文档库 最新最全的文档下载
当前位置:文档库 › 热电厂循环水余热利用方案

热电厂循环水余热利用方案

热电厂循环水余热利用方案
热电厂循环水余热利用方案

******技术发展有限公司

******热电厂循环水利用方案

(溴化锂吸收式热泵)

联系人:

手机:

联系电话:

传真:

信箱:

2013年8月18日

目录

1 项目简介 (2)

1.1 吸收式热泵方案 (2)

1.2 吸收式热泵供暖工艺流程设计 (2)

1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (3)

1.4 节能运行计算 (4)

1.5 初投资与回报期计算 (4)

2 热泵机组简介 (5)

2.1 吸收式热泵供暖机组 (5)

2.2 溴化锂吸收式热泵采暖技术特点 (6)

2.3 标志性案例介绍 (6)

1 项目简介

********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。

1.1 吸收式热泵方案

采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。

1.2 吸收式热泵供暖工艺流程设计

使用吸收式热泵加热,供暖系统流程原理图如下:

由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃)

通过溴化锂吸收式热泵产品,利用饱和蒸汽压力为0.49MPa的蒸汽50400kg/h,可将2800 m3/h的循环冷却水,从31.7℃降低到25℃,将2400m3/h采暖55℃回水加热到74.7℃供水。

能源价格:电价:0.7元/kWh。标煤单价:900元/t。通过溴化锂热泵机组(共2套)回收余热总热量为21.82MW,热泵总供热量为54.96MW,热泵总耗蒸汽为50.4t/h。运行时间:152天,每天24h运行。(以下按2台机组运行节能计算)

1)回收的经济效益分析:

2台设备回收余热为21.82MW;运行时间152天;日运行24小时;采暖期平均负荷系数0.645;则总的热回收为21.82MW×152天×24h/天x0.645=51341.6MWh;

折合标煤热值51341.6x3.6/7000/4.187=6306.2t。回收的经济效益= 6306.2t×900元/t=567.6万元

2)吸收式热泵系统耗电费用计算:

2台吸收式热泵的耗电功率为:30×2千瓦。所以年运行耗电功率为:60×152天×24小时/天x0.645=141177.6kWh。设备运行费用= 141177.6kWh×0.7元/ kWh= 98824元。

注:在此使用简捷的计算方式,直接从回收的热量进行计算,在运行中消耗的饱和蒸汽的焓值已全部转化成热量.未计入蒸汽价格及运行费用。

1.5 初投资与回报期计算

2 热泵机组简介

2.1吸收式热泵供暖机组

1)可利用的废热:标准可以使用温度在20℃~70℃的废热水、单组分或多组分气体或液体,可做非标。

2)可提供的热媒:提供采暖或工艺用热水,不超过100℃的热媒。

3)驱动热源:0.8MPa以下蒸汽。

4)制热COP在1.6~1.8左右:就是利用1MW的驱动热源可以得到1.8MW左右的生产生活需要的热量。

5)废热水进出水温度越高获得的热媒温度越高,效率越高。

6)吸收式热泵属于真空设备,无爆炸危险;内部填充溴化锂溶液近似食盐水,对环境及人体无污染。

2.2溴化锂吸收式热泵采暖技术特点

1) 能源利用效率高,电厂利用溴化锂吸收式热泵回收冷凝热,提供电能的同时提供采暖热能,能源整体利用效率大大提升。

2) 系统流程简单,改造施工方便,不影响原有发电系统。

3) 节约大量的燃煤,煤属于不可再生资源,重要的化工原料和能源,造福后代。

4) 运行费用低,投资回收期短,长期受益。

5) 环保效果显著,减少了冷凝热对环境的影响,减少大量的二氧化碳等排放。

6)溴化锂吸收式热泵技术成熟。

2.3 标志性案例介绍

1)

用户介绍:沈阳某供热有限公司是建立在于新城23平方公里地域内唯一一家供热企业。按沈阳市供热总体规划,公司最终将形成1500万平方米的供热能力。

节能环保是公司的核心经营特点,充分利用中水的热能资源,是国内领先

的污水源热泵技术、集供热、供冷为一体的环保型热源企业。

废热来源:污水处理厂处理后污水(15℃-10℃)

热水用途:供暖(40℃-50℃)

节能分析:采用本形式供热,污水源的供热量占总供热量的40%,与通常的热水锅炉方案相比较,年节约标煤7000吨,年减少二氧化硫排放量11吨,年减少

烟尘排放量6吨,年减少锅炉灰渣排放量2200吨,社会效益非常显著。机组选型:单机制热量:1475万大卡/小时。台数:1台

2)

用户介绍:南通某纺织股份有限公司是一家集纺纱、染色、织造、整理、印染、制衣于一体的大型纺织企业。产品销往全国20多个省市,出口日本、美国、

英国、意大利等36个国家和地区,公司生产色织布占国内比重为2.04%,

占全国出口量5.4%. 拥有8家控股子公司,包括发热电有限公司。

废热来源:空压机循环冷却水。

热水用途:除氧器及低温加热器补水。

节能分析:用蒸汽加热除氧器补水COP值小于1,设定为0.95;而热泵的COP值为

1.7,节能性高达40%以上。并且由于热量从空压机冷却水中提取,也避免

了这部分水的蒸发损失。此方案的节能性、经济效益都非常可观。

年节省蒸汽19180t,折合节省标煤近2000t/年。

机组选型:单机制热量:330万大卡/小时。台数:1台

3)

用户介绍:北京某热电厂现装机4x200MW,全部为供热机组,承担北京地区3200万平方米的供热任务。据2009-2010年供热季节运行数据显示,四台机组整

个采暖季平均抽气量已接近额定抽汽量。在严寒期已达到甚至超过额定抽

汽量,说明电厂供热能力已经受限,现在由于热负荷增加,必须增加新热

源。

废热来源:凝汽器循环冷却水(31.5℃- 27℃ )。

热水用途:供暖。

节能分析:实施循环水余热利用,从循环水中提取了热量83MW,解决了电厂供热能力不足问题,由于回收凝气余热用于供热,整个采暖季节约标煤约3.4万

吨。减少SO2排放285.6吨/年、减少NOx排放248.6吨/年、减少CO2排

放8.8万吨/年、灰渣排放8227吨/年。此外由于吸收式热泵机组采用闭式

循环冷却水直接冷却汽机凝汽,采暖季可减少冷却水塔冷却水损失约21.6

万吨。

机组选型:单机制热量:20MW。台数:8台

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

热电厂循环水余热利用项目可行性实施报告

某某县热电厂 循环水余热利用项目可行性研究报告 2000年2月1日

目录 概述 (2) 1.企业的描述 (4) 2.工艺现状和相关的能耗情况 (4) 3.建议的项目 (5) 4.期望的能耗 (7) 5.投资估算 (8) 6.预计运行费用 (8) 7.预计节能效益 (9) 8.节能效果验证 (9) 9.存在的设备供货商 (10) 10.存在的设备安装承包商 (10) 11.技术经济分析 12.主要设备材料清单

1、概述 1.1县城及企业概况 某某县隶属省日照市,位于半岛的西南部,东接胶南,西连莒县,南与日照接壤,北与诸城相邻. 某某县热电厂位于城区的西北部,厂区东靠解放路,西临沿河路. 该厂始建于一九六八年, 占地面积5.6万平方米,,最大供热能力90t/h.职工450人,其中各类专业技术人员60人。原为小型火力发电厂.自一九八三年后改建为热电厂.厂在一九八五年建成规模为2×20t/h锅炉+2×1500kw背压式汽轮发电机组.为了适应外部热负荷逐渐增加的要求,该厂在九三年又进行了扩建,扩建机组的容量为2×35t/h锅炉+1×C6-3.43/0.981抽汽凝汽式汽轮发电机组,并于一九九六年建成投产.某某县热电厂通过不断地发展,逐渐成为某某县基础性行业和县城的唯一的热源厂,承担着城区30余家工业用户用汽和部分居民的采暖用汽供应。该厂坚持国家的产业政策,以让“政府放心,用户满意“为目标,积极发挥热电联产,集中供热的优势,努力改善居民的生活条件,增加能源供应,减轻环境污染,取得了显著的经济效益和社会效益,1998年全厂实现销售收入4067万元,利税558万元,两个文明建设取得突出成绩,连续三年被县委县政府先进企业和十佳明星企业。 1996-1998年生产经营情况表见表-1 表-1 2、存在问题

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: 朱明峰 审核: 批准: 中海油节能环保服务有限公司 2013年9月19日

目录 一概述 (1) 1.1项目背景 (1) 1.2余热资源现状 (1) 1.3项目实施条件 (1) 1.4遵循的标准及规范 (2) 二余热回收方案设计 (3) 2.1现有补水加热流程图 (3) 2.2改造方案 (3) 2.3改造主要工作量 (5) 2.4技改效果 (6) 2.5改造投资及静态回收期 (6) 三节能环保效益分析 (7) 3.1节能效益 (7) 3.2环保效益 (7) 四结论与建议 (7)

一概述 1.1项目背景 **热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。 充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。 1.2余热资源现状 **热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。 循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW 1.3项目实施条件 蒸汽压力:0.5-0.8MPa(饱和蒸汽) 除盐水补水平均温度:25℃ 预热除盐水温度:90℃(夏)/80℃(冬) 除盐水量:100t/h 循环水温度(冬季):30/20℃ 循环水温度(夏季):40/30℃

基于热泵技术的热电厂循环水余热回收方案研究

基于热泵技术的热电厂循环水余热回收方案研究 发表时间:2018-10-01T19:15:42.717Z 来源:《基层建设》2018年第26期作者:陈永山 [导读] 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。 身份证号码:37011219810311XXXX 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。而如果使用循环水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。由此可见,将循环水余热回收技术加以利用是非常重要的。 关键词:热泵技术;热电厂循环水余热;回收方案 引言 随着社会的不断发展,全球化石能源的储量随之急剧减少。伴随着化石燃料消耗量的急剧增加,环境问题又日益凸显出来。全球气候变暖、雾霆、大气层破坏等诸多环境问题对人类社会的长久稳定发展造成极大的影响。在我国的能源消耗构成中,电力企业占国家化石能源的消耗量的比重相对较大,近些年我国政府也出台针对电力企业节能减排的政策:重点推广能量梯级利用、低温余热发电和热泵机组供暖等节能减排技术。 1热泵的分类及基本工作原理 1.1热泵的基本种类 如图1所示,由热源来源进行种类划分,热泵主要可分为如下几类:①水源热泵。所利用的水源主要包括自然水源和人工排水源。自然水源主要为地下水、河川水及海洋水。人工排水源主要为城市生活污水、工业废水及热电冷却水。②地源热泵。③空气源热泵。具体至当前普遍应用于热电厂的热泵,我们具体又可将其划分为两大类:①压缩式热泵,包括蒸汽驱动压缩式热泵和电驱动压缩式热泵。②吸收式热泵。 图1热泵的基本种类结构示意 1.2热泵技术的基本工作原理 从本质上而言,热泵显然为一种热量提升装置。热泵主要从周围环境中吸收热量,并将其有效传递给被加热对象,也即是温度较高的物体。热泵的工作原理和制冷机类似。一般情况下,热泵主要有如下几个重要部分构成:①压缩机;②蒸发器;③冷凝器;④膨胀节流阀等。具体如图2所示。 图2热泵技术的基本工作原理示意 (1)压缩机为热泵机组的心脏,压缩机起到的作用主要为:压缩并输送循环工质,将其由低温、低压转变为高温、高压。蒸发器为热泵机组的输出冷量设备。(2)蒸发器可使经节流阀流入的制冷剂液体蒸发,进而吸收被冷却物体的热量,最终切实实现制冷的目的。(3)冷凝器为热泵机组输出热量的设备。压缩机消耗功转化的热量以及蒸发器中吸收的热量传输至冷凝器中之后,会被冷却介质带走,从而实现制热的基本目的。(4)热泵机组的膨胀阀亦或是节流阀可以对循环工质起到较好的节流降压作用,在此基础上还可起到对进入蒸发器的循环工质流量进行调节的重要作用。研究表明,采用热泵技术能够节约大量的电能。 2方案确定 在选择循环水余热回收方案时,首先要对各个方案的经济性进行分析并以此为方案选择依据,当热泵机组确定时,即使余热量无限大,但是热泵机组增加的热量不是无限增大的,热泵机组所能回收的热量存在一个极限值,也就是理论最大回收热量。因此,本文将针对吸收式热泵和压缩式热泵,以电厂实际条件为背景,分析其所能提供的最大供热量,来选择合适的热泵机组。 2.1应用吸收式热泵 采用吸收式热泵时,需要耗费部分抽汽作为热泵的驱动热源,吸收循环水的余热并将吸收的热量输送给一次网回水,使一次网回水温度升高。吸收式热泵的供热量为:

电厂循环水余热回收供暖节能分析与改造技术

电厂循环水余热回收供暖节能分析与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术 凝汽式汽轮机改造为低真空运行供热后,凝汽器成为热水供热系统的基本加热器,原来的循环冷却水变成了供暖热媒,在热网系统中进行闭式循环,可有效利用汽轮机凝汽所释放

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: _________朱明峰____________ 审核: ___________________________ 批准: ___________________________ 中海油节能环保服务有限公司 2013年9月19日

一概述................................................................. 1.. 1.1项目背景...................................................... 1.. 1.2余热资源现状.................................................. 1. 1.3项目实施条件................................................... 1. 1.4遵循的标准及规范............................................... 2. 二余热回收方案设计.................................................... 2. 2.1现有补水加热流程图............................................ 2. 2.2改造方案....................................................... 2. 2.3改造主要工作量................................................. 4. 2.4技改效果....................................................... 5. 2.5改造投资及静态回收期.......................................... 5. 三节能环保效益分析..................................................... 5. 3.1节能效益....................................................... 5. 3.2环保效益....................................................... 6. 四结论与建议......................................................... 6..

浅谈热电厂余热回收利用

浅谈热电厂余热回收利用 发表时间:2014-12-15T09:51:33.980Z 来源:《工程管理前沿》2014年第12期供稿作者:杜庆军 [导读] 火电厂余热的综合利用技术的推广和应用,不仅可以获得良好的经济和环境效益,同时能够提高火电厂的节能减排能力 杜庆军 东南大学建筑设计研究院有限公司江苏南京 210096 摘要:面对能源和水资源紧缺、环境日益恶化以及因原煤价格上涨而引起的发电亏损现状,作为能耗和排放大户的火力发电厂,如何合理地利用烟气余热,成为火电厂提高机组效率、减少煤耗而达到节能降耗的主要举措之一。基于此,文章介绍了通过加大对锅炉连排水和烟气余热进行综合利用的节能技术,并通过应用实例对该节能技术的经济、环保效益进行了分析。 关键词:火电厂;烟气;余热;综合利用;节能 1 火电厂低温余热利用技术 1.1 汽水系统余热利用技术 目前在锅炉汽水系统的余热回收利用上主要有两个方面:一是将连排水直接引入到加热器中用于加热锅炉给水,这种方式为常规的余热利用方式,利用效率较低;二是利用火电厂锅炉连排水中剩余的高品位热能进行做功,再驱动发电机生产电能,输出的水汽混合物再送至热水站,用于生产供居民使用的热水或供暖,这种方式能够使余热得到充分回收利用。这里的发电装置是利用连排水余热加热螺杆膨胀动力机,再通过联轴器带动发电机发电的热能利用系统。螺杆膨胀动力机构造及工作原理如图1所示: 做功完后排出的高温水汽混合物首先进入机内阴阳螺杆齿槽A,使螺杆发生转动,随着螺杆的转动,齿槽A逐渐旋转至B、C、D位置,在此过程中由螺杆封闭的容积逐渐增大,热水得以降压、降温而膨胀做功,最后从后端齿槽E排出,而做功产生的旋转动力由阳螺杆通过联轴器输出给发电机,带动发电机发电。 1.2 锅炉排烟系统的余热利用技术 我国正在运行的火电厂中,锅炉排烟温度一般都在125℃~150℃之间,排烟温度偏高而导致的热能损失已经成为火电厂面临的困境之一。而目前对这部分余热的回收大多采用的是在排烟系统中安装烟气冷却器,通过空气或水等导热介质将余热传输至锅炉给水系统或进气系统,对助燃空气、冷凝水进行加热而达到节能的目的。但是由于烟气冷却之后会使烟气中的部分SO2等酸性腐蚀性气体结露而对管壁等造成腐蚀,因而在实际应用中仍有很多问题需要解决。经过该冷却器的高温烟气和其内部翅片管束中的冷水进行热置换,使水得到加热。该冷却器主要分为高低温设置于除尘器的前后,具体布置如图2所示。这种将冷却器按照高、低温段分开布置,并将高温段布置在除尘器之前,将低温段布置在除尘器之后的方式,能够通过布置于除尘器之前的高温段冷却器将烟气温度降至120℃左右,从而提高其后面除尘器的效率,使其除尘效果更好、能耗更低,并且对使用布袋式除尘器的装置而言,由于进入的烟气温度降低可以延长其使用寿命;而位于除尘器之后的冷却器则可以对烟气进行深度冷却,并将余热充分利用。 1.锅炉; 2.暖风机; 3.空气预热器; 4.烟气冷却器; 5.静电除尘器; 6.烟气冷却器; 7.脱硫塔; 8.耐酸泵; 9.湿烟囱 图2 分高低温布置在除尘器前后的冷却器示意图 采用这种冷却器布置策略的余热回收装置主要使用于以下三种情况:一是除尘器采用布袋式除尘器而对烟气温度较敏感的新建工程中;二是除尘器进气温度在130℃~150℃之间或更高,而且增压风机有400Pa上下裕量的改造工程中;三是烟气温度在130℃上下,在除尘器后方安装高低温一体型冷却器空间不够,且增压风机有400Pa上下裕量的改造工程中。 2 余热利用技术应用实例分析 2.1 汽水系统的余热利用实例 以某火电厂2×200MW机组为例,其额定蒸发量为670t/h,2台锅炉的设计连排流量为12t/h,实际运行流量为8~10t/h。对其采用螺杆膨胀动力发电装置改造之后,初期运行一台锅炉,并利用汽包排污阀来控制连排流量,使其达到装置设计要求,这样发电装置发电功率达到200kW。通过运行测试确定该装置的投入未对汽轮机发电机组造成不良影响,且机组运行安全可靠,实现了无人值守。应用效果得到验证后对另一台锅炉开展改造,投运后2台锅炉正常运行时,发电装置发电功率可达300kW的满负荷额定容量运行。 应用效果分析:在2台锅炉正常运行情况下按发电功率为300kW计算,刨去发电装置自损耗1.1kW,按锅炉全年运行6500h,上网电价按0.35元/(kW·h)的情况下,采用该系统可以增加发电量(300-1.1)×6500=194.285万度,可获收益68.0万元,而且同时还向社会提供了大量的热水。这样按机组的发电煤耗率为3209/(kW·h)计算,年可节省标煤621.71t。若按每吨煤燃烧要排放CO21.98t计算,每年可以

热电余热回收综合利用项目环评报告表

建设项目环境影响报告表 (试行) 项目名称:XXXX分公司余热回收综合利用项目 建设单位(盖章):唐山****热电有限责任公司 编制日期:2013年9月4日 国家环境保护总局制

《建设项目环境影响报告表》编制说明 《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。 1、项目名称――指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字)。 2、建设地点――指项目所在地详细地址,公路、铁路应填写起止地点。 3、行业类别――按国标填写 4、总投资――指项目投资总额。 5、主要环境保护目标――指项目区周围一定范围内集中居民住宅区、学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、性质、规模和距厂界距离等。 6、结论与建议――给出本项目清洁生产、达标排放和总量控制的分析结论确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。 7、预审意见――由行业主管部门填写答复意见,无主管部门项目,可不填。 8、审批意见――由负责审批该项目的环境保护行政主管部门批复。

建设项目基本情况 项目名称XXXX分公司余热回收综合利用项目 建设单位唐山****热电有限责任公司 法人代表联系人 通信地址河北省唐山市**冶区林西林西道 联系电话传真邮政编码建设地点河北省唐山市**冶区林西林西道 立项审批部门批准文号 建设性质技改√行业类别 及代码 4430热力生产和供应 占地面积(平方米) 绿化面积(平方米) 总投资(万元)2126 其中:环保投 资(万元) 2 环保投资占 总投资比例 0.1% 评价经费 (万元) 预期投产日期2013年12月 工程内容及规模: 1工程概况 项目背景:在国家大力推行节能减排能源政策的大背景下,火电厂丰富的余热资源正引起人们越来越多的关注。火力发电机组的绝大部分能量损失是由以下两部分构成的:一部分是锅炉烟气排放带走的热量,另一部分就是凝汽器循环水带走的热量。由于凝汽器循环水的温度往往只比环境温度高10℃左右,品质不高,故人们对这部分能量的利用不够重视,往往就直接排放掉了。这样不但造成了能量的浪费,还给环境带来了热污染。若以循环水为热源,采用水源热泵技术进行集中供热,就能很好地解决这个问题。 目前,XXXX分公司有三台25MW的抽凝式机组,抽汽供热已经基本达到了机组的极限。XXXX分公司热源供热能力为190MW,供热面积达350万平米,供热能力已经饱和,但所在区域供热面积却逐年增加,现有供热能力已不能满足正常需求。 本项目采用以消耗一部分温度较高的高位热能为代价,经过余热回收机组从低温热源吸取热量后再传热给采暖系统循环水,提高了循环水的温度再供给用户的供热技术。凝汽器冷却循环水进、出冷却塔的温度约为30/20℃,三台共有水量9900m3/h,水质干净,可以直接进入的余热回收机组,是非常好的余热资源。余热若按照温差8℃提取,可回收的余热量为92MW,若按照采暖指标60W/平米来计算,该余热全部开发出来可供暖150万平米,可为公司增加经济收益。因此,本项目的建设是可行的, 2

北京2018年投7亿建热电厂余热回收项目

北京投7亿建热电厂余热回收项目!每年可省燃气1.8亿m32018-07-12 21:10 近日,从北京市发改委获悉,北京将建一批余热回收项目,建成后可增加供热面积超过2000万平方米,每年可节约燃气约1.8亿立方米,相当于135万户普通居民生活全年用量。 项目将分4年建成 近日,北京市发改委会同北京市城管委制定出台了《北京市中心热网热源余热利用工作方案(2018-2021年)》。按照安排,北京将分4年时间建成一批余热回收项目。 据悉,今年和明年将要进行余热利用改造的热电厂包括太阳宫燃气热电厂、华能二期、华能三期、京能草桥、大唐高井和郑常庄燃气热电厂等。 据介绍,北京市政府将对这批余热回收项目加快审批流程。方案重点任务中的余热利用项目,将列入各区当年重点推进项目,按照审批权限由项目所在区加快办理各项前期手续。 同时,对于这些余热回收项目,北京市政府加大了资金支持。其中,市政府固定资产投资对热源和一次管网给予30%的资金补助,同步配套建设的水蓄热项目享受同比例的资金支持。预计项目全部建成后,政府固定资产投资将累计支持约7亿元。 烟气余热回收为主要利用形式 据媒体报道,热电厂的余热利用主要有两种形式,一个是烟气余热利用,另一个是循环水余热利用。 “结合北京市热电厂实际情况,烟气余热资源在供暖季稳定性相对较好,因此北京地区的热电厂就将采用烟气余热回收为余热利用的主要形式。”北京市发改委相关负责人说。 值得一提的是,这也是我国首次在燃气电厂大规模建设烟气余热热泵系统。 那么这些“余热”价格如何确定呢?北京市发改委相关负责人介绍,北京实施的余热利用项目供热价格参照北京现行价格政策执行,其中燃气热电厂余热利用项目参照北京燃气热电厂热力出厂价格相关政策执行。

电厂循环水余热回收供暖节能分析与改造技术知识讲解

电厂循环水余热回收供暖节能分析 与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术

电厂循环冷却水废热利用

龙源期刊网 https://www.wendangku.net/doc/de7623489.html, 电厂循环冷却水废热利用 作者:翟晓敏邵爱华顾海军侯薇 来源:《中国科技纵横》2014年第05期 【摘要】介绍了在抚顺热电厂方案设计阶段,为了满足该工程在冬季采暖期大面积的热负荷需求,拟采用循环冷却水作为低位热源、利用热泵技术升温后供热的一种城市集中供热的新形式。通过系统的拟定、详细的计算、理论数据的分析,对采用该技术的经济性以及将会给电厂带来的节能效益和环保效益与传统方式的供热进行比较,从而得出利用循环冷却水废热供热的技术在本工程上的应用优势。 【关键词】循环水废热利用采暖供热节能环保 自改革开放以来,中国经济迅猛发展,但与此同时我们也不得不面对这样一个现实,当下中国经济成果的取得一定程度上是以牺牲不可再生资源及环境的污染为代价换来的,由此产生了经济发展的可持续性问题。“节能减排”政策方针正是基于我国目前所面临的经济可持续性发展因素、环境因素、国际政治因素而制定,是一项利国利民的政策。 目前我国大部分热电厂普遍采用大容量的抽凝式汽轮发电机组,即使在冬季最大供热工况下,也会有占电厂总能耗近五分之一的热量由循环水(一般通过冷却塔)排放到环境。如果利用热泵节能技术将这些余热加以利用,回收汽轮机的排汽冷凝热,用以给城市采暖水加热,提供生活区的供暖。从而实现废热利用,达到节能减排的目标。 1 工程概况 抚顺热电厂是在抚顺市建设的热电联产项目。本工程总装机容量拟为2×1025t/h循环流化床锅炉+2×300MW抽凝发电机组。 本工程为抚顺市西部地区集中采暖提供热源。 根据抚顺市建筑围护结构的特点及抚顺市气象条件,参照《城市热力管网设计规范》推荐的各类建筑物采暖热指标及《抚顺市城市总体规划修编(2010~2020)》确定采暖热指标: 现有建筑采暖热指标:56W/m2;新增建筑采暖热指标:45W/m2。 本期工程采暖面积为:1800×104m2。现有建筑面积1150×104m2。采暖热指标: 56W/m2,采暖热负荷为:644MW;新增建筑面积650×104m2。采暖热指标:45W/m2。采暖热负荷为:292.5MW,采暖总负荷为:936.5MW。

循环水余热利用收益的算法讨论

循环水余热利用收益的算法讨论 利用热泵吸收电厂循环水中的余热用于冬季采暖,有节能减排的社会效益,但对于电厂自身而言,其获得的收益和其投入相比并不十分理想。就目前可供参考的此方面资料来看,其中对于电厂收益的计算都有或多或少的放大,热泵投运后的效果和预期相去较远。文章仅对热泵在电厂循环水余热利用中,就电厂自身所得收益的算法进行讨论、讨论中不涉及财务及税收问题,仅针对技术性的问题进行讨论。 标签:热泵;循环水余热利用;节能减排;算法 1 常见算法极其缺陷 1.1 按燃料价格计算 当下常见的算法之一,就是按燃料计算收益。持这种观点的人认为:电厂增加热泵后,其供热量就会增加且增加的供热量就是热泵所吸收的热量,电厂所得到的收益,就是热泵所吸收的热量折算燃料的费用,当然也考了热泵投入后所伴随的一些损失。这里的问题在于,对于电厂而言,热泵所吸收的热量并不能简单折算成燃料费用。下面详细解释一下。 为了使问题简化我们做一些假设,第一、热泵投入后不会对电厂产生任何附加损失,无论是汽轮机背压升高产生的损失还是由于管道阻力增加造成的热网循环泵电耗增加,第二,热泵自身不消耗任何形式的能量,其作用仅仅是将循环水中的余热吸收到供热系统中。 有了如上假设之后,可以这样描述热泵投入后的作用:当热泵投入后,就会有一些“白得的”热量进入热网系统,在供热量不变的情况下,供热抽汽就会相应的减少,减少的这部分抽汽当然会返回汽轮机中做功或者说发电。由于电厂发多少电,是由电网决定的,因此我们进一步假定,当供热抽汽被排挤到汽轮机中做功时,还需保证汽轮机组的发电功率不变。为此只有减少主蒸汽的进汽量。显然,减少的主蒸汽,或者说省下来的这部分主蒸汽所发的电,应等于被排挤到汽轮机中的供热抽汽所发的电。增加热泵后,电厂所得的收益就是这部分被剩下来的主蒸汽,确切的说,就是加热这部分主蒸汽所消耗的燃料。由此可见,把热泵吸收的热量直接折算成燃料费用,并以此作为电厂的收益,显然不尽合理。 为了此后叙述方便,把上面这种算法叫做“排挤抽汽法”。显然这种算法更为合理。需要指出的是,当电厂的供热抽汽量达到最大,再也无法增加供热时,这时热泵所吸收的热量可以按燃料费用计算收益,但也只有超出电厂最大供热能力的那部分热量可以如此计算。有关这一点在后面加以详细讨论。 1.2 按热价计算

吸收式热泵循环水余热回收方案在300MW机组的应用

吸收式热泵循环水余热回收方案在300MW机组的应用0引言 随着城市建筑的不断增加,需要集中供热网为更多的建筑物供暖,但是城市的热源严重不足,而新增热源又会带来环境问题,受到各地环保部门严格控制。热电厂循环水余热回收供热,可以实现能源的高效利用和循环利用,符合国家节能减排的大政方针,亦有利于缓解城市采暖供热用能的矛盾。 1系统现状 河北邢台国泰发电公司2×300MW工程10、11号汽轮机为东方汽轮机厂生产的N-300-16.7/537/537-8型亚临界、一次中间再热、单轴双缸双排汽采暖抽汽凝汽式汽轮机。汽机额定供汽量为:400t/h,汽机最大供汽量为:625t/h。 汽轮机厂采暖抽汽压力可在0.245MPa~0.688MPa范围调整,由高温热水网将130C°的高温热水送至各小区热力站。本工程最大供热能力为2875GJ/h,对外供热网循环水量11957t/h,厂区热网供水干管管径为2×DN1200。 循环冷却水带走的余热量主要是汽轮机排入凝汽器的蒸汽释放的凝结热。每台机组循环水系统配有两台流量为17640t/h循环水泵,冬季运行一台,凝汽器循环水进出口温度24/35℃。这就意味着有大量的热量通过循环水冷却水塔直接浪费掉,同时通过冷却水塔的蒸发、风吹损失大量循环水。 2余热回收方案 1)吸收式热泵基本原理(图1) 吸收式热泵以低温低压饱和蒸汽作为驱动力,从低温热源(循环水)中回收低品位余热。将蒸汽本身放热和回收余热同时传递给热网水。 蒸发器:吸热时,由冷剂泵将冷剂喷淋到蒸发器的传热管上,传热管表面的冷剂吸收管内热源水的热量而蒸发,使热源水的温度下降。 图1 吸收器:通过喷淋在吸收器传热管上的吸收溶液,吸收由蒸发器产生的冷剂蒸汽。吸收冷剂时产生的吸收热被管内流动的热水带走,使传热管表面的吸收作用持续进行。吸收冷剂蒸汽后,浓度下降的吸收液(以下称为稀溶液),由溶液泵经溶液热交换器送入发生器。 发生器:由溶液泵从吸收器送来的稀溶液,被供给发生器的蒸汽加热。被加热的稀溶液产生冷剂蒸汽,变成浓度较高的吸收液(以下称为浓溶液),通过溶液热交换器被送到吸收器。 冷凝器:在发生器中产生的冷剂蒸汽,被冷凝器传管内流动的热水冷却,冷凝后变成为冷剂液体。冷剂液返回蒸发器,再次被喷淋到蒸发器的传热管上。 溶液热交换器:由吸收器送往发生器的低温稀溶液,与来自发生器高温浓溶液进行热交换,从而提高热泵的热效率。 蒸汽调节阀:用蒸汽调节阀,通过从控制盘传来的信号,根据热负荷的变化调节供给发生器的蒸汽量。由此将热水出口温度控制在设定的值上。 溶液泵、冷剂泵:为了确保高真空,采用了完全封闭型的屏蔽泵。并利用各自的一部分排出液,润滑轴承及冷却电机。 溴化锂溶液的特性决定了它适用于吸收式热泵系统:溴化锂极易溶于水,是一种高效水蒸气吸收剂,44℃失去1分子结晶水,160℃时成为无水物,熔点550℃,沸点1265℃,在大气中不易变质不易分解,在容器中对钢铁有很强的腐

低温循环水余热回收

在工业生产上普遍采用蒸汽做为载热体。在各种换热设备中蒸汽的有效能利用率都较低,特别是在各种生产部门中,由工业余热产生的大量低品位付产蒸汽(二次蒸汽)也都没有得到充分的回收利用。本文介绍采用热泵一闪蒸一孔板疏水一加热等单元组成的热泵供热系统,利用蒸汽喷射式热泵回收二次蒸汽,使其增压提高能量品位后再供生产使用。利用疏水孔板,代替常规疏水器,漏汽率低,管理十分简单。一、热泵供热原理及节能指标热泵是开发和利用低品位能源的手段,即以输入高品位能量(机械能、电能及热能等),通过热力循环从环境中吸取低于热用户能源品位的… 世界最大余热回收吸收式热泵系统”启运仪式在江苏省江阴市举办[发表时间:2009-11-23 10:31:54 | 文章来源:新浪网] | 浏览:49次 ] 更多相关内容请关注河南节能网。河南节能网是中国唯一一家节能行业专业B2B网站。网站信息齐全,是河南节能服务网下重点网站!网站地址:https://www.wendangku.net/doc/de7623489.html, 11月21日在江苏省江阴市举办“世界最大余热回收吸收式热泵系统”启运仪式。这是双良股份与国l阳新能合作的新开始,标志着双良股份近年来转型节能减排绿色产业又取得重要突破。 打造节能样板 即将发运的吸收式热泵系统,目前是世界上最大的热电余热回收机组,8台30兆瓦机组将为阳泉地区新建居民提供集中供暖。第一批将交付的6台机组,在不增加其他供热设备的前提下,充分利用热电厂的循环冷却水热量,收集余热进行加温,完全满足热电厂新增的144万平方米的供热需求,按照每平米24元成本计算,年采暖效益3500万元,节省冷却水补水量45万吨,节水效益180万元,相当于每年节省蒸气42万吨,节约5万吨标准煤,减少二氧化碳排放13万吨,减少二氧化硫及碳氧化物排放2200吨。 据了解,这是双良股份迄今最大的一笔余热利用设备订单,设备总价近5000万元。不过,在公司董事长缪志强看来,其意义更在于为双良股份开辟出广阔的市场空间和新的利润增长点。专家强调,在全国电力行业中,绝大多数企业都有专门供热的需求,存在低温热水

电厂循环水余热利用可行性研究报告

电厂循环水余热利用可行性研究报告

————————————————————————————————作者:————————————————————————————————日期:

电厂循环水余热利用建议书 编制: 朱明峰 审核: 批准: 中海油节能环保服务有限公司 2013年9月19日

目录 一概述 (1) 1.1项目背景 1 1.2余热资源现状 1 1.3项目实施条件 1 1.4遵循的标准及规范 2 二余热回收方案设计 (2) 2.1现有补水加热流程图 2 2.2改造方案 2 2.3改造主要工作量 4 2.4技改效果 5 2.5改造投资及静态回收期 5 三节能环保效益分析 (5) 3.1节能效益 5 3.2环保效益 6 四结论与建议 (6)

一概述 1.1项目背景 **热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。 充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。 1.2余热资源现状 **热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。 循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW 1.3项目实施条件 蒸汽压力:0.5-0.8MPa(饱和蒸汽) 除盐水补水平均温度:25℃ 预热除盐水温度:90℃(夏)/80℃(冬) 除盐水量:100t/h 循环水温度(冬季):30/20℃ 循环水温度(夏季):40/30℃ 循环水量:15000t/h 补水时间:该厂全年向外供应蒸汽,外供蒸汽量较为稳定,因蒸汽回收量较少,锅炉需全年补充除盐水,锅炉检修无详细计划,坏了再修,故余热回收时间暂定为250天。

500kW发电机组余热利用计算

500KW燃气发电机组 烟气余热利用数据计算及经济效益分析 一、余热利用数据计算 1、烟气余热计算 燃气在空气中完全燃烧公式: 燃气在空气中不完全燃烧公式: 国产的500kW瓦斯气发电机组正常运转时,发电功率约为400kW、排烟温度为520℃左右。 如果采用该系统产生洗澡热水,设定烟气余热回收装置的排出的烟气温度为160℃,瓦斯气完全燃烧时瓦斯气和空气的体积比,根据各地的瓦斯成分有所不同,为使燃料充分燃烧,一般燃气与空气的混合比例为理论值的1.4倍左右。无论其混合比是多少,经测量其每小时产生的烟气量一般约为2250 m3/h左右。 平均烟气比重按1.25kg/m3计算, 则每小时排出烟气总重:2250×1.25=2812.5kg 排烟的比热容按烟道气体计算 (烟道气体的成分 CO 13% H2O 11% N2 76%,在100℃~600℃的平均定压比热容为0.27kcal/kg·℃) 数据列表 定压比热容(kcal/kg.℃)烟道气体空气 100℃0.255 0.241 200℃0.262 0.245 300℃0.268 0.250 400℃0.275 0.255 500℃0.283 0.261 600℃0.290 0.266 每台发电机组可利用排烟余热为: 2台发电机组可利用排烟余热总量为:

27.34×2 =54.68万kcal/h(~635kW) 2、缸套高温水余热计算 发动机正常运转过程中,必需要求其缸套温度保持在合理温度之内,高温水的热量如果不利用,则需要加冷却塔进行冷却。如果我们增加1台板式水-水换热器,将高温水热量加以利用,则可以减少能源浪费,使能源利用达到最大化,根据发动机厂家提供的数据,其高温水热量约为: 300KW × 0.75 =225 Kw (19.4万kcal/h) 2台发电机组可利用高温缸套水余热总量为: 19.4×2 =38.8万kcal/h(~450kW) 3、烟气和缸套高温水总余热计算 通过上面计算,可以看出2台发电机组可以利用的烟气和缸套高温水总余热热量为: 54.68 + 38.8 = 93.48万kcal/h(~1086kW) 二、经济效益分析 如果管线和散热损失按5%计算,2台燃气发电机组的烟气和高温缸套水余热产生的热量88.8万kcal/h;燃煤锅炉的热效率按照80%,煤的热值按照5000kcal/kg 计算,则回收的热量相当于每小时节省燃煤: 88.8×10000÷5000÷0.8 = 222 kg。 每天按照24小时,则每天节省的燃煤量: 222×24 = 5328 kg 每吨煤按照400元计算,则每天节省的费用: 400×5.328 = 2131元 每月按照30天,每年按照运行12个月计算,则每年节省的费用为: 2131×30×12 = 76.7 万元 三、热量平衡计算分析

电厂余热利用

用于采暖供热的热源; 水源热泵系统的构建则是通过对水源热泵的利用来实现对电厂循环水余热的回收,进而再实现利用;而水源热泵本身则是将低温水作为热源,进而实现对建筑物的供热与供冷,实际运行的过程中,则是以部分电能与机械能的消耗作为补偿,进而以热力循环系统将低温水进行回收再利用,这就为实现节能环保提供了新的技术途径。这一装置在实际应用的过程中,则更适合应用于同时需要供热与供冷的建筑中。 热、电、冷联产分布式能源技术,即将热、电、冷纳入同一个生产系统, 通过对能源的梯级利用, 提高能源的综合利用效率; 而将煤、燃气等一次能源用于发电,将发电后的余热用于采暖或制冷, 将更低品位的能源用于供应生活热水, 就是热、电、冷联产。这样既利用了能的数量, 也利用了能的质量, 是符合总能系统原则的。 热电联产是指发电厂既生产电能,又利用汽轮发电机产生的蒸汽对用户供热的生产方式,是同时生产电能和热能的工艺过程,比分别生产电和热能要节约很多燃料。 冬季电厂余热用于北方地区农业生产 由水源热泵提高温度后的循环水为农业日光大棚供热。而目前,由于在冬季北方日光大棚的农业生产效益受到环境气候条件的限制,其生产效率比较低,影晌了市场的农产品供应。通过这种方式,既能减少对供热系统的投资,又可以减少供热系统的热量损失。 在我国的华北、东北、西北地区.农业生产无霜期短,每年从lO月份到第二年的E月份不宜进行种植生产,时间长达半年之久。为了延长生产时问,人们建造了日光温室大棚进行种植、养殖。日光温室大棚种植、养殖给人们的生活带来了极大的变化。但是大棚在北方高寒地区受气温影响很大,棚内温度低,存在温差过大,生产并不尽如人意,特别在寒冷冬季.大棚里就得生火加温,由于热源不稳定,常造成植物生长期长、产量低、品质差,甚至出现农作物被冻死的现象由此造成了北方地区冬季的蔬菜、水果等农业产品价格较高.影响人们生活水平的提高。

热电厂余热利用技术综述及工程实例

热电厂余热利用技术综述及工程实例 发表时间:2019-01-17T15:22:53.233Z 来源:《防护工程》2018年第31期作者:冯海岭 [导读] 我国目前大多数电厂发电机组的凝汽余热尚未得到充分利用,而是通过冷却系统冷却后排放到周围环境中。 摘要:对汽轮机低真空运行供热技术、凝汽抽汽背压式机组供热技术、热泵回收余热技术和基于吸收式循环的热电联产集中供热技术4种技术进行分析。以古交兴能电厂至太原市区供热工程为例,阐明工程应用的主要技术措施(汽轮机凝汽余热利用、大高差和大温差供热、多级中继泵联动、特长供热隧道、超长距离输送、高压板式换热器阵列)。 关键词:热电厂;余热利用;余热回收 我国目前大多数电厂发电机组的凝汽余热尚未得到充分利用,而是通过冷却系统冷却后排放到周围环境中。凝汽冷凝造成的冷源热损失一般约为2300kJ/kg。以600MW发电机组为例,其主蒸汽量约为2000t/h,则凝汽热损失约4.6×103GJ/h,折合标准煤约为157t/h。我国凝汽发电机组容量巨大,如果将这部分凝汽的热量应用于供热,则既可以大幅提高电厂综合能源利用率,降低电厂煤耗,也有效缓解了供热热源不足的问题,对减轻大气环境压力是非常有利的。 1 电厂余热利用技术综述 1.1 汽轮机低真空运行供热技术 a.基本原理提高汽轮机凝汽压力,相应提高了其冷凝温度。冬季供暖时,利用供暖供回水替代电厂循环水,吸收汽轮机凝汽潜热后,直接用于供热。b.适用范围由于低真空运行时,供热参数较低(供水温度为70℃),供回水温差较小(20℃),造成供热管网流量大,供热管径大、输送能耗增加,为保障供热经济性,供热距离不宜过大,一般控制在电厂周围3km左右。c.注意事项低真空运行改造方案需对汽轮机排汽缸结构、承受的轴向推力、末级叶轮的改造等进行详细的方案设计,确保机组改造后运行安全。低真空运行多用于容量较小机组。 1.2 凝汽抽汽背压式机组供热技术 凝汽抽汽背压式(以下简称NCB)机组的汽轮机中压缸、低压缸分别带2台发电机,针对外界负荷情况,调节阀1、阀2的开度(图1),采取不同的运行方式。 图1 NCB机组运行流程 1.3 热泵回收余热技术 热泵既可以采用电驱动形式,也可以采用蒸汽驱动形式,两种形式原理类似,只是驱动能源不同,电驱动机组占地面积较小,其能效比也比蒸汽驱动热泵高。 1.3.1 电驱动压缩式热泵供热 电厂内设置电驱动压缩式热泵,采用电能作为压缩式热泵的驱动力,凝汽器出口的循环水作为低位热源进入电驱动压缩式热泵,经该热泵吸热降温后,返回凝汽器吸收凝汽潜热[1]。70℃供暖回水经电驱动压缩式热泵加热升温至80~85℃后,再经汽水换热器加热至130℃,作为供暖供水送入城市热网。由于供暖回水温度较高,造成电驱动压缩式热泵能效比较低,同时也增加了电厂自用电比例。 1.3.2 蒸汽驱动吸收式热泵供热 电厂内设置蒸汽驱动吸收式热泵,采用汽轮机抽汽作为吸收式热泵的驱动力。与电驱动压缩式热泵回收余热原理相似,70℃供暖回水经蒸汽驱动吸收式热泵和汽水换热器加热后作为供暖供水送入城市供热管网,只是热泵的驱动力由电能变为蒸汽能,同时也存在热泵能效比低的缺点[2]。 2 热电厂余热利用工程实例 古交兴能电厂至太原市区供热工程,以古交兴能热电厂为供热热源,工程综合采用了热源乏汽余热利用、大高差和大温差供热、多级中继循环泵联动、特长供热隧道、超长距离输送、高压板式换热器阵列等多项技术,实现供热面积7600×104m2。工程设计规模为4根DN1400mm供热管道,3个中继泵站,一个事故补水站,末端设置中继能源站。管道输送距离为37.8km,其中直埋敷设约20km,架空敷设约17.8km。电厂与中继能源站之间的管道设计供水温度为130~125℃,设计回水温度为30℃,设计压力2.5MPa,中继能源站向市区供热的管道设计供、回水温度为120℃、25℃,设计压力1.6MPa。古交兴能热电厂规划容量3000MW,其中一期2×300MW机组和二期2×600MW机组已投产;三期2×600MW机组正在建设。电厂总供热能力3484MW,其中回收余热1830MW,占总供热能力的53%。该工程已成功运行两个供暖期,已实现供热面积4600×104m2。工程主要技术方案如下: 2.1 大温差输送技术 本工程大温差供热实现是通过热力站内设置吸收式换热机组,在保证原有二级管网供热参数不变的情况下,实现了一级管网回水温度

相关文档