs。假如先join生成临时表的话t5,然后union all,会变成2个jobs。Insert overwrite table t5

Select *

From t2

Join t3

On t2.id = t3.id

;

Select * from (t1 union t4 union all t5) ;

hive在union all优化上可以做得更智能(把子查询当做临时表),这样可以减少开发人员的负担。出现这个问题的原因应该是union all目前的优化只局限于非嵌套查询。如果写MR 程序这一点也不是问题,就是muti inputs。

问题6:使用map join解决数据倾斜的常景下小表关联大表的问题,但如果小表很大,怎么解决。这个使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时

就需要特别的处理。云瑞和玉玑提供了非常给力的解决方案。以下例子:

Select * from log a

Left outer join members b

On a.memberid = b.memberid.

Members有600w+的记录,把members分发到所有的map上也是个不小的开销,而且map join不支持这么大的小表。如果用普通的join,又会碰到数据倾斜的问题。

解决方法:

Select /*+mapjoin(x)*/* from log a

Left outer join (select /*+mapjoin(c)*/d.*

From (select distinct memberid from log ) c

Join members d

On c.memberid = d.memberid

)x

On a.memberid = b.memberid。

先根据log取所有的memberid,然后mapjoin 关联members取今天有日志的members的信息,然后在和log做mapjoin。

假如,log里memberid有上百万个,这就又回到原来map join问题。所幸,每日的会员uv 不会太多,有交易的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景下的数据倾斜问题。

问题7:HIVE下通用的数据倾斜解决方法,double被关联的相对较小的表,这个方法在mr 的程序里常用。还是刚才的那个问题:

Select * from log a

Left outer join (select /*+mapjoin(e)*/

memberid, number

From members d

Join num e

) b

On a.memberid= b.memberid

And mod(a.pvtime,30)+1=b.number。

Num表只有一列number,有30行,是1,30的自然数序列。就是把member表膨胀成30份,然后把log数据根据memberid和pvtime分到不同的reduce里去,这样可以保证每个reduce分配到的数据可以相对均匀。就目前测试来看,使用mapjoin的方案性能稍好。后面的方案适合在map join无法解决问题的情况下。

长远设想,把如下的优化方案做成通用的hive优化方法

1.采样log表,哪些memberid比较倾斜,得到一个结果表tmp1。由于对计算框架来说,

所有的数据过来,他都是不知道数据分布情况的,所以采样是并不可少的。Stage1

2.数据的分布符合社会学统计规则,贫富不均。倾斜的key不会太多,就像一个社会的富

人不多,奇特的人不多一样。所以tmp1记录数会很少。把tmp1和members做map join 生成tmp2,把tmp2读到distribute file cache。这是一个map过程。Stage2

3.map读入members和log,假如记录来自log,则检查memberid是否在tmp2里,如果

是,输出到本地文件a,否则生成的key,value对,假如记录来自member,

生成的key,value对,进入reduce阶段。Stage3.

4.最终把a文件,把Stage3 reduce阶段输出的文件合并起写到hdfs。

这个方法在hadoop里应该是能实现的。Stage2是一个map过程,可以和stage3的map过程可以合并成一个map过程。

这个方案目标就是:倾斜的数据用mapjoin,不倾斜的数据用普通的join,最终合并得到完整的结果。用hive sql写的话,sql会变得很多段,而且log表会有多次读。倾斜的key始终是很少的,这个在绝大部分的业务背景下适用。那是否可以作为hive针对数据倾斜join时候的通用算法呢?

问题8:多粒度(平级的)uv的计算优化,比如要计算店铺的uv。还有要计算页面的uv,pvip. 方案1:

Select shopid,count(distinct uid)

From log group by shopid;

Select pageid, count(distinct uid),

From log group by pageid;

由于存在数据倾斜问题,这个结果的运行时间是非常长的。

方案二:

From log

Insert overwrite table t1 (type=’1’)

Select shopid

Group by shopid ,acookie

Insert overwrite table t1 (type=’2’)

Group by pageid,acookie;

店铺uv:

Select shopid,sum(1)

From t1

Where type =’1’

Group by shopid ;

页面uv:

Select pageid,sum(1)

From t1

Where type =’1’

Group by pageid ;

这里使用了multi insert的方法,有效减少了hdfs读,但multi insert会增加hdfs写,多一次额外的map阶段的hdfs写。使用这个方法,可以顺利的产出结果。

方案三:

Insert into t1

Select type,type_name,’’ as uid

From (

Select ‘page’ as type,

Pageid as type_name,

Uid

From log

Union all

Select ‘shop’ as type,

Shopid as type_name,

Uid

From log ) y

Group by type,type_name,uid;

Insert into t2

Select type,type_name,sum(1)

From t1

Group by type,type_name;

From t2

Insert into t3

Select type,type_name,uv

Where type=’page’

Select type,type_name,uv

Where type=’shop’ ;

最终得到两个结果表t3,页面uv表,t4,店铺结果表。从io上来说,log一次读。但比方案2少次hdfs写(multi insert有时会增加额外的map阶段hdfs写)。作业数减少1个到3,有reduce 的作业数由4减少到2,第三步是一个小表的map过程,分下表,计算资源消耗少。但方案2每个都是大规模的去重汇总计算。

这个优化的主要思路是,map reduce作业初始化话的时间是比较长,既然起来了,让他多干点活,顺便把页面按uid去重的活也干了,省下log的一次读和作业的初始化时间,省下网络shuffle的io,但增加了本地磁盘读写。效率提升较多。

这个方案适合平级的不需要逐级向上汇总的多粒度uv计算,粒度越多,节省资源越多,比较通用。

问题9:多粒度,逐层向上汇总的uv结算。比如4个维度,a,b,c,d,分别计算a,b,c,d,uv;a,b,c,uv;a,b,uv;a;uv,total uv4个结果表。这可以用问题8的方案二,这里由于uv场景的特殊性,多粒度,逐层向上汇总,就可以使用一次排序,所有uv计算受益的计算方法。

案例:目前mm_log日志一天有25亿+的pv数,要从mm日志中计算uv,与ipuv,一共计算三个粒度的结果表

(memberid,siteid,adzoneid,province,uv,ipuv)R_TABLE_4

(memberid,siteid,adzoneid,uv,ipuv)R_TABLE_3

(memberid,siteid,uv,ipuv) R_TABLE_2

第一步:按memberid,siteid,adzoneid,province,使用group去重,产生临时表,对cookie,ip

打上标签放一起,一起去重,临时表叫T_4;

Select memberid,siteid,adzoneid,province,type,user

From(

Select memberid,siteid,adzoneid,province,‘a’type ,cookie as user from mm_log where ds=20101205

Union all

Select memberid,siteid,adzoneid,province,‘i’type ,ip as user from mm_log where ds=20101205 ) x group by memberid,siteid,adzoneid,province,type,user ;

第二步:排名,产生表T_4_NUM.Hadoop最强大和核心能力就是parition 和sort.按type,acookie分组,

Type,acookie,memberid,siteid,adzoneid,province排名。

Select * ,

row_number(type,user,memberid,siteid,adzoneid ) as adzone_num ,

row_number(type,user,memberid,siteid ) as site_num,

row_number(type,user,memberid ) as member_num,

row_number(type,user ) as total_num

from (select * from T_4 distribute by type,user sort by type,user, memberid,siteid,adzoneid ) x; 这样就可以得到不同层次粒度上user的排名,相同的user id在不同的粒度层次上,排名等于1的记录只有1条。取排名等于1的做sum,效果相当于Group by user去重后做sum操作。

第三步:不同粒度uv统计,先从最细粒度的开始统计,产生结果表R_TABLE_4,这时,结果集只有10w的级别。

如统计memberid,siteid,adzoneid,provinceid粒度的uv使用的方法就是

Select memberid,siteid,adzoneid, provinceid,

sum(case when type =’a’ then cast(1) as bigint end ) as province_uv ,

sum(case when type =’i’ then cast(1) as bigint end ) as province_ip ,

sum(case when adzone_num =1 and type =’a’ then cast(1) as bigint end ) as adzone_uv ,

sum(case when adzone_num =1 and type =’i’ then cast(1) as bigint end ) as adzone_ip ,

sum(case when site_num =1 and type =’a’ then cast(1) as bigint end ) as site_uv ,

sum(case when site_num =1 and type =’i’ then cast(1) as bigint end ) as site_ip ,

sum(case when member_num =1 and type =’a’ then cast(1) as bigint end ) as member_uv ,

sum(case when member_num =1 and type =’i’ then cast(1) as bigint end ) as member_ip ,

sum(case when total_num =1 and type =’a’ then cast(1) as bigint end ) as total_uv ,

sum(case when total_num =1 and type =’i’ then cast(1) as bigint end ) as total_ip ,

from T_4_NUM

group by memberid,siteid,adzoneid, provinceid ;

广告位粒度的uv的话,从R_TABLE_4统计,这是源表做10w级别的统计

Select memberid,siteid,adzoneid,sum(adzone_uv),sum(adzone_ip)

From R_TABLE_4

Group by memberid,siteid,adzoneid;

memberid,siteid的uv计算,

memberid的uv计算,

total uv 的计算也都从R_TABLE_4汇总。

web性能优化(服务器优化)

Web网站性能优化的相关技术 来源:站长网 https://www.wendangku.net/doc/db17091357.html, 2011-03-04 06:50:47 Web站点性能问题吸引或者迫使越来越多的人投入到这个问题的研究中来,产生了很多解决方案。下面是我根据自身的理解对这些技术进行了归类总结,如有不足之处欢迎拍砖。 一、提高服务器并发处理能力 我们总是希望一台服务器在单位时间内能处理的请求越多越好,这也成了web 服务器的能力高低的关键所在。服务器之所以可以同时处理多个请求,在于操作系统通过多执行流体系设计,使得多个任务可以轮流使用系统资源,这些资源包括CPU、内存以及I/O等。这就需要选择一个合适的并发策略来合理利用这些资源,从而提高服务器的并发处理能力。这些并发策略更多的应用在apache、nginx、lighttpd等底层web server软件中。 二、Web组件分离 这里所说的web组件是指web服务器提供的所有基于URL访问的资源,包括动态内容,静态网页,图片,样式表,脚本,视频等等。这些资源在文件大小,文件数量,内容更新频率,预计并发用户数,是否需要脚本解释器等方面有着很大的差异,对不同特性资源采用能充分发挥其潜力的优化策略,能极大的提高web 站点的性能。例如:将图片部署在独立的服务器上并为其分配独立的新域名,对静态网页使用epoll模型可以在大并发数情况下吞吐率保持稳定。 三、数据库性能优化和扩展。 Web服务器软件在数据库方面做的优化主要是减少访问数据库的次数,具体做法就是使用各种缓存方法。也可以从数据库本身入手提高其查询性能,这涉及到数据库性能优化方面的知识本文不作讨论。另外也可以通过主从复制,读写分离,使用反向代理,写操作分离等方式来扩展数据库规模,提升数据库服务能力。 四、Web负载均衡及相关技术 负载均衡是web站点规模水平扩展的一种手段,实现负载均衡的方法有好几种包括基于HTTP重定向的负载均衡,DNS负载均衡,反向代理负载均衡,四层负载均衡等等。 对这些负载均衡方法做简单的介绍:基于HTTP重定向的负载均衡利用了HTTP 重定向的请求转移和自动跳转功能来实现负载均衡,我们熟悉的镜像下载就使用这种负载均衡。DNS负载均衡是指在一个DNS服务器中为同一个主机名配置多个IP地址,在应答DNS查询时返回不同的解析结果将客户端的访问引到不同的机

性能优化的方法和技巧

性能优化方法和技巧:概述 性能优化有三个层次: ?系统层次 ?算法层次 ?代码层次 系统层次关注系统的控制流程和数据流程,优化主要考虑如何减少消息传递的个数;如何使系统的负载更加均衡;如何充分利用硬件的性能和设施;如何减少系统额外开销(比如上下文切换等)。 算法层次关注算法的选择(用更高效的算法替换现有算法,而不改变其接口);现有算法的优化(时间和空间的优化);并发和锁的优化(增加任务的并行性,减小锁的开销);数据结构的设计(比如lock-free的数据结构和算法)。 代码层次关注代码优化,主要是cache相关的优化(I-cache, D-cache相关的优化);代码执行顺序的调整;编译优化选项;语言相关的优化技巧等等。 性能优化需要相关的工具支持,这些工具包括编译器的支持;CPU的支持;以及集成到代码里面的测量工具等等。这些工具主要目的是测量代码的执行时间以及相关的cache miss, cache hit等数据,这些工具可以帮助开发者定位和分析问题。 性能优化和性能设计不同。性能设计贯穿于设计,编码,测试的整个环节,是产品生命周期的第一个阶段;而性能优化,通常是在现有系统和代码基础上所做的改进,属于产品生命周期的后续几个阶段(假设产品有多个生命周期)。性能优化不是重新设计,性能优化是以现有的产品和代码为基础的,而不是推倒重来。性能优化的方法和技巧可以指导性能设计,但两者的方法和技巧不能等同。两者关注的对象不同。性能设计是从正向考虑问题:如何设计出高效,高性能的系统;而性能优化是从反向考虑问题:在出现性能问题时,如何定位和优化性能。性能设计考验的是开发者正向建设的能力,而性能优化考验的是开发者反向修复的能力。两者可以互补。

系统性能优化方案

系统性能优化方案 (第一章) 系统在用户使用一段时间后(1年以上),均存在系统性能(操作、查询、分析)逐渐下降趋势,有些用户的系统性能下降的速度非常快。同时随着目前我们对数据库分库技术的不断探讨,在实际用户的生产环境,现有系统在性能上的不断下降已经非常严重的影响了实际的用户使用,对我公司在行业用户内也带来了不利的影响。 通过对现有系统的跟踪分析与调整,我们对现有系统的性能主要总结了以下几个瓶颈: 1、数据库连接方式问题 古典C/S连接方式对数据库连接资源的争夺对DBServer带来了极大的压力。现代B/S连接方式虽然不同程度上缓解了连接资源的压力,但是由于没有进行数据库连接池的管理,在某种程度上,随着应用服务器的不断扩大和用户数量增加,连接的数量也会不断上升而无截止。 此问题在所有系统中存在。 2、系统应用方式(架构)问题(应用程序设计的优化) 在业务系统中,随着业务流程的不断增加,业务控制不断深入,分析统计、决策支持的需求不断提高,我们现有的业务流程处理没有针对现有的应用特点进行合理的应用结构设计,例如在‘订单、提油单’、‘单据、日报、帐务的处理’关系上,单纯的数据关系已经难以承载多元的业务应用需求。 3、数据库设计问题(指定类型SQL语句的优化)

目前在系统开发过程中,数据库设计由开发人员承担,由于缺乏专业的数据库设计角色、单个功能在整个系统中的定位模糊等原因,未对系统的数据库进行整体的分析与性能设计,仅仅实现了简单的数据存储与展示,随着用户数据量的不断增加,系统性能逐渐下降。 4、数据库管理与研究问题(数据存储、物理存储和逻辑存储的优化) 随着系统的不断增大,数据库管理员(DBA)的角色未建立,整个系统的数据库开发存在非常大的随意性,而且在数据库自身技术的研究、硬件配置的研究等方面未开展,导致系统硬件、系统软件两方面在数据库管理维护、研究上无充分认可、成熟的技术支持。 5、网络通信因素的问题 随着VPN应用技术的不断推广,在远程数据库应用技术上,我们在实际设计、开发上未充分的考虑网络因素,在数据传输量上的不断加大,传统的开发技术和设计方法已经无法承载新的业务应用需求。 针对以上问题,我们进行了以下几个方面的尝试: 1、修改应用技术模式 2、建立历史数据库 3、利用数据库索引技术 4、利用数据库分区技术 通过尝试效果明显,仅供参考!

Tomcat服务器性能调优几个方面

Tomcat性能调优几个方面 一、操作系统调优 对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。 【适用场景】任何项目。 二、Java虚拟机调优 应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。 JDK1.4比JDK1.3性能提高了近10%-20%,JDK1.5比JDK1.4性能提高25%-75%。因此对性能要求较高的情况推荐使用 JDK1.6。 【适用场景】任何项目。 三、Apache集成Tomcat Web服务器专门处理HTTP请求,应用服务器是通过很多协议为应用提供商业逻辑。虽然Tomcat也可以作web服务器,但其处理静态html的速度比不上Apache,且其作为web服务器的功能远不如Apache,因此把Apache和Tomcat集成起来,将html和Jsp的功能部分进行明确分工,让Tomcat只处理Jsp部分,其他的由Apache,IIS等web服务器去处理,由此大大提高Tomcat的运行效率。 如果一个项目中大量使用了静态页面、大量的图片等,并有有较大的访问量,推荐使用Apache集成Tomcat的方式来提高系统的整体性能。 Apache和Tomcat的整合有三种方式,分别是JK、http_proxy和ajp_proxy.其中JK方式是最常见的方式,JK本身有两个版本分别是1和2,目前1最新版本是1.2.8,而版本2早已经废弃了。http_proxy是利用Apache自带的mod_proxy 模块使用代理技术来连接Tomcat。Ajp_proxy连接方式其实跟http_proxy方式一样,都是由mod_proxy所提供的功能。只需要把配置中的http://换成ajp://,同时连接的是Tomcat的AJP Connector所在的端口。 相对于JK的连接方式,后两种在配置上比较简单的,灵活性方面也一点都不逊色。但就稳定性而言不像JK这样久经考验,所以建议采用JK的连接方式。Apache+JK+Tomcat配置:

Linux操作系统性能调优的方法

按照传统,Linux不同的发行版本和不同的内核对各项参数及设置均做了改动,从而使得系统能够获得更好的性能。下边将分四部分介绍在Red Hat Enterprise Linux AS和SUSE LINUX Enterprise Server系统下,如何用以下几种技巧进行性能的优化: QUOTE: 1、Disabling daemons (关闭 daemons) 2、Shutting down the GUI (关闭GUI) 3、Changing kernel parameters (改变内核参数) 4、Kernel parameters (内核参数) 5、Tuning the processor subsystem(处理器子系统调优) 6、Tuning the memory subsystem (内存子系统调优) 7、Tuning the file system(文件系统子系统调优) 8、Tuning the network subsystem(网络子系统调优) 1 关闭daemons 有些运行在服务器中的daemons (后台服务),并不是完全必要的。关闭这些daemons可释放更多的内存、减少启动时间并减少CPU处理的进程数。减少daemons数量的同时也增强了服务器的安全性。缺省情况下,多数服务器都可以安全地停掉几个daemons。 Table 10-1列出了Red Hat Enterprise Linux AS下的可调整进程. Table 10-2列出了SUSE LINUX Enterprise Server下的可调整进程.

注意:关闭xfs daemon将导致不能启动X,因此只有在不需要启动GUI图形的时候才可以关闭xfs daemon。使用startx命令前,开启xfs daemon,恢复正常启动X。 可以根据需要停止某个进程,如要停止sendmail 进程,输入如下命令: Red Hat: /sbin/service sendmail stop SUSE LINUX: /etc/init.d/sendmail stop

服务端性能优化参考指南

服务端性能优化 参考指南 1、代码优化 通过JPROFIRE等第三方工具分析判读代码运行耗时长、性能瓶颈部分,重新审视自己写的代码,逐条逐句,主要注意一下几点: 对象的生成和大小的调整 JAVA程序设计中一个普遍的问题就是没有好好的利用JAVA语言本身提供的函数,从而常常会生成大量的对象(或实例)。由于系统不仅要花时间生成对象,以后可能还需花时间对这些对象进行垃圾回收和处理。因此,生成过多的对象将会给程序的性能带来很大的影响。杜绝不必要的对象产生,减少可调整的生成对象。 代码举例: String name=new String("HuangWeiFeng"); System.out.println(name+"is my name"); (1) 生成新的字符串new String(STR_1); (2) 复制该字符串; (3) 加载字符串常量"HuangWeiFeng"(STR_2); (4) 调用字符串的构架器(Constructor); (5) 保存该字符串到数组中(从位置0开始); (6) 从java.io.PrintStream类中得到静态的out变量; (7) 生成新的字符串缓冲变量new StringBuffer(STR_BUF_1); (8) 复制该字符串缓冲变量; (9) 调用字符串缓冲的构架器(Constructor); (10) 保存该字符串缓冲到数组中(从位置1开始); (11) 以STR_1为参数,调用字符串缓冲(StringBuffer)类中的append方法; (12) 加载字符串常量"is my name"(STR_3); (13) 以STR_3为参数,调用字符串缓冲(StringBuffer)类中的append方法; (14) 对于STR_BUF_1执行toString命令; (15) 调用out变量中的println方法,输出结果。 上面两行代码生成了STR_1,STR_2,STR_3,STR_4和STR_BUF_1五个对象变量。这些生成的类的实例一般都存放在堆中。堆要对所有类的超类,类的实例进行初始化,同时还要调用类极其每个超类的构架器。而这些操作都是非常消耗系统资源的。因此,对对象的生成进行限制,是完全有必要的。 经修改,上面的代码可以用如下的代码来替换。

关于优化服务器配置的报告

关于公司网站服务器配置的报告 公司领导: 经九月八日总经理办公会仪研究决定建立公司网站。公司领导考虑到以后多终端视频会议的稳定、流畅,保证网站的稳定运行,对原服务器和网络带宽提出了修改建议。本部门经过与局网络中心的沟通,配合着市场调查。进一步优了配置。并对服务器、防火墙、UPS 进行了进一步的调查。 一、服务器、防火墙、UPS 1、IBM X3500系列塔式服务器: 此款服务器的标准配置:合计费用:38850.00元(调查价)CPU:至强四核CPU;内存:4G;硬盘:SAS HDD146G*8;光驱:DVD刻录;网卡:双网卡1000M;电源:835W热插拔电源;19寸宽屏液晶显示器;原装键盘鼠标(3年质保)。原厂整机三年全免费维修。 此款服务器预留升级空间:CUP(最大可扩展至八核CPU,至强四核CPU现价3300元),内存:最大可扩展至48G (内存1G*2现价1100元),硬盘:最大可支持8块热插拔硬盘,内部最大存储容量为8TB(硬盘146G现价1850元),电源:可扩展至双电源(电源现价1550元) 2、浪潮英信NF560D2系列塔式服务器。 此款服务器标准配置:合计费用:48500.00元(调查价)CPU:至强四核CPU;内存:4G;硬盘:SATA500G*2;光驱:DVD 刻录;网卡:双网卡1000M;电源:500瓦;19寸液晶显示器;原

装键盘鼠标。NF560D2产品采用了最新的浪潮服务器高级管理模块,搭配全新版本的浪潮睿杰服务器管理套件,可提供全面的远程系统监测、维护、管理、控制功能,确保客户的系统管理轻松自如,降低高昂的IT架构维护成本。 此款服务器的升级空间:CPU:最大可扩展至八核CPU(至强四核CPU现价3300元),内存:最大可扩展至48G (内存1G*2现价1300元),硬盘:最大可支持8块热插拔硬盘,内部最大存储容量为8TB(硬盘1T现价900元)。 二、防火墙 1、HT华堂防火墙:HT-NW-20系列合计费用:59800.00元(调查价) 华堂网络安全防御系统部门级产品,拥有卓越的网络适应性,支持包括PPPOE,DHCP,DDNS等在内的非常实用的网络功能,为中型企业,远程办公用户,提供了一个可靠的网络安全解决方案(全套设备3年质保)(免费开通VPN端口50个,免费赠送VPN加密狗2个)1、华为防火墙:Eudermon 300 合计费用:62300.00元(调查价) 采用NP高速处理器,拥有卓越的首包处理能力,能防范每秒百万包以上的SYNFLOOD、UDPFLOOD、ICMPFLOOD、DNSFLOOD等DDOS攻击,每个虚拟防火前可实现独立策略配置管理,支持路由模式双击热备等多种工作方式,支持多种VPN接入方式。设备质保期两年。 三、UPS 1、美国山特UPS:合计费用:5880.00元(调查价)

优化服务器的性能

优化服务器的性能 第18章服务器性能监视及优化 服务器的安全管理是网络管理人员日常工作的重要内容。服务器的安全管理涉及系统安全、设备安全、网络安全、应用安全、数据安全等方面。因此,只有重视服务器的安全性,掌握网站服务器应用过程中的安全因素,才能制定出服务器的安全措施,并保证网站服务器的正常、安全、高效、稳定运行。本章详细介绍如何加强服务器的安全管理。 18.1 优化服务器的性能 作为系统管理员,不仅担负着对网络和服务器的维护工作,同时还应当随时掌握服务器系统的运行情况,随时了解和掌握系统的各种性能参数,如CPU使用率、内存占用量、网络负载等状况,并通过必要的方法优化系统性能,解决系统存在的潜在问题,保证网络和服务器能够高效、稳定运行,为企业和用户提供各项优质服务。 18.1.1 检测服务器的性能 可以通过任务管理工具来检测和查询服务器的系统性能,并快速获得服务器的系统信息。 1.检测和管理进程 进程与系统性能有着很大的关系。执行应用程序将产生一个进程,并占用服务器系统的资源,进程越多,占用的系统资源也就越多。任务管理器是监视计算机性能的关键指示器,可以查看正在运行的程序的状态,并终止已停止响应的程序。还可以使用多个参数评估正在运行进程的活动,查看反映CPU和内存使用情况的图形和数据。 STEP1 在Windows Server 2003正常运行的情况下,按下组合键Ctrl+Alt+Delete,出现Windows安全管理窗口,单击“任务管理器”按钮,出现如图18-1所示的窗口。 STEP2 在Windows任务管理器的“进程”选项卡中,可查看系统正在运行的进程情况,如用户名、CPU、内存使用等信息。同时,在窗口的底端显示了当前的进程数、CPU使用率和内存使用等情况。 STEP3 选择菜单“查看→选择列”命令,出现如图18-2所示的对话框。选择其中需要显示的选项,可以在列表框中列出多达几十个有关进程的信息。最好选中“基本优先级”复选框,方便查看正在运行程序的优先级。单击“确定”按钮返回Windows任务管理器。根据进程列表中的信息,分析进程是否需要更改优先级或者结束运行。

安卓性能优化方案

随着技术的发展,智能手机硬件配置越来越高,可是它和现在的PC相比,其运算能力,续航能力,存储空间等都还是受到很大的限制,同时用户对手机的体验要求远远高于PC的桌面应用程序。以上理由,足以需要开发人员更加专心去实现和优化你的代码了。选择合适的算法和数据结构永远是开发人员最先应该考虑的事情。同时,我们应该时刻牢记,写出高效代码的两条基本的原则:(1)不要做不必要的事;(2)不要分配不必要的内存。 我从去年开始接触Android开发,以下结合自己的一点项目经验,同时参考了Google的优化文档和网上的诸多技术大牛给出的意见,整理出这份文档。 1. 内存优化 Android系统对每个软件所能使用的RAM空间进行了限制(如:Nexus o ne 对每个软件的内存限制是24M),同时Java语言本身比较消耗内存,d alvik虚拟机也要占用一定的内存空间,所以合理使用内存,彰显出一个程序员的素质和技能。 1) 了解JIT 即时编译(Just-in-time Compilation,JIT),又称动态转译(Dynamic Translation),是一种通过在运行时将字节码翻译为机器码,从而改善字节码编译语言性能的技术。即时编译前期的两个运行时理论是字节码编译和动态编译。Android原来Dalvik虚拟机是作为一种解释器实现,新版

(Android2.2+)将换成JIT编译器实现。性能测试显示,在多项测试中新版本比旧版本提升了大约6倍。 详细请参考https://www.wendangku.net/doc/db17091357.html,/cool_parkour/blog/item/2802b01586e22cd8a6ef3f6b. html 2) 避免创建不必要的对象 就像世界上没有免费的午餐,世界上也没有免费的对象。虽然gc为每个线程都建立了临时对象池,可以使创建对象的代价变得小一些,但是分配内存永远都比不分配内存的代价大。如果你在用户界面循环中分配对象内存,就会引发周期性的垃圾回收,用户就会觉得界面像打嗝一样一顿一顿的。所以,除非必要,应尽量避免尽力对象的实例。下面的例子将帮助你理解这条原则: 当你从用户输入的数据中截取一段字符串时,尽量使用substring函数取得原始数据的一个子串,而不是为子串另外建立一份拷贝。这样你就有一个新的String对象,它与原始数据共享一个char数组。如果你有一个函数返回一个String对象,而你确切的知道这个字符串会被附加到一个Stri ngBuffer,那么,请改变这个函数的参数和实现方式,直接把结果附加到StringBuffer中,而不要再建立一个短命的临时对象。 一个更极端的例子是,把多维数组分成多个一维数组: int数组比Integer数组好,这也概括了一个基本事实,两个平行的int数组比(int,int)对象数组性能要好很多。同理,这试用于所有基本类型的组合。如果你想用一种容器存储(Foo,Bar)元组,尝试使用两个单独的Foo[]

web服务器性能优化

web服务器性能优化 导读:本文web服务器性能优化,仅供参考,如果觉得很不错,欢迎点评和分享。 作为一种资源的组织和表达机制,Web已成为Internet最主要的信息传送媒介。因此Web的性能已经成为判断一个网站成功与否的一个重要评估标准。而Web服务器则是决定Web性能的重要环节。 Web服务器性能就是指一个Web服务器响应用户请求的能力。为了提高Web服务器的性能人们进行了诸多尝试,已经取得了可喜的成果。本文通过对前人研究结果的分析,提出了在具体应用环境中优化Web服务器的方法和策略。 Web服务器概述 Web系统在现在网络中广泛使用,而Web服务器则是Web系统的一个重要组成部分。完整的Web结构应包括:HTTP协议,Web 服务器,通用网关接口CGI、Web应用程序接口、Web浏览器。 Web服务器是指驻留在因特网上某种类型计算机的程序。它是在网络中信息提供者基干HTTP的为实现信息发布、资料查询、数据处理等诸多应用搭建基本平台的服务器,其主要功能是提供网上信息浏览服务。当Web浏览器(客户端)连到服务器并请求文件时,服务器将处理该请求并将文件发送到该浏览器上,附带的信息会告诉浏览器如何查看该文件(即文件类型)。

Web服务器在web页面处理中大致可分为三个步骤:第一步,web浏览器向一个特定的服务器发出Web页面请求;第二步,Web 服务器接收到web页面请求后,寻找所请求的web页面,并将所请求的Web页面传送给Web浏览器;第三步,Web服务器接收到所请求的web页面,并将它显示出来。 web服务器不仅能够存储信息,还能在用户通过Web浏览器提供的信息的基础上运行脚本和程序。在Web上,常见的大多数表单核搜索引擎上都是用的是CGI脚本。 影响web应用服务器性能的因素 Web服务器的性能就是指一个Web服务器响应用户请求的能力,服务器的性能对于一个Web系统来说至关重要。为了提高Web 服务器的性能人们进行了许多尝试,也采用了许多技术和方法,但是这些技术和方法往往缺乏适用性。 通过对前人的研究分析可以发现,在web服务器的优化方而存在这种问题的原因主要有两个:一方面是服务器性能评测造成的,一方面是选用优化方案时考虑不全面造成的。 现行的服务器性能评测工具在对Web服务器进行评测时,其实是由一台或几台计算机模拟客户机,与被测的Web服务器进行通信,它们其实组成的只是一个局域网的环境,这与真正的广域网的环境有一定的差别。 另外,评测工具在选择网络负载时,虽然已经尽可能的接近真实负载,但是与持续的高频率负载要求仍有差距;再者,在性能测试指

系统性能调优方案

第1章系统性能调优方案 1.1系统的性能扩展模型介绍 在进行性能指标设计工作前,必须从理论上对性能指标的可实现性进行分析。理论上,系统的扩展模型可以分成两类,系统可扩展模型和不可扩展模型,如下图所示: 两种性能扩展模型 以上左图代表了系统随着并发用户量的增加系统响应时间呈现线性增长的 趋势,是一种可扩展的情况;但对于系统右边的方式则是不可扩展的,它将随着用户数量的增大而响应时间大大急剧增加,这种模型是完全不可控制的。 通过系统压力实验,我们发现,即使是遵循可扩展模型设计的系统的响应性能和并发用户量并不能成永远的线性关系,在系统压力超过一定的值之后,如100并发,系统响应时间增加非常快,我们把这个点称为拐点。在拐点以下,系统性能呈现良好的线性特性,在拐点以上,则呈现出非线性的特征,同时CPU 和内存出现相当大的增长,甚至100%占用。这种现象的出现,说明系统的性能 不仅仅取决于软件系统,而也同时取决于承载系统的硬件基础环境,如计算能力和内存大小。 为此,系统性能设计的目的就是为系统设置合理的拐点并发值,而不可能无限制的追求无限大的并发下系统响应仍旧呈现线形特征。

1.2对响应时间的技术保障手段 金税三期工程第二阶段河南地税建设项目财务管理子系统对系统的性能要求是比较高的,为了满足这个要求,在系统实现上必须要采用一系列的技术措施才能达到,具体来说将采用下面方式进行: 1、预处理技术的应用 预处理技术是一种在预定计划上由系统激发主动执行的计算模式,它对于一些处理内容固定,处理方式固定的功能非常有效,通过提前处理,实现数据生成时间和数据访问时间的隔离,在数据访问的时候不再需要为拿到结果而执行任何的计算,只需要简单的查询结果即可,这样可以大大增强系统的访问性能,有效的利用系统闲置时间。 2、变动态内容查找为静态数据访问 一些情况下,经过各种调优手段仍不能满足要求,就需要将一些动态的内容进行静态化处理,如可以将复杂的动态报表转化成HTML网页并发布在WEB服务器上,这种方式可以大大减轻应用服务器的访问压力,进一步减少用户等待的时间。例如,对一段历史时期的数据的汇总报表结果的查询,复杂报表结果等查询。 3、异步功能调用模式 对一些耗时较长的处理内容,如果必须由人工进行启动,那么,可以采用这种方式,用户调用程序的时候,实际上只是发送了一个消息给后台服务器,并在服务器端注册信息处理完后需要回馈的客户端,然后系统提示用户系统正在或很快处理这个任务,这样,立刻就能够解放用户,用户可以利用在后台处理的时间去处理其他的任务,在系统处理完后,采用推技术(push),将处理结果提示给用户,从而完成功能的调用全过程。 4、浏览器显示时采用分页、分时显示技术 用户从数据库查询得到的数据如果行数比较多,比如大于100行。在IE端显示就需要花费很长时间,有时让查询人员无法忍受。分页技术,就是利用先显示结果的一部分,一般结果的前50条记录,后面的记录通过翻页的功能去显示其余部分。比如在查询正常计划详细列表页面时,通过查询得到1000条记录,

服务器性能优化配置建议

目录 一、服务配置建议 二、MySQL性能分析及建议 三、系统性能分析 很久以前在前公司给中企动力那边写的服务器分析建议,其实出就是一些简单参数调整仍后利用vmstat,top这些工具对系统性能做初步分析。 贴出来希望对朋友们学习有帮助,同时也欢迎朋友们补充![此文档仅作参考和学习,具体优化比较复杂欢迎朋友们探讨!] 一、服务器配置 先阅读apache配置优化建议如下,再对相关参数进行调整,观察服务器状况. Apache配置优化建议: 进入/usr/local/apache2/conf/extra 目录下 Apache优化, 经过上述操作后,Apache已经能够正常运行。但是,对于访问量稍大的站点,Apache的这些默认配置是无法满足需求的,我们仍需调整Apache的一些参数,使Apache能够在大访问量环境下发挥出更好的性能。以下我们对Apache配置文件httpd.conf中对性能影响较大的参数进行一些说明。 (1) Timeout 该参数指定Apache在接收请求或发送所请求内容之前的最长等待时间(秒),若超过该时间Apache则放弃处理该请求,并释放连接。该参数默认值为120,推荐设置为60,对于访问量较大的网站可以设置为30或15。 (2) KeepAlive 该参数控制Apache是否允许在一个连接中有多个请求,默认打开。但对于大多数论坛类型站点来说,通常设置为off以关闭该支持。 (3) MPM - prefork.c 在默认情况下Apache使用Prefork(进程)工作模式,可以说这部分的参数设置是对Apache性能影响的核心和关键。用户可以在配置文档中找到以下配置段: ? StartServers 5 ? MinSpareServers 5 ? MaxSpareServers 10 ? MaxClients 15 ? MaxRequestsPerChild 0 ?

Oracle 数据库设计阶段性能优化策略

Oracle 数据库设计阶段性能优化策略 通过对Oracle 数据库系统物理结构和逻辑结构的分析,阐述了在Oralce数据库设计开发阶段性能优化的一些策略和方法。 Oracle是目前使用最为广泛的大型数据库管理系统,提高Oracle数据库系统的运行效率,是整个计算机信息系统高效运转的前提和保证。影响Oracle数据库应用系统性能的因素很多,既有软件方面的因素,也包括数据运行的硬件环境、网络环境、数据库管理和维护方面的因素等。数据库系统设计开发阶段是Oracle应用优化的最佳阶段,也是主动优化阶段,能达到以最小成本获得最大性能增益的目的。通过对其逻辑存储结构和物理存储结构设计进行优化,使之在满足需求条件下,时空开销性能最佳,可以解决数据库系统运行过程中性能的渐进性下降或性能突降等问题,以保证系统运行的优良性能。 Oracle数据库的逻辑结构和物理结构 Oracle 数据库的逻辑结构是由一些数据库对象组成,如数据库表空间、表、索引、段、视图、存储过程、触发器等。数据库的逻辑存储结构(表空间等)决定了数据库的物理空间是如何被使用的,数据库对象如表、索引等分布在各个表空间中。 Oracle 数据库的物理结构从操作系统一级查看,是由一个个的文件组成,从物理上可划分为:数据文件、日志文件、控制文件和参数文件。数据文件中存放了所有的数据信息;日志文件存放数据库运行期间产生的日志信息,它被重复覆盖使用,若不采用归档方式的话,已被覆盖的日志信息将无法恢复;控制文件记录了整个数据库的关键结构信息,它若被破坏,整个数据库将无法工作和恢复;参数文件中设置了很多Oracle 数据库的配置参数,当数据库启动时,会读取这些信息。 逻辑结构的优化 逻辑结构优化用通俗的话来说就是通过增加、减少或调整逻辑结构来提高应用的效率,下面通过对基本表的设计及索引、聚簇的讨论来分析ORACLE逻辑结构的优化。 1、基本表扩展: 数据库性能包括存储空间需求量的大小和查询响应时间的长短两个方面。为了优化数据库性能,需要对数据库中的表进行规范化。一般来说,逻辑数据库设计满足第三范式的表结构容易维护且基本满足实际应用的要求。所以,实际应用中一般都按照第三范式的标准进行规范化,从而保证了数据库的一致性和完整性,设计人员往往会设计过多的表间关联,以尽可能地降低数据冗余。但在实际应用中这种做法有时不利于系统运行性能的优化:如过程从多表获取数据时引发大量的连接操作,在需要部分数据时要扫描整个表等,这都消耗了磁盘的I/O 和CPU 时间。 为解决这一问题,在设计表时应同时考虑对某些表进行反规范化,方法有以下几种:一是分割表。分割表可分为水平分割表和垂直分割表两种:水平分割是按照行将一个表分割为多个表,这可以提高每个表的查询速度,但查询、更新时要选择不同的表,统计时要汇总多个表,因此应用程序会更复杂。垂直分割是对于一个列很多的表,若某些列的访问频率

服务器性能测试指标介绍

服务器性能测试指标介绍 当前业界常见的服务器性能指标有: TPC-C TPC-E TPC-H SPECjbb2005 SPECjEnterprise2010 SPECint2006 及SPECint_rate_2006 SPECfp2006 及SPECfp_rate_2006 SAP SD 2-Tier LINPACK RPE2 一、TPC (Transaction Processing Performance Council) 即联机交易处理性能协会, 成立于1988年的非盈利组织,各主要软硬件供应商均参与,成立目标: 为业界提供可信的数据库及交易处理基准测试结果,当前发布主要基准测试为: TPC-C : 数据库在线查询(OLTP)交易性能 TPC-E : 数据库在线查询(OLTP)交易性能 TPC-H : 商业智能/ 数据仓库/ 在线分析(OLAP)交易性能 1.TPC-C测试内容:数据库事务处理测试, 模拟一个批发商的订单管理系统。实际衡量服务器及数据库软件处理在线查询交易处理(OLTP)的性能表现. 正规TPC-C 测试结果发

布必须提供tpmC值, 即每分钟完成多少笔TPC-C 数据库交易(TPC-C Transaction Per Minute), 同时要提供性价比$/tpmC。如果把TPC-C 测试结果写成为tpm, TPM, TPMC, TPCC 均不属正规。 2.TPC-E测试内容:数据库事务处理测试,模拟一个证券交易系统。与TPC-C一样,实际衡量服务器及数据库软件处理在线查询交易处理(OLTP)的性能表现。正规TPC-E测试结果必须提供tpsE值,即每秒钟完成多少笔TPC-E数据库交易(transaction per second),同时提供$/tpsE。测试结果写成其他形式均不属正规。 对比:TPC-E测试较TPC-C测试,在测试模型搭建上增加了应用服务器层,同时增加了数据库结构的复杂性,测试成本相对降低。截止目前,TPC-E的测试结果仅公布有50种左右,且测试环境均为PC服务器和windows操作系统,并无power服务器的测试结果。除此之外,TPC官方组织并未声明TPC-E取代TPC-C,所以,说TPC-E取代TPC-C并没有根据。 附TPC-C与TPC-E数据库结构对比 3.TPC-H测试内容:对大型数据仓库进行决策支持(decision support)的基准测试。TPC-H包含一组复杂的业务查询及修改操作,属于商业智能/数据仓库/在线分析(OLAP)

大型网站平台优化方案

1. 平台优化方案 大型网站,在面对大量用户访问、高并发请求方面,基本的解决方案集中在这样几个环节:使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器。但是除了这几个方面,还没法根本解决大型网站面临的高负载和高并发问题。 上面提供的几个解决思路在一定程度上也意味着更大的投入,并且这样的解决思路具备瓶颈,没有很好的扩展性,下面我从低成本、高性能和高扩张性的角度来说说我的一些经验。 1.1. HTML静态化 由于效率最高、消耗最小的就是纯静态化的html页面,所以尽可能使网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,无法全部手动去挨个实现,于是出现了常见的信息发布系统CMS,信息发布系统可以实现最简单的信息录入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。 除了门户和信息发布类型的网站,对于交互性要求很高的社区类型网站来说,尽可能的静态化也是提高性能的必要手段,将社区内的帖子、文章进行实时的静态化,有更新的时候再重新静态化也是大量使用的策略,如Mop的大杂烩就是使用了这样的策略,网易社区等也是如此。 同时,html静态化也是某些缓存策略使用的手段,对于系统中频繁使用数据库查询但是内容更新很小的应用,可以考虑使用html静态化来实现,比如论坛中论坛的公用设置信息,这些信息目前的主流论坛都可以进行后台管理并且存储在数据库中,这些信息其实大量被前台程序调用,但是更新频率很小,可以考虑将这部分内容进行后台更新的时候进行静态化,这样避免了大量的数据库访问请求。

22提供性能优化方案---Google-Code

Linux系统性能测试与分析 1、前言 通过对系统中和性能相关的各个环节的介绍,使大家知道出现性能问题时可以从那些方面入手去查,而分析典型应用对系统资源使用的特点,让大家对应用和系统资源的依赖有了更直观的认识。大多数的硬件性能问题主要和CPU、磁盘、内存相关,还没有遇到因为开发语言的运行效率对整个应用的性能造成影响,而应用程序设计的缺陷和数据库查询的滥用反倒是最最常见的性能问题。需要注意的是,大多数情况下,虽然性能瓶颈的起因是程序性能差或者是内存不足或者是磁盘瓶颈等各种原因,但最终表现出的结果就是CPU耗尽,系统负载极高,响应迟缓,甚至暂时失去响应,因此我们观察服务器状况时,最先看的就是系统负载和CPU空闲度。当你阅读完了这遍文档以后就会有一个对系统分析的思路。 2、性能分析的目的 2.1找出系统性能瓶颈 1.硬件瓶颈 2.软件瓶颈 2.2提供性能优化方案 1.升级硬件 2.改进系统结构 达到合理的硬件和软件配置,使系统资源使用达到平衡。但遗憾的是解决一个性能瓶颈,往往又会出现另外的瓶颈或者其他问题,所以性能优化更加切实的目标是做到在一定范围内使系统的各项资源使用趋向合理和保持一定的平衡。系统运行良好的时候恰恰也是各项资源达到了一个平衡体,任何一项资源的过渡使用都会造成平衡体系破坏,从而造成系统负载极高或者响应迟缓。比如CPU过渡使用会造成大量进程等待 CPU资源,系统响应变慢,等待会造成进程数增加,进程增加又会造成内存使用增加,内存耗尽又会造成虚拟内存使用,使用虚拟内存又会造成磁盘IO增加和CPU开销增加(用于进程切换、缺页处理的CPU开销) 3、性能相关的各个环节 3.1 硬件资源 3.1.1、CPU ⒈ 是否使用SMP。 ⒉ 单颗CPU的性能对依赖CPU的某些应用的影响很严重,比如数据库的查询处理。 3.1.2、内存

Linux 性能调优的几种方法

Linux 性能调优的几种方法 按照传统,Linux不同的发行版本和不同的内核对各项参数及设置均做了改动,从而使得系统能够获得更好的性能。下边将分四部分介绍在Red Hat Enterprise Linux AS和SUSE LINUX Enterprise Server系统下,如何用以下几种技巧进行性能的优化: 1、Disabling daemons (关闭daemons) 2、Shutting down the GUI (关闭GUI) 3、Changing kernel parameters (改变内核参数) 4、Kernel parameters (内核参数) 5、Tuning the processor subsystem(处理器子系统调优) 6、Tuning the memory subsystem (内存子系统调优) 7、Tuning the file system(文件系统子系统调优) 8、Tuning the network subsystem(网络子系统调优) 1 关闭daemons 有些运行在服务器中的daemons (后台服务),并不是完全必要的。关闭这些daemons可释放更多的内存、减少启动时间并减少CPU处理的进程数。减少daemons数量的同时也增强了服务器的安全性。缺省情况下,多数服务器都可以安全地停掉几个daemons。 Table 10-1列出了Red Hat Enterprise Linux AS下的可调整进程. Table 10-2列出了SUSE LINUX Enterprise Server下的可调整进程

注意:关闭xfs daemon将导致不能启动X,因此只有在不需要启动GUI图形的时候才可以关闭xfs daemon。使用startx命令前,开启xfs daemon,恢复正常启动X。

服务器性能调优

服务器性能优化 1、Apache+tomcat集群方式 服务器基本设置:1个apache集成二个tomcat。 安装apache http server省略,访问地址为http://127.0.0.1:8081 安装tomcat,解压apache-tomcat-6.0.20.zip,测试时我是把两个tomcat分开放在不同的虚拟机,其中一个是和apache同一台虚拟机。 两个tomcat分别命名为worker2和worker3 先说tomcat.worker2的配置: server.xml 第一步:配置http监听端口,这里端口设为8079,该步骤非必要,只要不冲突就行了。 第二步:配置AJP监听端口,这里端口设为8077,该步骤非必要,只要不冲突就行了。 第三步:配置服务器标识,这里标识名配置为:worker2,添加jvmRoute="worker2",该步骤必须。 在Engine节点启用集群配置,只需去掉Cluster节点前的注释就行了,该步骤必须,配置了集群才能实现Session复制,如果只有一个集群,只按我下边的配置就行了,如果多个集群,则不能按此配置,tomcat服务器内的帮助文档/docs/cluster-howto.html,/docs/config/cluster.html有介绍,需要的可以参考下。 要实现session复制,还需要在context.xml添加属性distributable="true",如下: 如果不想在context.xml中添加distributable="true",还有另一方法是在应用程序的web.xml中添加,不过这方法我没有测试。 配置完成,访问地址为:http://127.0.0.1:8079 另一个tomcat.worker3的配置 server.xml

相关文档
相关文档 最新文档