文档库 最新最全的文档下载
当前位置:文档库 › 高速切削刀具的发展

高速切削刀具的发展

高速切削刀具的发展
高速切削刀具的发展

高速切削刀具的发展现状3

山东大学机械工程学院(济南250061) 刘战强 艾 兴摘 要:对国内外高速切削刀具的发展现状进行了综合评述,重点介绍了高速切削刀具材料和高速切削刀具技术(包括刀具动平衡技术、刀柄系统、刀具安全性、可转位面铣刀结构、刀具监测技术等)的开发及应用。

关键词:高速切削, 刀具

Developing State of H igh Speed Cutting Tools

Liu Zhanqiang et al

Abstract:The developing state of high speed cutting tools at home and abroad is summarized.The developments and applica2 tions of tool materials and tooling technologies for high speed cutting,including tool dynamic balance,tool holder system,tool se2 curity,structure of face milling cutters with indexable inserts and tool m onitoring are introduced em phatically.

K eyw ords:high speed machining, cutting tool

1 引言

在机械加工中,切削、磨削加工目前仍是零件最终形成的主要工艺手段。切削加工的主要发展方向之一是高速切削(包括高速软切削、高速硬切削、高速干切削、大进给量切削等)。高速切削时,随着切削速度的提高,切削力逐渐减小,切削温升逐渐趋缓,加工表面质量提高,加工成本降低[1]。为实现切削加工的高速化,必须研究及开发与高速切削相适应的刀具材料、刀具结构及刀具监控技术。

2 高速切削刀具材料的发展现状

从十九世纪中期迄今,刀具材料的发展进程如表1所示。刀具材料的进步是切削加工技术进步的决定性因素之一[2]。对于高速切削加工,刀具材料更具有举足轻重的影响。当切削速度提高时,工具钢材料的刀尖往往会因无法承受切削高温而发生烧蚀或急剧磨损。另一种主要刀具材料硬质合金的主要成分为WC或T iC等硬质碳化物,但由于采用铁系金属作为结合剂,因此通常也难以承受高速切削产生的高温。超硬材料金刚石在700℃左右会发生氧化,但用于加工有色金属时,由于切削温度不是太高,尚可实现较高速度的切削。近三、四十年来刀具材料所取得的突破使高速切削中出现的问题得到了较好解决。一些新型刀具材料(如氧化物、碳化物、氮化物陶瓷刀具和C BN等)具有良好的耐热性;晶须增韧陶瓷刀具和涂层技术的应用大大提高了刀具硬度,并使刀具兼有高硬度的刃部和高韧性的基体;用聚晶方法得到的聚晶立方氮化硼(PC BN)刀片的硬度高达3500~4500H V,己成为高速切削淬硬钢的首选刀具[3,4];同样用聚晶方法得到的聚晶金刚石(PC D)刀片的硬度可达6000~10000H V,用PC D材料制作的车刀、铣刀、钻头等可对有色金属进行高速切削,有时也应用于黑色金属的切削加工。

表1 刀具材料的发展进程

材料类型各种刀具材料系列发展年代

工具钢

碳素工具钢

合金工具钢

1850

 高速钢

通用高速钢

高性能高速钢

低合金高速钢

粉末冶金高速钢

涂层高速钢

1928~1978

1954

1970~1980

1977

 硬质合金

普通硬质合金

超微粒硬质合金

涂层硬质合金

T iC基硬质合金(金属陶瓷)

1923~1969

1967~1970

1959~1978

1965~1974陶瓷

氧化铝基陶瓷

碳化硅基陶瓷

1938~1955

1981

超硬刀具材料

天然金刚石

聚晶金刚石

立方氮化硼

 

1955~1974

1957~1974

目前适用于高速切削的刀具主要有涂层刀具、金属陶瓷(T iC N基硬质合金)刀具、陶瓷刀具、立方氮化硼(C BN)、聚晶金刚石(PC D)刀具等。

2.1 国外高速切削刀具材料发展现状

(1)涂层刀具材料

涂层刀具是通过在刀具基体上涂覆金属化合物薄膜,以获得远高于基体的表面硬度和优良的切削性能[5]。常用的刀具基体材料主要有高速钢、硬质合金、金属陶瓷、陶瓷等;涂层既可以是单涂层、双涂层或多涂层,也可以是由几种涂层材料复合而成的复合涂层。硬涂层刀具的涂层材料主要有氮化钛

3中国博士后科学基金资助项目(项目编号:中博基2000223)收稿日期:2000年11月

(T iN)、碳氮化钛(T iC N)、氮化铝钛(T iAlN)、碳氮化铝钛(T iAlC N)等,其中T iAlN在高速切削中性能优异,其最高工作温度可达800℃。近年来相继开发的一些新型PVD硬涂层材料,如C BN、氮化碳(C N x)、Al2O3、氮化物(T iN/NbN,T iN/VN)等,在高温下具有良好的热稳定性,十分适合用于高速切削。金刚石膜涂层刀具主要适用于加工有色金属。软涂层刀具(如采用硫族化合物M oS2、WS2作为涂层材料的高速钢刀具)主要用于加工高强度铝合金、钛合金或贵重金属材料。此外,最新开发的纳米涂层刀具材料在高速切削中也具有广阔的应用前景,如日本住友公司已开发出纳米T iN/AlN复合涂层铣刀片,涂层共达2000层,每层涂层厚度为2.5nm[6]。

(2)金属陶瓷刀具材料

金属陶瓷具有较高的室温硬度、高温硬度及良好的耐磨性。金属陶瓷材料主要包括高耐磨性T iC 基硬质合金(T iC+Ni或M o)、高韧性T iC基硬质合金(T iC+T aC+WC)、强韧T iN基硬质合金(以T iN为主体)、高强韧性T iC N基硬质合金(T iC N+NbC)等。金属陶瓷刀具可在300~500m/min的切削速度范围内高速精车钢和铸铁。

(3)陶瓷刀具材料

陶瓷刀具材料主要有氧化铝基和氮化硅基两大类,是通过在氧化铝和氮化硅基体中分别加入碳化物、氮化物、硼化物、氧化物等得到的,此外还有多相陶瓷材料。目前国外开发的氧化铝基陶瓷刀具约有20余个品种,约占陶瓷刀具总量的2/3;氮化硅基陶瓷刀具约有10余个品种,约占陶瓷刀具总量的1/ 3[7]。陶瓷刀具可在200~1000m/min的切削速度范围内高速切削软钢(如A3钢)、淬硬钢、铸铁及其合金等。

(4)C BN刀具材料

立方氮化硼(C BN)刀具具有极高的硬度及红硬性,是高速精加工或半精加工淬火钢、冷硬铸铁、高温合金等的理想刀具材料。由于C BN刀具加工高硬度零件时可获得良好的加工表面粗糙度,因此采用C BN刀具切削淬硬钢可实现“以切代磨”。由于C BN刀坯价格较高及考虑重磨等因素,一般是在可转位硬质合金刀片的一个角上镶焊一块C BN刀坯,且通常只做一个刀尖。研究证明,采用纯C BN材料制成的刀具在许多情况下并不能获得最佳加工效果[8],为此,国外已开发出各种成分配比的C BN刀片及C BN+金属陶瓷复合刀片,根据不同的加工用途,刀片中的C BN含量也应相应变化(见表2)。

表2 对应不同加工用途的刀片C BN含量

C BN含量刀片加工用途

50%连续切削淬硬钢(45~65HRC)

65%半断续切削淬硬钢(45~65HRC)

80%加工镍铬铸铁

90%连续重载切削淬硬钢(45~65HRC) 80%~90%

高速切削铸铁(v=500~1300m/m in)

粗切削、半粗切削淬硬钢

(5)PC D刀具材料

聚晶金刚石(PC D)材料具有高硬度、高耐磨性、高导热性及低摩擦系数等特点,PC D刀具可实现有色金属及耐磨非金属材料的高速、高精度、高稳定性加工。多齿焊接式PC D刀具的切削刃对刀柄的跳动较小,尤其适合对各种有色金属零件的成形面、孔、阶梯孔等进行大批量高速加工[9],如采用铝基体刀盘的<100mm六齿高速铣刀的最高切削速度可达7000m/min。PC D颗粒的大小对刀具的加工性能影响较大,如PC D粒径为10~25μm的PC D刀具适于切削加工Si含量≥12%的铝合金(切削速度v=300~1500m/min)及硬质合金;PC D粒径为8~9μm的PC D刀具适于切削加工Si含量≤12%的铝合金(切削速度v=500~3500m/min)及通用非金属材料; PC D粒径为4~5μm的PC D刀具适于切削加工FRP、木材或纯铝等材料。

(6)高速钢、硬质合金刀具材料

高性能钴高速钢、粉末冶金高速钢、整体硬质合金材料等已成为制造滚刀、剃齿刀、插齿刀等齿轮刀具的主流刀具材料,可用于齿轮的高速切削。用硬质合金粉末、高速钢粉末配制而成的新型粉末冶金材料制成的滚刀其滚削速度可达150~180m/min,如再对其进行T iAlN涂层处理,则可应用于高速干切削。用细颗粒硬质合金制造并涂覆耐热、耐磨及润滑涂层的麻花钻在高速湿式加工结构钢和合金钢时,切削速度可达200m/min,进给速度可达1600mm/min;进行高速干式钻孔时切削速度可达150m/min,进给速度可达1200mm/min。用细颗粒硬质合金制成的高速丝锥加工普通铸铁时,最高攻丝速度可达100m/min[6]。

2.2 国内高速切削刀具材料发展现状

目前国内最常用的刀具材料仍为高速钢和硬质合金,且以普通高速钢和普通硬质合金为主。硬质合金焊接刀具的应用仍十分普遍;铝高速钢、粉末冶金高速钢的使用很少;由于市场供应的国产高速钢质量下滑,使含钴高速钢刀具品质较差;高性能硬质合金及细(超细)颗粒硬质合金较少,几乎无专用牌

号[6]。我国的刀具涂层技术与国外相比差距较大,金刚石膜涂层技术尚处于研发阶段;尚无商品化T iC N涂层产品;T iAlN、M oS2涂层、纳米涂层等新技术尚待研究;具有优良耐磨性、抗高温、抗热震性的高速切削刀具材料也亟待开发。国内对于陶瓷刀具的研究较为充分,已基本建立了融切削学和陶瓷学为一体的、基于切削可靠性的陶瓷刀具材料设计、研究理论新体系[10]。国产氧化铝基陶瓷刀具已有近20个品种(部分产品性能及用途见表3),氮化硅基陶瓷刀具已有近10个品种,陶瓷刀具的生产能力也较大。目前陶瓷刀具的研发水平已达到国际先进水平,陶瓷刀具的性能水平也不低于国外同类产品。已开发成功陶瓷—硬质合金复合刀片、梯度功能陶瓷刀片、多种采用协同增韧机理的陶瓷刀具等国外尚未见报道的新产品。目前与国外的差距主要表现在制造工艺水平较低,高精度陶瓷刀片和某些品种的陶瓷刀具(如加入氮化物的陶瓷刀具)质量欠佳,陶瓷刀具的推广应用也不如发达国家普遍。

表3 部分新型陶瓷刀具材料的物理性能及用途[10]

牌号

密度

(g?cm-3)

硬度

(HRA)

抗弯强度

(MPa)

断裂韧性

(MPa?m1/2)

用 途

LT55 4.9693.7~94.8900 5.04适于加工多种钢(55HRC)和铸铁,特别适于加工超高强度钢和高硬铸铁

SG24 6.6594.7~95.3850 4.94适于加工各种钢和铸铁,特别适于加工淬硬钢(60~65HRC)

JX21 3.6394~95700~8008.5适于加工高温镍基合金

JX22 3.7393~94650~7508.0~8.5最适于加工纯镍和高镍合金

LP21 4.0894~95800~900 5.2适于加工各种钢和铸铁

LP22 3.9494~95700~8007~8适于断续切削加工各种钢和铸铁

LD21 4.7993.5~94.5700~860 5.8~6.5适于断续切削加工各种钢和铸铁

LD22 6.5193.5~94.5700~860 5.8~6.5适于断续切削加工各种钢和铸铁

FG21 4.4694~95700~8009.0同LP21,适于加工超高硬钢和高硬铸铁

FG22 6.0894.7~95.3700~8008.4特别适于加工淬硬钢

FH21 FH22复合

刀片

94~95800

1000 5.3

~5.8

特别适于加工超

高硬钢和高硬铸

94.7~95.3800~

1000 5.3

~5.8特别适于加工淬

硬钢和断续切削

国内已开发出可分别用于车削、镗削、铣削等加工领域的多种不同C BN含量的C BN刀具和不同颗粒尺寸的PC D刀具,其中C BN刀具主要用于高速加工淬硬钢、高硬铸铁及某些难加工材料,PC D刀具则用于加工铝合金。不足之处是品种规格不够齐全,某些产品质量欠佳,推广应用尚不普遍。

3 高速切削刀具技术现状

3.1 高速切削刀具系统的动平衡技术

刀具系统(刀刃—刀柄—刀盘—夹紧装置)不平衡会缩短刀具寿命,增加停机时间,并会增大加工表面粗糙度,降低工件加工尺寸精度和主轴轴承使用寿命[11]。高速切削刀具系统的平衡更为重要。一般来说,对于小型刀具,平衡修正量只有百分之几克;对于紧密型刀具,采用静平衡即可;对于悬伸长度较大的刀具则必须进行动平衡。

引起高速切削刀具系统不平衡的主要因素有:刀具的平衡极限和残余不平衡度,刀具结构不平衡[12],刀柄不对称,刀具及夹头的安装(如单刃镗刀)不对称等。设刀具在距离旋转中心e(mm)处存在等效的不平衡质量m(g),则刀具不平衡量U(g?mm)可定义为刀具不平衡质量与其偏心距的乘积,即U=m×e。设G为反映刀具平衡量与旋转速度n(r/min)之间关系的参数,则

G=ω×e=

πn

30

×U

m

=

πUn

30m

(1)式中 ω———角速度

产生的惯性离心力F e(N)为

F e=me

πn

30

2

×10-6=U

πn

30

2

×10-6(2)图1为因刀具不平衡引起的离心力与主轴转速和刀具不平衡量的关系。离心力会使主轴轴承受到方向不断变化的径向力作用而加速磨损并引起机床振动,甚至可能造成事故。由图1可知,当主轴转速进一步提高时,惯性离心力将以平方倍数增大。因此,高速切削刀具(主要是旋转刀具)使用前除进行静平衡外还必须进行动平衡,应根据其使用速度范围进行平衡,以实现最佳加工效益。对高速切削刀具进行平衡时,首先需对刀具、夹头、主轴等各个元件单独进行平衡,然后对刀具与夹头组合体进行平衡,最后将刀具连同主轴一起进行平衡[13]。推荐采用微调螺钉进行精细平衡,或直接采用内装动平衡机构的镗刀(见图2)通过转动补偿环移动内部配重以补偿刀具不平衡量。目前国内外尚无统一的刀具平衡标准,对采用IS O1940—1标准中的G值作为平衡标准也有不同看法。国外一些企业以G1(即刀具以10000r/min的转速回转时,回转轴与刀具中心轴线的偏心距为1μm)作为平衡标准;有的企业对转速6000r/min以上的高速切削刀具以G2.5作为平衡标准。高速切削旋转刀具和刀柄系统的平衡要求可参

照图3所示的G 1或G 2.5标准

图1 

惯性离心力与主轴转速和刀具不平衡量的关系

图2 内装动平衡机构的镗刀

图3 高速切削旋转刀具和刀柄系统平衡要求

3.2 高速切削旋转刀具的刀柄系统

高速切削时,为使刀具保持足够的夹持力,以避免离心力造成刀具损坏,对刀具装夹装置也提出了相应的要求。加工中心等NC 机床多年来一直采用7∶24实心锥柄工具系统,这种实心锥柄具有以下缺

点:①由于只靠锥面结合

,刀柄与主轴的联接刚性较低,尤其当主轴转速超过10000r/min 时,联接刚性的不足更为明显;②当采用AT C (Automatic T ool Chang 2ing ,自动换刀)方式安装刀具时,重复定位精度较

低,难以实现高精度加工;③当主轴高速回转时,主轴前端在离心力作用下会发生膨胀,易导致主轴与

刀柄锥面脱离,使径向跳动急剧增大(可达15μm ),从而降低刀柄接触刚度,且易发生安全事故。因此,

传统的长锥刀柄不适宜用于高速切削加工。为解决

这一问题,开发了采用锥部和主轴端面同时定位的双定位式刀柄(如德国的HSK 空心刀柄、美国K M 系列刀柄等)。此类刀柄通过锥部定心,并使机床主轴端面紧贴刀柄凸缘端面。这种刀柄安装时重复定位精度较高(轴向重复定位精度可达0.001mm ),在高速转动产生的离心力作用下,刀柄会牢固锁紧,其

径向跳动不超过5μm ,在整个转速范围内可保持较高的静态和动态刚性。因此,此类刀柄特别适合高速切削加工。表4列出了HSK 和K M 刀柄的结构特

点。

表4 HSK 和K M 刀柄的结构特点

刀柄类型HSK

K M

结合部位锥面+端面

锥度+端面夹紧力传递方式

简夹钢球

刀具HSK 263B K M6350

基径<38mm <40mm 柄部形式空心柄

空心柄

牵引力 3.5kN 11.2kN 夹紧力10.5kN

33.5kN

过盈量(理论值)

3~10μm

10~25μm

锥度

1/10

1/10

HSK 整体式刀柄采用平衡式设计,其刀柄结构

形式有A 、B 、C 、D 、E 、F 型(见图4)。实际应用时,HSK 50、HSK 63刀柄适用的主轴转速可达25000r/min ,HSK 100刀柄适用的主轴转速可达12000r/min 。

图4 HSK 刀柄的结构类型

3.3 高速切削刀具的安全性[12~14]

切削刀具安全性涉及的主要对象是高速旋转的

铣刀和镗刀,尤其是高速铣刀,因为高速铣削是目前高速切削应用的主要工艺。加工实践表明,普通铣刀的结构和强度不能适应高速切削的要求,因此高速铣刀安全性的研究更具有紧迫性和现实性。德国在20世纪90年代初开始对高速铣刀安全技术进行研究,并取得了一系列实用性成果,制定了DI N6589—1《高速铣刀的安全要求》标准草案,其中规定了高速铣刀失效的试验方法和准则,该标准已成为高速铣刀安全性的指导性文件。

高速切削用可转位铣刀的安全性除了刀体强度

要求外,还包括对零件、刀片夹紧等的可靠性要求。高速切削时,离心力是造成铣刀破损的主要因素,防止离心力造成破坏的关键在于刀体应具有足够的强度。为了能在设计阶段对刀具结构强度在离心力作用下的受力和变形情况进行定性和定量分析,目前一般利用高速铣刀的有限元(FE M )模型来计算不同转速下应力的大小,模拟刀具失效过程,改进设计方案。在实际应用中,将模拟设计计算与离心力实验相结合,根据实验获得的刀具变形、刀片位移等数据建立FE M 模型的边界条件。根据计算和实验,可转位铣刀在超高速切削中主要有两种失效形式:一种是夹紧刀片的螺钉被剪断,刀片或其它夹紧元件被甩飞;另一种是刀体爆碎。在多数情况下,首先出现前一种失效,即在较低转速时出现零件甩飞现象;随着转速进一步提高,达到刀体强度临界值时即出现后一种失效。图5所示为模拟计算显示的两种失效过程与转速的关系曲线。在静止状态下,刀片的夹紧力对刀体产生一个向心变形,随着转速增加,刀体发生弹性膨胀,刀片随刀体一起向外膨胀;同时刀片的离心力克服螺钉夹紧力,使向心夹紧力和变形量逐渐减小,直至完全脱离刀座的径向支撑,此时夹紧已完全失效,即达到图5所示曲线上的拐点,通过拐点后刀片开始迅速外移直至甩飞

图5 失效过程与转速的关系曲线[13]

3.4 高速可转位面铣刀的结构

根据铣刀安全性要求,用于高速切削(n >

6000r/min )的可转位面铣刀通常不允许采用摩擦力夹紧方式,而必须采用带中心孔的刀片,用螺钉夹紧。与安全性有关的刀片结构参数包括刀片中心孔相对螺钉孔的偏心量、刀片中心孔和螺钉的形状等,这些参数决定了螺钉在静止状态下夹紧刀片时所受预应力的大小。如预应力过大,有可能使螺钉发生变形,降低夹紧系统失效转速。刀具夹紧方式也可采用带卡位的空刀槽,以保证刀具的精确定位和高速旋转时的可靠联接。另外,刀片、刀座夹紧力方向最好与离心力方向一致。夹紧刀片时应施加规定的扭矩,并使用合格的夹紧螺钉,螺钉拧入前应涂敷润

滑剂,以减少夹紧扭矩的损失,此外,螺钉必须定期检查和更换。

从安全性考虑,刀体的设计应减轻质量,减小直径,增加高度,选用比重轻、强度高的材料,目前,有的高速铣刀已采用高强度铝合金制造刀体。刀体上的槽(刀片槽、容屑槽、键槽等)会引起应力集中,降低刀体强度,因此铣刀结构应尽量避免采用贯通式刀槽,减少尖角,防止应力集中。同时,还应减少机夹零件的数量;刀体结构应对称于回转轴,使其重心通过铣刀轴线;对于不等分齿铣刀,应对刀体的质量分布作相应调整,使刀体膨胀比较均匀;刀片和刀座的夹紧、调整机构应尽可能消除游隙,且应保证良好的重复定位性[13]。图6、7、8分别为采用不同刀片夹紧结构的高速面铣刀及允许最大转速

图6 

刀片不带孔面铣刀

图7 

刀片带孔面铣刀

图8 不同结构面铣刀的允许最大转速

3.5 高速切削刀具监测技术

刀具监测技术对于高速切削加工的安全性十分

重要。刀具监测技术主要包括通过监测切削力以控制刀具磨损;通过监测机床功率以间接获得刀具磨

损信息;监测刀具断裂(破损)等。目前国内外对高速切削刀具监测技术的研究及开发应用还不够充分。

4 结语

高速切削技术是一种先进制造技术,具有广阔的应用前景。高速切削刀具及其相关技术是实现高速切削加工的基本条件。因此,应重视和加强与高速切削相适应的刀具材料、刀具结构及刀具监控技术的研究和开发,建立高速切削刀具安全技术标准,努力提高我国机械制造业的切削加工效率和质量水平。

参考文献

1 陈 明,严人炜,严隽琪等.推动我国高速切削工艺若干问题的探讨.中国机械工程,1999,10(11):1296~1298

2 艾 兴,萧 虹.陶瓷刀具切削加工.北京:机械工业出版社,1988

3 Dewes,D KAspinwall.The use of high speed machining for the manu facturing of hardened steel dies.T ransactions of NAMRI/ S ME,V ol.XXI V,1996:21~26

4 M ohaela Dumitrescu,T ahany I EI2Wardany,M ohamed A

E lbestawi,Lienjing Chen.Critical assessment of carbide and

PC BN tool per formance in high speed milling of dies and m olds.

T ransactions of NAMRI/S ME,V ol.XX VI,1998:183~188

5 F K locke,T K rieg.C oated tools for metal cutting———features and applications.Annals of the CIRP,1999,48(2):515~525 6 赵炳桢,薛进才.CI MT’99切削刀具产品和技术述评.工具技术,2000,34(1):4~9

7 艾 兴,邓建新,赵 军等.陶瓷刀具的发展及其应用.机械工人,2000(9):4~6

8 仇启源,庞思勤.现代金属切削技术.北京:机械工业出版社,1992

9 寇自力.超硬刀具的发展与应用.工具技术,2000(8):6~8 10艾 兴,赵 军,刘战强等.推动陶瓷刀具研究走上国际先进行列.中国机械工程,1999,10(9):1033~1035

11M iles Arnone.High per formance machining.Hanser G ardner Publications,6915Valley Avenue,Cincinnati,OH45244, 1998

12杨广勇.超高速切削时刀具的动平衡及自动化的主轴平衡系统.全国生产工程第8届学术大会暨第3届青年学者学术会议论文集,机械工业出版社,1999:157~161

13赵炳桢.高速铣削刀具安全技术现状.工具技术,1999

(1):4~7

14赵炳桢.开发高速铣削刀具的安全技术.全国生产工程第8届学术大会暨第3届青年学者学术会议论文集,机械工业出版社,1999:157~161

编辑:石 明

?广告说明?

嘉兴恒锋工具有限公司简介

嘉兴恒锋工具有限公司是用现代高新技术装备起来的刃量具专业生产厂,拥有数台当代最先进的五轴五联动、六轴六联动数控加工机床,并拥有两个恒温精密计量室,装备有十多台进口和国产精密检测仪器。公司主要生产以下产品:

11非标准高精度环塞规、拉刀和滚刀等复杂刀具。特别是以小径定心拉刀和渐开线环塞规为代表的高精度产品深受国内汽车制造业和其他机械企业的高度赞誉。

21按德国DI N标准生产、广泛应用于数控切削加工的各种高精度波刃铣刀等,其材料为超硬高速钢M42(含C o量8%)或M2A1等,硬度稳定达到65~69HRC。

我公司产品品质超群、国内一流,是欧美诸大公司刃量具定点采购供应厂,也是中国诸多一流大企业替代进口首选刃量具生产厂。我公司产品质量由中国国家刀检中心定点监督检验,并通过IS O9002质量认证,建有完备、严格的质量保证体系。

我公司还擅长非标制作,可生产各类特种刃具。欢迎客户订货,欢迎莅临指导。

高速切削加工中刀具材料的选用

高速切削加工中刀具材料的选用 [摘要]简要地介绍了在高速切削加工中,根据不同的工艺及被加工零件的不同材料,选用刀具材料的问题。 关键词:高速切削刀具材料选用 1 引言 随着科技工业的飞速发展,切削加工技术的应用也越来越广泛,新型刀具材料也不断涌现,高速切削加工技术的应用也越来越广泛,高速切削加工设备在生产中的优势正在日益发挥,在切削过程中,刀具的切削部分是在较大的切削力、较高的切削温度和剧烈的摩擦条件下进行工作的。刀具材料对刀具耐用度、加工效率、加工质量和加工成本影响极大。因此,应当重视刀具材料的正确选择和合理使用。 2.1 刀具材料的基本要求 刀具在高温下进行切削工作,同时还要承受切削力、冲击和振动,因此刀具材料必须具备以下基本要求: 1、高硬度 刀具材料必须具有高于工件材料的硬度,常温硬度必须在HRC62以上,对于某些难以切削的材料,刀具硬度更高。 2、高的耐磨性 耐磨性表示抵抗磨损的能力,通常刀具材料的硬度越高、耐磨性就越好。

3、足够的强度和韧性 为了承受切削力、冲击和振动,刀具材料应该具有足够的强度 和韧性。一般用抗弯强度σ b b 和冲击韧性α k 来衡量。 4、高的耐热性 耐热性(又称红硬性)是指材料在高温下保持其硬度的性能,是衡量刀具材料切削性能的主要指标。 5、良好的工艺性 为了便于刀具的制造,要求刀具材料具有良好的可加工性和热处理性能(如淬透性好,淬火变形小,脱碳层浅等)。 6、良好的经济性 经济性差的刀具材料难以推广使用。 2.2 刀具材料种类及选用 刀具材料种类很多,常用的金属材料有碳素工具钢、合金工具钢、高速钢及硬质合金;非金属材料有陶瓷、金刚石(天然和人造)、立方氮化硼等。 1、碳素工具钢 含碳量在0.65~1.3%的优质碳素钢称碳素工具钢,用来制造刀具的常用牌号有T8A、T10A等。一般用于制造低速、手用刀具,如手用锯条、锉刀等。 2、合金工具钢 在碳素工具钢中加入适量的合金元素如Mn、Cr、W、Si等即成合金工具钢,常用牌号有9SiCr、CrWMn、GCr5等。与碳素工具钢相比,硬度相近,耐磨性、耐热性略高,热处理性能较好,主要用于制造低速、手用刀具,如手用丝锥、手用铰刀及硬质合金钻头的刀体等。 3、高速钢 高速钢是一种含Cr、W、Mo、V等合金元素较多的工具钢,与碳素工具钢、合金工具钢相比,硬度有所提高,耐热性显著提高,允许的切削

切削加工和刀具技术的现状与发展

切削加工和刀具技术的现状与发展 摘要:高速加工是以较快生产节拍进行加工,提高切削和进刀速度是高速加工技术的重要环节。高速加工技术的发展涉及到零科毛坯、刀具、机床、自动控制与检测等多种技术的综合优化,需要变革传统的机加工工艺路线。我国引进的轿车零部件数控自动生产线上已广泛应用高速加工技术,其主要目的是在确保产品质量的前提下,尽量缩短零件的机加工工艺路线,加快生产节拍(轿车发动机生产节拍已缩短为30秒),满足轿车高质量、高速率、低成本、大批量、杜会化生产的技术要求。高速加工技术必将带动零件毛坯制造、刀具(工具)、数控机床、自动控制、在线检侧、材料等技术的发展与进步。随着我国制造业加快融人全球化生产制造体系,预计高速加工技术将在信息化、柔性化机械加工领域得到进一步发展和推广应用。 1、引言 对于机械零件而言,高速加工即是以较快的生产节拍进行加工。一个生产节拍:零件送进--定位夹紧--刀具快进--刀具工进(在线检测)--刀具快退--工具松开、卸下--质量检测等七个基本生产环节。而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统;对于整条生产自动线而言,高速加工技术表征是以较简捷的工艺流程、较短、较快的生产节拍的生产线进行生产加工。这就要突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式):或采用一工位多工序、一刀多刃,或以车、铰、铣削替代磨削,或以拉削、搓、挤、滚压加工工艺(方式)替代滚、插、铣削加工…等工艺(方式),尽可能地缩短整条生产线的工艺流程;对于某一产品而言,高速加工技术也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈信息。这与敏捷制造工程技术理念有相同之处。 2、现代切削技术的发展 20世纪90年代以来,激烈的市场竞争推动以机械制造技术为先导的先进制造技术以前所未有的速度和广度向前发展。高生产率和高质量是先进制造技术追求的两大目标。高速切削、精密和超精密切削是当前切削技术的重要发展方向,已成为切削加工的主流技术。 高速切削技术 高速切削的主要内容包括高速软切削、高速硬切削、高速干切削、大进给切削等。高速切削是一个相对概念,对其切削速度范围的界定目前国内外专家尚未达成共识。通常认为高

数控机床的现状与发展趋势综述

数控机床的现状与发展 趋势综述

数控机床的现状与发展趋势 摘要:从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。数控技术的应用,关键在于开发具有高速度、高精度、高稳定性的高新技术设备,在现有加工设备中,只有数控机床才有可能担当其重任。然而,要实现真正意义上的高速切削加工,数控机床还需向高速、高精度、柔性化、控制系统开放性、控制系统支撑软件和工厂生产数据管理方向迈进,才能适应现代制造业飞速发展的要求。 关键:高速化 / 高精度化 / 复合化 / 智能化 / 开放化 / 网络化 / 多轴化 / 绿色化 进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。本文简要分析了数控机床高速化、高精度化、复合化、智能化、开放化、网络化、多轴化、绿色化等发展趋势,并提出了我国数控机床发展中存在的一些问题。 一、数控机床的发展趋势 机械加工装备对促进制造技术发展的紧密关系和以数字化为特征数控机床是柔性化制造系统和敏捷化制造系统的基础装备。其总的发展趋势是:高精化、高速化、高效化、柔性化、智能化和集成化,并注重工艺实用性和经济性。 (一)高速化 随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。 (1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达 200000r/min;

金属切削原理及金属切削刀具A

. 四川建筑职业技术学院2004年秋期期末考试 《金属切削原理及刀具》试卷(A 卷) 一、 填空题:在下列各题的空格中填上正确的文字及其有关符号(每题4分,共60分) 1.车削的主运动是______________,钻削的主运动是 ______________;磨削的主运动是______________。 2.标柱刀具静态角度的静态坐标系包括:(1)____________,(2)____________,测量平面有(1)_________,(2)_________,(3)_________,(4)_________。 3.刀具的前角γo 是在_________平面内测量的_________与_________之间的夹角。 4.表示切削变形程度的方法有:(1)___________________________,(2)__________________,(3) __________________。 5.切屑的类型有以下四种:(1)__________________,(2)__________________,(3)__________________,(4)__________________。 6.工件加工表面质量的指标包括:(1)_________________ (2)__________________,(3)__________________。 7.切削热的产生是切削过程中______________________转换而成的,切削温度是__________和__________综合结果。 8.刀具磨损的主要原因有:__________、__________、 __________、__________等。 9.影响刀具磨损的切削量中,影响最大的是__________,影响最小的是__________,所以选择切削用量时应首先选择尽可能大的__________________。 10.切削液的种类有(1)________切削液,其主要作用是_______,(2)________切削液,其主要作用是_______。 11.刀具材料要求具备的性能有:(1)_______、(2)_______、(3)_______、(4)_______、(5)_______、(6)_______等。 12.硬质合金刀具有以下几类:(1)_______、(2)_______、(3)_______、(4)_______。 13.砂轮的性能参数包括:(1)_______、(2)_______、 (3)_______、(4)_______、(5)_______和(6)_______。 14.磨削过程包括三个阶段:(1)_______阶段、(2)_______阶段和(3)_______阶段。 15.圆周铣削的铣削方式有_______铣和_______铣。端面铣的铣削方式有 班级 姓名 学号

数控机床的发展趋势及国内发展现状.doc

数控机床的发展趋势及国内发展现状 1.引言 从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。数控机床是一种高度机电一体化的产品,适用于加工多品种小批量零件、结构较复杂、精度要求较高的零件、需要频繁改型的零件、价格昂贵不允许报废的关键零件、要求精密复制的零件、需要缩短生产周期的急需零件以及要求100%检验的零件。数控机床的特点及其应用范围使其成为国民经济和国防建设发展的重要装备。 进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。本文简要分析了数控机床高速化、高精度化、复合化、智能化、开放化、网络化、多轴化、绿色化等发展趋势,并提出了我国数控机床发展中存在的一些问题。 2.数控机床的发展趋势 2.1 高速化

随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。 (1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min; (2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工; (3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度; (4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0. 5s。德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。 2.2 高精度化 数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。 (1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使C NC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法; (2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。研究结果表明,综合误差补偿技术的应用可将加工误差减少60%~80%;

切削性能

两种Ti(C,N)基金属陶瓷刀具切削性能的研究 摘要:Ti(C.N)基金属陶瓷是本世纪七十年代出现的一种新型工具材料,具有许多优良的性能。本文用传统的粉末冶金的方法制备了纳米TiN改性TiC基金属陶瓷刀具试样和超细晶Ti(C,N)基金属陶瓷刀具试样,对两种刀具试样进行切削性能实验,对比其性能的优异,为制备性能更优异的金属陶瓷刀具提供理论依据。关键字:纳米TiN改性TiC基金属陶瓷刀具,超细晶Ti(C,N)基金属陶瓷刀具,切削性能 ABSTRACT :As a new kind of tool material in seventy’s, has many good properties. The cutting and wear behaviors of two kinds of cermets cutters were investigated in this paper,which expects to present theoretical instruction for preparation of high performance cermets cutters and enrich materials design theory.Key words:Nano TiN modified TiC-based cermets cutters,Ultra-fine Ti(C,N)一based ccrmets cutters,Cutting performance 1引言 Ti(C,N)金属陶瓷刀具是20世纪70年代初发展起来的一种新型材料刀具,由于具有硬度高、耐磨性好、高温力学性能优良和不易与金属发生粘结等特性,广泛应用于难加工材料的切削加工中,并可用于超高速切削、高速干切削和硬材料的切削加工【1】。由于全球W的价格不断上涨,所以其是代替硬质合金刀具材料的很好选择。但是也存在抗塑性变形能力、抗崩刃性能差及韧性不好等问题。因此,长期以来对金属陶瓷刀具进行增韧一直是国内外科技工作者努力的方向,而近十年多来出现的通过纳米材料添加对传统材料进行改性,改善了金属陶瓷的力学性能。本文通过将纳米TiN改性的TiC基金属陶瓷刀具和用亚微米级Ti(C,N)粉末为原料烧结的金属陶瓷刀具加工成可转位车刀片,按照实际的生产条件来进行切削性能实验,考察不同成分和不同后角条件下,刀具的耐用度和失效形式。研究纳米TiN改性的TiC基金属陶瓷刀具的切削性能。 2 试验 本实验所用的刀具是自行研制的,试验用粉末原料均为外购。其中TiC和Ti(c,N)粉末购于石家庄华泰纳米陶瓷材料厂;TiN纳米粉购于中国科学院成都有机化学;Ni粉购于四川江油国营八五七厂。其余粉末均从株洲硬质合金厂购得。本实验所用的TiC粉末为微米级,Ti(C,N)粉末为亚微米级,而TiN为纳米级。 实验中TiN、WC、Mo和C的添加量分别取为lO%、15%、5%、1%。另外为了保证金属粘结相对陶瓷相的润湿性,制出致密的高性能的金属陶瓷试样,选用对陶瓷相润湿性较好的Co和Ni作为粘结剂。本实验中金属陶瓷的基本成分配

金属切削刀具常识及使用方法【干货】

金属切削刀具常识及使用方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 金属切削刀具常识及使用方法 在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。 制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。 通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用广的刀具材料,其次是硬质合金。 聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

智能机械的现状,不足与发展

智 能 机 械 及 微 机 械 的 发 展 状 况 学院:机械与动力工程 班级:机制11-02 姓名:龙飞企 学号:311104001014

智能机械及微机械的发展状况 智能机械是机械发展的前沿领域,它的出现是机械发展历史的一座里程碑。智能机械与传统机械的区别非常显著,有许多传统机械不具有的特性。机械结构的振动、噪声、疲劳、损伤、断裂、破坏以及环境的自适应性,都影响机械及运载器的安全、可靠、舒适、节能及省料,这是机械设计的主要问题。自有机械以来,机械都是按照力学原理设计的,没有生命、没有智能,因此环境变化与人为因素会使机械的运行难以预测,可能导致机械损坏,使人民生命财产受到严重威胁。为了尽可能保证机械的运行安全,设计者往往采用保守设计,比如增大尺寸与重量,从而增加了能耗,减小了机械的有效载荷因此,为了减少上述不利影响,即减小尺寸与重量来降低能耗,增加机械的有效载荷,必须对机械的构造做出重大改进,或者是附加一些设备(可以不是机械或机构)。由此智能机械应运而生。 智能机械是相对于传统机械定义的,目前还没有智能机械的严格统一的定义,但各类说法大体相同。下面列出三种对智能机械所具有的基本结构的解读: 1)智能结构,就是在基体中嵌人或粘贴传感器和致动器,并具有对致动器有控制作用的控制装置,从而能感知外界环境的变化及自身的实际状态,并能通过自身的感知,做出判断,发出指令,执行和完成动作,实现动态或在线状态下的自检测、自诊断、自监控、自修复及自适应等多种功能。 2)智能机械和结构主要由驱动元件、传感元件、信息处理方法和控

制系统等组成,系统等组成,目前的应用主要是在智能控制、智能诊断和智能修复等方面,尤其是在减振降噪,智能机械结构,智能表层结构特性控制,智能自适应机械等方面的研究很活跃。 3)传感器、致动器和控制器是智能机械结构重要的三个组成部分。传感器要求具有高度感受结构力学状态的能力,能够将应变或位移直接转换成电信号输出,它担负着感知外界环境变化,收集外界信息的任务。用作传感器有光纤传感器、电阻应变片传感器、压电材料传感器等。致动器的功能是执行信息处理单元发出的控制指令,并按照规定的方式对外界或内部状态与特性变化做出合理的反应,能直接将控制器输出的电信号转变为结构的应变或位移,具有改变智能结构形状、刚度、位置、固有频率、阻尼及其它机械特性的能力。致动器有压电材料致动器、电致伸缩材料致动器、磁致伸缩材料致动器、形状记忆合金致动器、电流变体致动器等。控制器是智能结构的神经中枢,智能结构的控制器集成于结构之中,其控制对象是结构本身。控制器应具有很强的鲁棒性、实时性和在线性。 可以看出,智能机械与传统机械的区别非常显著,有许多传统机械不具有的某些特性。而恰恰是这些特性使智能机械在高科技领域中占有一席之地,成为众人瞩目的焦点。智能机械是机械发展的前沿领域,可以说它的出现使机械发展的历史跨越了一座里程碑。 目前智能机械的例子有智能机械脚;农业机械智能化;计算智能,它包括人工神经网络、模糊系统、进化计算和专家系统等;用于深潜救生艇水下对接的智能机械手等。但是它的发展也面临着瓶颈首先,

涂层刀具的应用现状及发展趋势

涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层可以提高切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高金属切削效率。本期话题, 主要讨论刀具涂层技术的最新进展情况和发展前景。 涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层提高了切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高了金属切削效率。今天,在切削刀具主流材料的硬质合金中,涂层硬质合金刀具占了80%,而其中CVD(化学涂层)又占了60%~ 65%,其余为PVD(物理涂层)。 在CVD涂层方面,包括TiCN、TiC、TiN、ZrCN和Al2O3等各种化合物的多层复合涂层对改善涂层的综合性能,如结合强度、韧性、耐磨性和抗磨性及耐腐蚀性具有良好的效果。现在典型的VCDTiN(外层)+ Al2O3(中层)+TiCN(内层)多层式结构正在从涂层工艺上和涂膜的厚度上得到进一步改善。MTCVD (中温化学涂层)因有较低的工艺温度和较快的沉积速率使得涂层与基体分界面上的脆性η相最小化,同时减少了在高温CVD涂层中常见的由高温导致的拉伸裂纹,因此,MTCVD TiCN涂层已成为CVD多层涂层中的一个主要构成,这种MTVCD已用于α- Al2O3涂层,如ISCAR的α-IC9150、α-IC9250、α-IC9350和α-IC4100等,提升了涂层与基体的结合强度和抗后面磨损、前面磨损和抗粘附的能力。 在PVD涂层方面,也从单一的TiN或TiCN或TiAlN涂层发展到现在的复合涂层即硬涂层+软涂层。为适应更高切削速度和干式切削的要求,涂层刀具的红硬性成为近几年PVD技术的开发热点。TiAlN的改进涂层AlTiN提高了薄膜中Al的含量(Al含量大于50%),提升了涂层的红硬性、化学稳定性和抗氧化的性能,如ISCAR的Al-IC910(加工铸铁和钢)、Al-IC900、Al-IC930(加工钢、不锈钢、硬钢、铸铁、 高温合金等)。 现代刀具涂层发展的一个重要特征就是复合化,为了提高其综合性能,涂层材料复合、涂层层复合以及CVD 与PVD复合,如ISCAR的DT7150(K05-K25)通过MTCVD Al2O3和PVD TiAlN复合涂层,提高了材质的综合性能,用于高速加工灰铸铁和球墨铸铁。而多样化是刀具涂层发展的另一个趋势,有各种氮化物、氧化物涂层材料,还有TiB、SN涂层、金刚石涂层、立方氮化硼涂层等等。多样化的深层次原因是专业化,即针对不同的需求采用不同的涂层,并能对涂层的组分、百分比、结构及厚度在更大范围内加以控制和改变,以适应不同的被加工材料和不同的切削条件,从而显著地提高刀具的切削性能。如CrAlN涂层,以Cr 元素替代Ti元素,具有3200HV硬度和1100℃的氧化温度,与TiAlN相比韧性更好,更适合断续切削和难加工材料的加工;以Si元素代替Al元素的涂层可获得用于硬切削的TiSiN,也可获得有润滑性的CrSiN,更适合用于铝、不锈钢等粘附性强的材料加工。此外,涂层材料的细微化是现代刀具涂层发展的另一个令人关注的趋势,纳米复合涂层正在越来越多的地方得到应用。在未来,刀具涂层将是一个系统的概念,即刀具涂层必须根据不断变化的现代切削应用条件来进行系统的组合,这是一种与传统观念中的“在刀具上涂覆一层薄膜”截然不同且复杂得多的系统工程方法,这需要我们进行系统思考。 刀具涂层进展概况 现代切削面临着不断发展的高速、高效、高精加工要求和愈来愈多的高强度、高韧性、难切削等高能级材

金属切削刀具材料的选择

金属切削刀具材料的选 择 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

金属切削刀具材料的选择金属切削加工时利用刀具切除被加工零件多余材料从而获得合格零件的加工方法,它是机械制造业中最基本的方法。而在金属切削加工中,刀具是必不可少的一部分,而刀具材料的选择更是重要的一部分。 在现代机械制造业中,机械加工的切削刀具对于提高生产效率,改进产品质量起到关键的作用。由于目前国家各工厂所应用的刀具材料非常复杂,又由于刀具材料的性能优劣能够影响加工零件表面的切削效率,刀具寿命等,而在金属切削过程中刀具切削部分在高温下承受着很大的切削力与剧烈摩擦,所以为了提高工件表面质量,刀具寿命及切削效率因此刀具材料应具备以下性能: ①高的硬度和耐磨性②足够的强度和韧性③高的耐热性④良好的工艺性与经济性⑤好的导热性和小的膨胀系数。因此面对刀具所应具备的性能,刀具材料选择时很难找到各方面的性能都是最佳的,因为各种材料性能之间有的是相互制约的,面对如此情况只能根据工艺的需要保证主要需求性能。 当前使用的刀具材料主要分为四大类:工具钢(包括碳素工具钢、合金工具钢、高速钢)、硬质合金、陶瓷、超硬质刀具材料,一般的机加工使用最多的是高速钢与硬质合钢。 1、工具钢 用来制造刀具的工具钢主要有三种即碳素工具钢,合金工具钢和高速钢。工具钢的主要特点是耐热性差但抗弯强度高,价格便宜焊接与刃磨性能好故广泛用于中低速切削的成形刀具,不宜高速切削。

⑴碳素工具钢 碳素工具钢按化学成分分类,碳素工具钢负属于非合金钢,按主要质量等级和主要性能及使用特性分类,碳素工具钢属于特殊质量非合金钢,碳素工具钢常用于制作刀具、模具和量具的碳素钢,其加工性良好价格低廉,使用范围广泛所以它在工具钢中用量较大。由于碳素工具钢生产成本极低,原材料来源方便易于冷热加工,在热处理后可获得相当高的硬度,由于碳素工具钢在切削温度高于250~300℃时,马氏体要分解,使得硬度降低,碳化物分布不均匀,淬火后变形较大,易产生裂纹,淬透性差,淬硬层薄所以只适于用于切削速度很低的刀具,如锉刀、手用锯条等。 ⑵合金工具钢 合金工具钢是在碳素工具钢基础上加热铬、钨、钒等合金元素,以提高淬透性,韧性,耐磨性和耐热性的一类钢种,它主要用于制造量具、刀具、耐冲击工具和冷热模具及一些特殊用途的工具。由于合金工具钢热硬性达325~400℃,允许切削速度为10~15m/min,所以其目前主要用于低速工具如丝锥、板牙等 ⑶高速钢 高速钢是含有W、Mo、Cr、V等元素较多,具有高硬度,高耐磨性的工具钢,又称高速工具钢为白钢或锋钢。高速钢的综合性能较好,应用范围最广的一种刀具材料,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具也可制造高温轴承和冷挤压模具等,高速钢经过热处理后硬度达62~66HRC,抗弯强度约为,耐热性为600℃左右,此外还具有热处理变形小,

刀具行业的发展趋势

刀具行业的发展趋势 刀具行业是一个比较特殊的行业,肩负着为制造业提供关键装备---数控刀具的重任。制造业的水平往往受刀具行业整体水平的影响较大,而制造业的发展也会促进刀具行业的发展,两者可以说是相互促进相互制约。随着制造业的持续发展,刀具行业必将快速、稳步发展。根据制造业发展的需要,多功能复合刀具、智能刀具、高速高效刀具将成为时代的新宠。面对日益增多的难加工材料,刀具行业必须在改进原有的刀具材料、研发新的刀具材料及寻找更合理的刀具结构方面多下功夫,以解决制造业面临的越来越多的加工难题。2006年,刀具行业主要呈现以下七大发展趋势: 硬质合金材料增多 硬质合金材料依然是刀具材料中的主要成员,也是各国刀具制造厂商着力发展的刀具材料之一。目前,硬质合金材料的应用已有显著进展,细颗粒、超细颗粒硬质合金材料的开发是进一步提高刀具使用可靠性的发展方向,纳米涂层、梯度结构涂层及全新结构、材料的涂层是提高刀具使用性能的发展方向,物理涂层的应用将会继续增多,纯陶瓷、金属陶瓷、氮化硅陶瓷、PCBN、PCD等刀具材料的韧性将得到进一步增强,可应用场合逐渐增多。 研发更具针对性 通用牌号、通用结构不再是刀具制造厂商研发的重点,面对复杂多变的应用场合和加工条件,针对性更强的刀片槽形结构、牌号及配套刀具将取代通用的槽形、牌号的刀片及刀具。这在提高加工效率、加工质量、降低切削成本方面将会收到显著效果。 切削技术快速发展 高速切削、硬切削、干切削继续快速发展。高速切削以其不同于传统速度切削的独特机理以及在提高加工效率、提高加工质量、减少切削变形、缩短加工周期方面的显著效果,在制造业的应用必将进一步增多,高速切削刀具的需求将进一步增多。硬切削是一种新的加工工艺,在提高加工效率、降低加工成本、减少设备资金投入方面的作用独树一帜,对传统的磨削工艺提出了挑战,"以切代磨"将成为发展趋势之一。干切削作为一种绿色制造工艺与湿式切削相比有许多优点,但也存在切削力增大、切削变形加剧、耐用度降低、工件加工质量不易保证等缺点,但是通过分析干切削的各种特定边界条件和影响干切削的各种因素,寻

高速切削的所罗门原理

一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙 (Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理: 被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。 切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。 实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。 二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。 到目前为止,其原理仍未被现代科学研究所证实。 但这一原理的成功应该不只局限于此。 高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。 这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。 事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。

数控机床的现状和发展趋势

我国数控机床的现状和发展 数控机床是数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。数控机床具有广泛的适应性,加工对象改变时只需要改变输入的程序指令;加工性能比一般自动机床高,可以精确加工复杂型面,因而适合于加工中小批量、改型频繁、精度要求高、形状又较复杂的工件,并能获得良好的经济效果。 因而了解和提升数控机床对我国的制造业的发展至关重要。 一.国内外数控机床的发展 (1)我国数控机床的发展 我国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。建国初期在1958—1979年间为第一阶段,第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,主要存在的问题是盲目性大,缺乏实事求是的科学精神。改革开放,从1979年至今为第二阶段。在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国家(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、多轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。 (2)国外数控技术的发展 数控机床的起源 1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。1949年,该公司在美国麻省理工学院(MIT)伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。标志着制造领域中数控加工时代的开始。 数控机床的兴起 1952年美国麻省理工学院和吉丁斯·路易斯公司首先联合研制出世界上第 一台数控升降台铣床,随后德国、日本、苏联等国于1956年分别研制出本国的第一台数控机床。60年代初,美国、日本、德国、英国相继进入商品化试生产,由于当时数控系统处于电子管、晶体管、和集成电路初期,设备体积大、线路复杂、价格昂贵、可靠性差,数控机床大多是控制简单的数控钻床,数控技术没有普及推广,数控机床技术发展整体进展缓慢。 70年代,出现了大规模集成电路和小型计算机,特别是微处理器的研制成功,实现了数控系统体积小、运算速度快、可靠性提高、价格下降,使数控系统

高速切削及刀具

高速切削和干切削技术刀具 为保证高速精密切削时的加工精度和可靠性,刀具装夹到机床主轴上之前须先进行动平衡,以确保加工系统的安全性2010年04月16日<> 为保证高速精密切削时的加工精度和可靠性,刀具装夹到机床主轴上之前须先进行动平衡,以确保加工系统的安全性2010年04月16日 高速切削和干切削已发展成为现代切削加工技术的重要趋势,有力推动着刀具材料和结构,以及刀具装夹结构等先进切削技术的日新月异和推广应用随着数控机床和加工中心等高效设备应用的日渐普及,在航空航天、汽车、高速列车、风电、电子、能源、模具等装备制造业的空前发展推动下,切削加 工已迈入了一个以高速、高效和环保为标志的高速加工发展的新时期—现代切削技术阶段高速切削、干切削和硬切削作为当前切削技术的重要发展趋向,其重要地位和角色日益凸显对这些先进切削技术的应用,不仅令加工效率成倍提高,亦着实推动了产品开发和工艺创新的进程例如,精密模具硬质材料的型腔,采用高转速、小进给量和小吃深加工,既可获得很高的表面质量,又能够省却磨削、EDM和手工抛光或减少相应工序的时间,从而缩短生产工艺流程,提高生产率过去一些企业制作复杂模具时,基本上都需要3~4个月才能交付使用,而现在采用高速切削加工后,半个月便可完成据调查,一般的工模具,有60%的机加工量可用高速加工工艺来实现高速加工时,不但要求刀具可靠性高、切削性能好、能稳定地断屑和卷屑、还要能达成高精度,并能实现快换或自动更换等因此,对刀具材料、刀具结构、以及刀具的装夹都提出了更高要求 对刀具材料的要求 高速加工刀具最突出的要求是,既要有高的硬度和高温硬度,又要有足够的断裂韧性为此,须选用细晶粒硬质合金、涂层硬质合金、陶瓷、聚晶金刚石(PDD)和聚晶立方氮化硼(PDBN)等刀具材料—它们各有特点,适应的工件材料和切削速度范围也都不同例如,高速加工铝、镁、铜等有色金属件,主要采用PDD和DVD金刚石膜涂层刀具高速加工铸件、淬硬钢(50~67HRD)和冷硬铸铁主要用陶瓷刀具和PDBN刀具 上海大众汽车有限公司采用Seco刀具(上海)公司生产的立方氮化硼DBN300刀片面铣刀,在柔性生产线上高速铣削发动机缸体平面(铸件),切削速度高达1600m/min,进给速度5000mm/min用PDD刀具加工铝合金的切削速度一般为3000-4000m/min,最高更可达7500m/min而用陶瓷和PDBN刀具加工淬硬钢和冷硬铸铁时的切削速度已达200m/min 1. 硬质合金已迈入细晶粒超细晶粒阶段 涂层硬质合金刀具(如TiN、TiD、TiDN、TiBlN等)虽其加工工件材料范围广,但抗氧化温度一般不高,所以通常只宜在400-500m/min的切削速度范围内加工钢铁件对於Inconel 718高温镍基合金可使用陶瓷和PDBN刀具据报道,加拿大学者用SiD晶须增韧陶瓷铣削Inconel 718合金,推荐最佳的切削条件为:切削速度700m/min,吃深为1-2mm,每齿进给量为0.1-0.18mm/z

刀具的发展历史

刀具的发展历史 刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。 然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。 那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金 刀具的切削速度 在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。 由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。 1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。 刀具的发展方向 由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

刀具发展历程.

1、概述:近年来,数控刀具的科技成果主要体现在研发一刀多切削功能、提高其刀刃切削性能方面,适应高速(超高速)、硬质(含耐热、难加工)、干式、精细(超精)切削及高效率数控机加工切削技术要求。随着零件毛坯制造技术进步,零件毛坯几何尺寸及切削余量控制较为精确,数控刀具新结构、新品种的研发主要集中在轻、中负荷切削范围内,并以专用孔加工、拉削、滚(挤、碾压)压、铣削及车削等五类刀具的变革较为活跃,配套研发其相应刀片断屑槽形。 2、数控工具系统:近几年国际上出现了以"HSK"工具系统逐步替代各厂商研发的其它各类工具系统的发展趋势。欧州发达国家沿用德国DIN69893-1号HSK工具系统标准,国际标准化组委会为其制定了ISO/DIS标准。HSK工具系统具有动、静刚度高、定位(迥转)精度好、充许转速高(≤150000p.r.m)等特点。既便于规笵工具管理,又总体上节约了工具费用、降低生产成本。其首先应用于加工中心、数控镗铣床,逐渐扩大到各类车床(车削中心)、磨床(磨削中心)、数控专机及数控加工自动生线上,使用范围几乎覆盖所有刀具领域。 3、孔加工刀具类:在刀具门类中,孔加工刀具是一大家族,其小改小革层出不穷,在此就其主要突出的新结构、新品种简要分述如下:●数控钻头:整体式钻头:钻尖切削刃由对称直线型改进为对称圆弧型(r=1/2D),以增长切削刃、提高钻尖寿命;钻芯加厚,提高其钻体刚度,用"S"型横刃(或螺旋中心刃)替代传统横刃,减小轴向钻削阻力,提高横刃寿命;采用不同顶角阶梯钻尖及负倒刃,提高分屑、断屑、钻孔性能和孔的加工精度;镶嵌模块式硬质(超硬)材料齿冠;油孔内冷却及大螺旋升角(≤40°)结构等。最近研制出整体式细颗粒陶瓷 (Si3N4)、Ti基类金属陶瓷材料钻头。机夹式钻头:钻尖采用长方异形专用对称切削刃、钻削力径向自成平衡的可转位刀片替代其它几何形状、钻削力径向总体合成平衡的可转位刀片,以减小钻削振动,提高钻尖自定心性能、寿命和孔的加工精度。●复合(组合)孔加工数控刀具:集合了钻头、铰刀、扩(锪)孔刀及挤压刀具的新结构、新技术,整体式、机夹式、专用复合(组合)孔加工数控刀具研发速度很快。总体而言:采用镶嵌模块式硬质(超硬)材料切削刃(含齿冠)及油孔内冷却、大螺旋槽等结构是其目前发展趋势。●数控铰刀:大螺旋升角(≤45°)切削刃、无刃 挤压铰削及油孔内冷却的结构是其总体发展方向,最大铰削孔径己达 φ≤400mm。●镗刀:单刃微调精密镗刀正被多刃扩(锪)孔刀、铰刀及复合(组合)孔加工专用数控刀具替代。国外研制出采用工具系统内部推拉杆轴向运动或高速离心力带平衡滑块移动,一次走刀完成镗削球面(曲面)、斜面及反向走刀切削加工零件背面的数控智能精密镗刀,代表了镗刀发展方向。●丝锥:研发出大螺旋升角(≤45°)丝锥,其切削锥

高速切削刀具

高速切削刀具 王平 (沈阳理工大学机械工程学院 110159) 摘要:刀具是实现高速切削加工的关键,本文阐述了高速切削刀具材料的要求、高速切削加工刀具材料的种类,以及高速切削不同材料时刀具材料的合理选用。 本文在分析传统BT (7∶24锥度)实心长刀柄基础上介绍国外HSK等新型工具系统, 指出高速加工工具系统中存在的主要问题及对策, 展望高速加工工具系统发展趋势和研究前景, 为选用高速工具系统提供了参考。 关键词:高速切削;刀具材料;高速加工; 工具系统。 High speed cutting tool materials WANG ping (College of mechanical engineering ShenYang Ligong University 110159) Abstract:Realization of high speed cutting tool is the key, in this paper, the requirements of high speed cutting tool material of high-speed cutting tool materials in high speed cutting of different kinds, as well as the material of cutting tool material selection.Based on the analysis of traditional BT ( 7 ∶24 taper) solid knife handle based on introducing foreign HSK model tool tool system for high speed machining system, points out the main problems and countermeasures existed in high speed machining tool system, prospect of development tendency and research foreground, for selection of high speed tool system is provided for reference. Key words:High speed cutting;Cutting tool materials;High speed machining;Tool system. 0前言 在机械加工中,切削、磨削加工目前仍是零件最终形成的主要工艺手段。切削加工的主要发展方向之一是高速切削(包括高速软切削、高速硬切削、高速干切削、大进给量切削等)。高速切削时,随着切削速度的提高,切削力逐渐减小,切削温升逐渐趋缓,加工表面质量提高,加工成本降低。为实现切削加工的高速化,必须研究及开发与高速切削相适应的刀具材料、刀具结构及刀具监控技术。 1高速切削刀具材料的要求 1.1 刀具材料的基本性能要求 刀具材料对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用,因此,刀具材料应具备如下一些基本性能:(1)硬度和耐磨性:刀具材料的硬度必须高于工件材料的硬度,一般要求在HRC60以上。一般来说,刀具材料的硬度越高,耐磨性就越好。(2)强度和韧性:刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。(3)耐热性:刀具材料的耐热性要好,能承受高的温度,具备良好的抗氧化能力。(4)工艺性能和经济性:刀具材料应具备好的锻造或者其他成型性能、热处理性能、焊接性能、磨削加工性能等,并具有较高的性能价格比。 1.2 高速切削加工对刀具材料的要求 刀具技术是实现高速切削加工的关键技术之一。高速切削加工时切削温度很高,因此,高速切削刀具的失效主要取决于刀具材料的热性能(包括刀具的熔点、耐热性、抗氧化性、高温力学性能、抗热冲击性能等)。高速干切削、高速硬切削和高速切削黑色金属时,最高切削速度主要受刀具材料耐热性的限制。例如,高速加工钢、铸铁等黑色金属时,最高切削速度只能达到加工铝

相关文档