文档库 最新最全的文档下载
当前位置:文档库 › 8大学物理习题及综合练习答案详解

8大学物理习题及综合练习答案详解

8大学物理习题及综合练习答案详解
8大学物理习题及综合练习答案详解

导体

8-1两个同心导体球壳A 和B ,A 球壳带电+Q ,现从远处移来一带+q 的带电体(见图8-1),试问(请阐明

理由):(1)两球壳间的电场分布与无+q 时相比有无变化?(2)两球壳间的电势差是否变化?(3)两球壳的电势是否变化?(4)如将B 球壳接地,上述(1)、(2)、(3)的情况又如何? 解:(1)由于静电屏蔽作用,+q 对两球壳间的电场没有影响。

(2)由?

?=B A AB l E U d 可知,由于E 不变,所以AB U 不变,即两求壳间的电势差不变。

(3)由电势叠加原理,+q 使两球壳的电势升高。

(4)B 球壳接地,由于屏蔽作用,两球壳间的电场分布不变,从而AB U 不变。因B 球壳接地,电势不变,所以A 球壳电势也不变。

8-2半径为R 1的导体球A ,带电q ,其外同心地套一导体球壳B ,内外半径分别为R 2和R 3(见图8-2),且

R 2=2R 1,R 3=3R 1。今在距球心O 为d =4R 1的P 处放一点电荷Q ,并将球壳接地。问(1)球壳B 所带的净电荷Q ’ 为多少?(2)如用导线将导体球A 与球壳B 相连,球壳所带电荷Q ” 为多少? 解:(1)根据静电平衡条件,A 球上电荷q 分布在A 球表面上,B 球壳内表面带电荷-q 。

由高斯定理可得,R r R 21<<:0204r r q E

πε=

A 球电势 1

02102

08)1

1(

4d 4d 2

1

R q R R q

r r

q l E U R R B

A

A πεπεπε=

-=

=

?=

?

?

设B 球壳外表面带电荷q ’,由电势叠加原理,A 球球心处电势

40302

01

0044'44R Q R q R q R q U πεπεπεπε++-+

=

1

010********'244R

R q R q R q πεπεπεπε++-= 1

0101

04434'

8R Q R q R q πεπεπε++

=

108R q

U A πε

=

=, Q q 43'-=∴ B 球壳所带净电荷 q Q q q Q --=-=4

3

''

(2)用导线将和相连,球上电荷与球壳内表面电荷相消。 Q q Q 4

3'"-==∴

8-3两带有等量异号电荷的金属板A 和B ,相距5.0mm ,两板面积都是150cm 2,电量大小都是2.66×l0-

8C ,

A 板带正电并接地(电势为零),如图8-3所示。略去边缘故应,求(1)两板间的电场强度E ;(2)B

板的电势;(3)两板间离A 板1.0mm 处的电势。

解:建立如图所示的坐标系,左右板的电荷面密度分别为σ+和σ-。 (1)两板间的电场强度

i S Q i i i E E E 000022σσσ==+=+=右左

N/C 100.210

5.11085.8106

6.25

2128i i C ?=????=--- 图8-1

(2)V 100.1100.5100.2d d 3350?-=???-=?-=-=?=

-?

?

B x A

B B x E x E l E U B

(3)V 0.200d 0

0.13

10-=-=?

-?

x E U 8-4点电荷q 处在导体球壳的中心,壳的内外半径分别为R 1和R 2(见图8-4)。求电场强度和电势的分布,并画出E - r 和U - r 曲线.。

解:将空间分为三个区域,根据静电平衡时电荷分布和高斯定理可得 1R r <: 02

014r r q E

=

; R r R 21<<: 02=E ;

2R r >: 02

034r r q E

πε=

电势分布

1R r <:)111(4d d d 2

103121

R R r q r E l E l E U r R r

r

+-=?+

?=

?=?

?

?

πε

21R r R ≤≤:2

034d d 2

R q r E l E U r r

=

?=

?=

?

?

2R r >:r

q l E U r

034d πε=

?=

?

电介质

8-5三平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 间相距2.0mm ,B 、C 两板都接

地(见图8-5)。如果使A 板带正电3.0×10-7C ,在忽略边缘效应时,(1)求B 和C 板上的感应电荷以及A 板的电势;(2)若在A 、B 板间充满相对介电常数为εr =5的均匀电介质,求B 和C 板上的感应电荷以及A 板的电势。 解:(1)外侧面上电荷为零,其它面由左至右分别设为1、2、3、4面。

A q S S =+32σσ ,A

B A

C U U ?=?,即 AB AC d d 0

302

εσεσ= 322σσ=∴,得:S

q A

33=

σ,S q A 322=σ

S

q

A 3221-=-=∴σσ, S q A 334-=-=σσ

3

C 1023271-?-=-

==∴A C q S q σ,C 1013

74-?-=-==A B q

S q σ V 1026.2323002?===

AC A AC A d S

q

d U σ (2)AB r AC d d εεσεσ0302=

3252

σσ=∴ 可得 S

q A 753=σ S q A 722=σ

S q A 7221-

=-=∴σσ,S q A 7534-=-=σσ,C 107

6

7271-?-=-==∴A C q S q σ C 107

15

7574-?-=-

==A B q S q σ,V 1070.9722002?===AC A AC A d S q d U εεσ

8-6在一半径为R 1的长直导线外,套有内外半径分别为R 1和R 2、相对介电常数为εr 的护套。设导线沿轴

线单位长度上的电荷为λ,求空间的P E D

、、。

解:取同轴长为l ,半径为r 的圆柱面为高斯面,由高斯定理

rl D S D S

π2d ?=??

1R r <:02=?rl D π,0=∴D ,0=E ,0=P

R r R 2

1<<:l rl D λπ=?2,02r r

D πλ=∴,0

002r r D E r r

επελεε== 0

02)

11(r r

E P r e

πλεεχ-

==

2R r >:l rl D λπ=?2, 02r r

D πλ=∴,0

002r r D E

πελε=

=, 00==E P e εχ 8-7半径为R 0的金属球,带电+Q ,置于一内外半径分别为R 1和R 2的均匀介质球壳中,介质的相对介电常

数为εr ,如图8-7所示。求:(1)电场强度和电位移分布;(2)电势分布;*(3)介质中的电极化强度;*

(4)介质壳内外表面上的极化电荷面密度。 解:(1)作一半径为r 的同心球面为高斯面,由高斯定理

0R r <:01=E

10R r R <<: Q r D S D S =?=??2224d π ,0224r r Q D π=∴,02

002

2

4r r Q D E

πεε== 21R r R <<: Q r D S D S =?=??

2334d π ,0234r r Q D π=∴,0

20033

4r r Q D E r r

επεεε== 2R r >:Q r D S D S =?=??

2444d π ,02

44r r Q D π=∴,02003

4

4r r Q D E πεε==

3

(2)0R r <:r E r E r E l E l E U R R R R R R r

r d d d d d 2

2

1

1

43211?+?+?+

?=?=

?

?

?

?

?∞

?

?

?

+

+

=

2

2

1

1

d 4d 4d 42

02

02

0R R R r R R r r Q

r r Q r r Q

]1)11(1)11[(

42

21100

R R R R R Q r +-+-=

επε 10R r R <<:r E r E r E l E U R R R R r

r

d d d d 2

2

1

1

4322?+?+?=?=????∞

]1)11(1)11[(42

2110R R R R r Q

r +-+-=

επε 21R r R <<:r E r E l E U R R r

r

d d d 2

2

433?+?=?=???∞

]1

)11(1[

42

20R R r Q

r +-=

επε

2R r >: r E l E U r

r

d d 44?=

?=?

?

r

Q 04πε=

(3)0

2

304)11(r r Q E P r e πεεχ-==

(4)R 1处介质壳内表面的法向指向球心,与P

反向

n P

?=∴'1σ2

1

4)

1

1(R Q

r

πε-

-= R 2处介质壳外表面的法向向外,与P 同向,n P ?=∴'2σ2

24)1

1(R Q r πε-=

电容器

8-8平行板电容器,极板而积为S ,板间距为d 。相对介电常数分别为εr1和εr2的两种电介质各充满板间的

一半,如图8-8所示。(1)此电容器带电后,两介质所对的极板上自由电荷面密度是否相等?为什么?(2)此时两介质内的电位移大小D 是否相等?(3)此电容器的电容多大? 解:(1)设左右两侧极板上的电荷面密度分别为1σ±和2σ±,因两侧电势差相等

d E d E 21=∴ 即 21E E =,有 2

02101r r εεσ

εεσ=

2

2

11r r εσεσ=

,21r r εε≠ 21σσ≠∴ (2)对平行板

σ=D ,由21σσ≠ 可知 21D D ≠

图8-8

图8-7

(3)左右两侧电容分别为d

S

C r 2101

εε=

,d

S

C r 2202εε=

,两电容并联 )(221021r r d

D

C C C εεε+=

+=

8-9由半径为R 2的外导体球面和半径为R 1的内导体球面组成的球形电容器中间,有一层厚度为d 、相对介

电常数为εr 的电介质,其中d <R 2—R 1,求该电容器的电容。 解:设两倒替球面分别带电荷Q +和Q -。由高斯定理

d R r R +<<11:02

014r r Q E r

επε=

;21R r d R <<+:02

024r r Q E πε=

两球壳间的电势差为

r E r E l E U R d

R d

R R R R d d d 2

111

2

1

21?+

?=

?=

??

?

?

++?

?

+++

=

2

111

d 4d 42

02

0R d

R d

R R r r r Q r r Q πεεπε

)]1

1()11(1[

421110R d R d R R Q r -+++-=

επε)(4)]([12101212d R R R d R R R d R Q r r +--+=

επεε )

()(412121210d R R R d R d R R R U Q

C r r --++=

?=

∴εεπε 电场能量

8-10一个电容器电容C 1=20.0μF ,用电压V =1000V 的电源给该电容器充电,然后拆下电源,并用另一不

带电的电容器C 2接于原来电源处,已知C 2=5.00 μF 。求:(1)两电容器各带电多少?(2)C 1两端电势差多大?(3)C 1能量损失多少? 解:(1)两电容并联后总电量不变。设C 1、C 2各带电Q 1、Q 2,有

2

211C Q C Q =

,V C Q Q Q 121==+,解得 C 106.11010520202362

21211--?=??+=+=V C C C Q C 104106.1101020-3236112?=?-??=-=--Q V C Q

(2)C 1两端的电势差 V 8001020106.16

2

111=??==

--C Q V (3)能量损失

J 280010)520(2

1

)10(102021)(212126236212121=??+?-???=+-=

?--V C C V C W 8-11两同轴圆柱面,长度均为l ,半径分别为a 和b ,两圆柱面之间充有相对介电常数为εr 的均匀电介质。

当这两个圆柱面带有等量异号电菏+Q 和-Q 时,求:(1)在半径为r 处(a <r <b ),电场的能量密度是多少? r 处厚度为dr 、长度为l 的圆柱簿壳中的电场能量为多少?(2)电介质中的总电能是多少?能否从总电场能量推算出圆柱形电容器的电容?(不计边缘效应) 解:(1)由高斯定理可得r 处得电场强度大小为 rl

Q

r E πεπελ22=

=

电场能量密度,2222

228)2(2121l

r Q rl Q E w εππεεε===

r 处d r 厚度簿壳中的电场能量为 r rl

Q r rl l r Q V w W d 4d 28d d 2

2222πεπεπ=?==

(2)电介质中总能量 a

b

l Q r r l Q W W b a V ln 4d 4d 22πεπε===?

?

由电容器储能公式 C

Q W 2

21= 可得,a

b l W Q C ln 222πε==

8-12一平板空气电容器的电容C =0.001微法拉,充电到电量为Q =1微库后,将输电线断开。求:(1)极

板间电势差及此时的电场能;(2)将两极板拉开到原距离的两倍,计算拉开前后场能的改变,并解释其原因。

解:(1)V 1011011013

96?=??==?--C Q U , J 10510

1)101(212149

262---?=???==C Q W (2)两极板拉开时,极板上电荷保持不变,电容 C d S C 2

1

2'0==ε

01052121'21'42

22>?==-=-=?∴-J C

Q C Q C Q W W W ,这是由于外力克服两板间静电引力做功所致。

8-13用输出电压为U 的稳定电源为一电容为C 的空气平行板电容器充电,在电源保持连接的情况下,试

求将两极板间距离增大至原距离n 倍时外力所做的功。(提示:电源要做功) 解:设原来两板距离为d ,板上电荷为Q 。由d

S

C 0ε=

可知,距离由d 增大到nd 时

n C nd

S

C =

=

0'ε,n

Q

n CU U C Q ==='' 即电荷减少。 由于连着电源,除外力做功外,电源也要做功。电容器两板距离拉大后,电容器能量增量为

01)1(21'2121'222<-=-=-=-=?W n

n

n n CU U C CU W W W

由于板上电荷减少,即向电源充电,所以电源做负功

0)

1(21)(<-=-=-=??=W n

n QU n n U Q n Q U Q A 电

由功能原理 W A A ?=+电外,221

1CU n

n W n n A W A -=-=-?=电外

8-14一平行板电容器极板面积为S ,间距为d ,接在电源上以维持其电压为U 。将一块厚度为d 、介电常数

为ε的均匀电介质板插入极板间空隙。计算:(1)静电能的改变;(2)电源对电场所做的功;(3)电场对介质板所做的功。 解:(1)插入前后,电容器电容为 d S

C 01ε=

,d

S

C ε=

2

)(22121022

12212εε-=-=-=?∴d

SU U C U C W W W

(2)d

U

S Q E ===001εεσ ,d U S Q E ==

=εεσ''2,d SU U Q Q U Q A 20)()'(εε-=-=??=∴电 (3)电场对介质板所做的功等于外力克服静电力所做功的负值

W A A ?=+电外 ,d SU A W A 2)(20εε--=-?=∴电外,d

SU A A 2)(2

0εε-=-=∴外场

大学物理综合练习题及答案

综合练习题AII 一、 单项选择题(从每小题给出的四个备选答案中,选出一个正确答案,并 将其号码填在题干后的括号内,每小题2分,共计20分)。 1、 关于高斯定理,下面说法正确的是:( ) A. 高斯面内不包围电荷,则面上各点的电场强度E 处处为零; B. 高斯面上各点的E 与面内电荷有关,与面外的电荷无关; C. 穿过高斯面的电通量,仅与面内电荷有关; D. 穿过高斯面的电通量为零,则面上各点的E 必为零。 2、 真空中有两块互相平行的无限大均匀带电平板,其中一块的电荷面密度为 +σ,另一块的电荷面密度为-σ,两板间的电场强度大小为:( ) A. 0; B. 023εσ; C. 0εσ; D. 0 2εσ 。 3、 图1所示,P 点在半圆中心处,载流导线旁P 点的磁感应强度B 的大小为:( ) A. μ0I(r r 2141+π); B. μ0I(r r 2121+π); C. μ0I(r r 4141+π); D. μ0I(r r 4121+π) 。 4、 一带电粒子以速率V 垂直射入某匀强磁场B 后,运动轨迹是圆,周期为T 。若以速率2V 垂直射入,则周期为:( ) A. T/2; B. 2T ; C. T ; D. 4T 。 5、 根据洛仑兹力的特点指出下列叙述错误的为:( ) A. 洛仑兹力与运动电荷的速度相垂直; B. 洛仑兹力不对运动电荷做功; C. 洛仑兹力始终与磁感应强度相垂直;D. 洛仑兹力不改变运动电荷的动量。 6、 在杨氏双缝干涉实验中,两条狭缝相距2mm ,离屏300cm ,用600nm 光 照射时,干涉条纹的相邻明纹间距为:( ) A. 4.5mm ; B. 0.9mm ; C. 3.12mm ; D. 4.15mm 。 7、 若白光垂直入射到光栅上,则第一级光谱中偏离中心最远的光是:( ) A. 蓝光; B. 黄光; C. 红光 ; D. 紫光。 8、 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片。若以此入射光为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为:( ) A. 2/3; B. 1/5; C. 1/3; D. 1/2。 9、 单缝夫琅和费衍射中,若屏幕上的P 点满足2/5sin λ?=a ,则该点为:( ) A. 第二级暗纹; B. 第五级暗纹; C. 第二级明纹; D. 第五级明纹。 10、 当加在光电管两极的电压足够高时,光电流会达到一个稳定值,这个稳定 值叫饱和电流。要使饱和电流增大,需增大照射光的:( ) A. 强度; B. 照射时间; C. 波长; D. 频率 。 二、 填空题(每小题2分,共计20分) 1、 图2所示,半径为R 电流为I 的圆形载流线圈在均 匀磁场B 中所受的磁力矩大小为 。 2、 电量均为+q 的两个点电荷相距2x ,则在这两个点电荷连线中点处的电势为 。 3、 在真空中,半径为R 的孤立导体球的电容为 。 4、 静电场由静止电荷产生,感生电场由 产生。 5、 真空中波长为λ的单色光在折射率为n 的介质中,由a 点传到b 点相位

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

《大学物理》课后习题答案

《大学物理》课后习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习题4-12图 H L H h H 4-12 一个器壁竖直的开口水槽,如图所示,水的深度为H =10m ,在水面下h =3m 处的侧壁开一个小孔。试求:(1)从小孔射出的水流在槽底的水平射程L 是多少(2)h 为何值时射程最远最远射程是多少 解:(1)设水槽表面压强为p 1,流速为v 1,高度为h 1, 小孔处压强为p 2,流速为v 2,高度为h 2,由伯努利方程得: 22 2212112 121gh v p gh v p ρρρρ++=++ 根据题中的条件可知: 211021,0,h h h v p p p -==== 由上式解得:gh v 22= 由运动学方程:221gt h H = -,解得: g h H t ) (2-= 水平射程为:)(m 17.9)310(34)(42=-??=-==h H h t v L (2)根据极值条件,令0=dh dL ,L出现最大值, 即 022 =--h hH h H ,解得:h=5m 此时L的最大值为10m 。 4-14 水在粗细不均匀的水平管中作稳定流动,已知在截面S1处的压强为110Pa ,流速为0.2m/s ,在截面S2处的压强为5Pa ,求S2处的流速(把水看作理想流体)。 解:由伯努利方程得:2 222112 121v p v p ρ+=ρ+ 2323100.12 1 52.0100.121110v ???+=???+ )(5.012-?=s m v 4-16在水管的某一端水的流速为1.0m/s ,压强为5100.3?Pa ,水管的另一端比第一端降低了20.0m ,第二端处水管的横截面积是第一端处的1/2。求第二 端处的压强。设管中的水为理想流体,且作稳定流动。 解: 由连续性方程 2 21 1v S v S = 得:)(211 2 12212 -?=?== s m v S S v 由伯努利方程22 2212112 121gh v p gh v p ρρρρ++=++ 得:)()(2 121222112h h g v v p p -+-+ =ρρ

大学物理习题集答案.doc

说明:字母为黑体者表示矢量 一、选择题 1. 关于静电场中某点电势值的正负,下列说法中正确的是: [ C ] (A) 电势值的正负取决于置于该点的试验电荷的正负 ; (B) 电势值的正负取决于电场力对试验电荷作功的正负 ; (C) 电势值的正负取决于电势零点的选取 ; (D) 电势值的正负取决于产生电场的电荷的正负。 2. 真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷,如图所示。 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处电势为: [ B ] (A) q (B) 1 ( q Q ) Q 4 r 4 r R r P (C) q Q (D) 1 ( q Q q ) O q R 4 0 r 4 0 r R 3. 在带电量为- Q 的点电荷 A 的静电场中, 将另一带电量为 q 的点电荷 B 从 a 点移到 b 点, a 、 b 两点距离点电荷 A 的距离分别为 r 1 和 r 2,如图所示。则在电荷移动过程中电场力做的 功为 [ C ] (A) Q 1 1 (B) qQ 1 1 A r 1 a 4 ( ) ; ( ) ; 0 r 1 r 2 4 0 r 1 r 2 - Q qQ 1 1 qQ r 2 b (C) ) ; (D) 。 ( r 2 4 0 ( r 2 r 1 ) 4 0 r 1 4. 以下说法中正确的是 [ A ] (A) 沿着电力线移动负电荷 , 负电荷的电势能是增加的; (B) 场强弱的地方电位一定低 , 电位高的地方场强一定强; (C) 等势面上各点的场强大小一定相等; (D) 初速度为零的点电荷 , 仅在电场力作用下 , 总是从高电位处向低电位运动; (E) 场强处处相同的电场中 , 各点的电位也处处相同 . 二、填空题 R 1.电量分别为 q , q , q 的三个点电荷位于一圆的直径上 , 两个在 q q 2 1 q 1 2 3 O 3 圆周上 , 一个在圆心 . 如图所示 . 设无穷远处为电势零点,圆半径为 ,则 b 点处的电势 U = 1 ( q 1 q 3 ). b R 4 R 2 q 2 2.如图所示,在场强为 E 的均匀电场中, A 、B 两点间距离为 E , 连线方向与 E 的夹角为 . 从 A 点经任意路径到 B 点的 d AB A B d

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理练习册习题答案

大学物理练习册习题答案

练习一 (第一章 质点运动学) 一、1.(0586)(D )2.(0587)(C )3.(0015)(D )4.(0519)(B ) 5.(0602)(D ) 二、1.(0002)A t= 1.19 s t= 0.67 s 2.(0008)8 m 10 m 3.(0255)() []t t A t ωβωωωβ βsin 2cos e 22 +--,()ωπ/122 1+n , (n = 0, 1, 2,…) 4.(0588) 30/3 Ct +v 4 00112 x t Ct ++ v 5.(0590) 5m/s 17m/s 三、 1.(0004)解:设质点在x 处的速度为v , 2 d d d 26 d d d x a x t x t ==?=+v v ()2 d 26d x x x =+??v v v () 2 2 1 3 x x +=v 2.(0265)解:(1) /0.5 m/s x t ??==-v (2) 2 =/96dx dt t t =- v (3) 2= 6 m/s -v |(1.5)(1)||(2)(1.5)| 2.25 m S x x x x =-+-= 3.(0266)解:(1) j t r i t r j y i x r ????? sin cos ωω+=+=

(2) d sin cos d r r t i r t j t ωωωω==-+v v v v v 22 d cos sin d a r t i r t j t ωωωω==--v v v v v (3) ()r j t r i t r a ???? sin cos 22 ωωωω-=+-= 这说明 a ?与 r ? 方向相反,即a ?指向圆心. 4. 解:根据题意t=0,v=0 --------==?+?∴=?+?=====?+?=+?+?? ??? ??由于及初始件v t t r t t r dv adt m s i m s j dt v m s ti m s tj dr v t r m i dt dr vdt m s ti m s tj dt r m m s t m s t j 0 220 220 220 2222[(6)(4)] (6)(4)0,(10)[(6)(4)][10(3)][(2)] 质点运动方程的分量式: --=+?=?x m m s t y m s t 2 2 22 10(3)(2) 消去参数t ,得到运动轨迹方程 =-y x 3220 练习二(第一章 质点运动学) 一、1.(0604)(C ) 2.(5382)(D ) 3.(5627)(B ) 4.(0001)(D ) 5.(5002)(A ) 二、1.(0009) 0 bt +v 2. (0262) -c (b -ct )2/R

大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M =l024kg ,月球的质量m =l022 kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何q 0受的总电场力为何(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理习题册答案(2)

、选择题 练习十三 (简谐振动、旋转矢量、简谐振动的合成) 1. 一弹簧振子,水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (A) 竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B) 竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C) 两种情况都作简谐振动; (D)两种情况都不作简谐振动。 d2x 解:(C)竖直弹簧振子:m—2k(x I) mg kx( kl dt 弹簧置于光滑斜面上:m吟 dt2k(x I) mg sin kx ( )d 2x mg), 勞dt2 d2x kl mg),可 dt2 2 . 两个简谐振动的振动曲线如图所示,则有(A) n n (A) A超前一;(B) A落后一;(C) A超前n; 2 2 (D) A落后It 。 2 x 3. 一个质点作简谐振动,周期为T,当质点由平衡位置向x轴正方向运动时,由 之一最大位移这段路程所需要的最短时间为 (B) /、T/、T T /、T (A) (B) ; (C) (D) 。 41268 解:(A)X A A cos t, X B Acos( t /2) 解:(B)振幅矢量转过的角度/6 ,所需时间t 平衡位置到二分 4.分振动表式分别为x13cos(50 n 0.25 n 和x2 为: (A) x 2cos(50 n t 0.25 u);(B) (C) x 5cos(50 n 1 arcta n —); 2 7 (D 解:(C)作旋转矢量图或根据下面公式计算5 . /6 T 2 /T 12 4cos(50 n 0.75 n (SI 制)则它们的合振动表达式x 5cos(50 n); A A 2AA COS(20 10) . 32 42 2 3 4cos(0.75 0.25 丄1 Asin 10 A2sin 20丄1 3sin(0.25 ) 4sin(0.75 ) tg - _ - — tg 3cos(0.25 ) cos 10 A? cos 20 4cos(0.75 ) 2 tg 两个质量相同的物体分别挂在两个不同的弹簧下端, 弹簧的伸长分别为5; l2,且h 2 l2,则 两弹簧振子的周期之比T1 :T2为(B) (A) 2 ; ( B) 2 ; ( C) 1/2 ; ( D) 1/、2。

大学物理之习题答案

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

大学物理练习题册答案

练习一 质点运动学 1、26t dt d +== ,61+= ,t v 261 331+=-=-? , a 241 31 331=--=- 2、020 22 12110 v Kt v Ktdt v dv t Kv dt dv t v v +=?-?=??-= 所以选(C ) 3、因为位移00==v r ?,又因为,0≠?0≠a 。所以选(B ) 4、选(C ) 5、(1)由,mva Fv P ==dt dv a = ,所以:dt dv mv P =,??=v t mvdv Pdt 0 积分得:m Pt v 2= (2)因为m Pt dt dx v 2==,即:dt m Pt dx t x ??=0 02,有:2 3 98t m P x = 练习二 质点运动学 (二) 1、 平抛的运动方程为 202 1gt y t v x ==,两边求导数有: gt v v v y x ==0,那么 2 22 0t g v v +=, 2 22 022t g v t g dt dv a t +==, = -=22 t n a g a 2 220 0t g v gv +。 2、 2241442s /m .a ;s /m .a n n == 3、 (B ) 4、 (A ) 练习三 质点运动学

1、023 2332223x kt x ;t k )t (a ;)k s (t +=== 2、0321`=++ 3、(B ) 4、(C ) 练习四 质点动力学(一) 1、m x ;912== 2、(A ) 3、(C ) 4、(A ) 练习五 质点动力学(二) 1、m 'm mu v )m 'm (v V +-+-=00 2、(A ) 3、(B ) 4、(C ) 5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 1762 1212 024=-= 练习六、质点动力学(三) 1、J 900 2、)R R R R ( m Gm A E 2 12 1-= 3、(B ) 4、(D ) 5、)(2 1 222B A m -ω 练习七 质点动力学(四) 1、) m m (l Gm v 212 2 12+= 2、动量、动能、功 3、(B )

大学物理综合练习册答案

《大学物理》综合练习(一)参考答案 一、选择题 1.D ;2.D ;3.C ;4.C ;5.C ;6.C ;7.B ;8.A ;9.D ;10.D 。 二、填充题 1.m /s 2-;s 2;m 3;m 5。 2.j t i t ? ?)3 12()1(32+++;j t i ??22+。 3. v h l h 2 2 -。 4.2m/s 8.4;2m/s 4.230。 5.m t kv mv t v +=00 )(;x m k e v x v -=0)(。 6.J 18-。 7.rg v π16320;3 4。 8.R GMm 6- 。 9.θsin 2gl ;θsin 3mg ; θsin 2g ;θcos g 。 10.j mv ?2-;j R mv ? π22-。 11.v M m m V +-。 12.m 3.0。 13.100 r r v ;2 0212 121mv mv -。 三、计算题 1.(1) j t i t r ??? )1(342++=;j t i t v ???346+=;j t i a ???2126+=。 (2) j t i t r r r ??? ??42013+=-=?。 (3) 19 2 +=x y 。 2.(1) ? -=+ =t t t a v v 02 01d ,3003 1 3d t t t v x x t -+=+=? 。 (2) 0=v 时s 1=t ,该时刻2m/s 2-=a ,m 3 2 3=x 。 (3) 0=t 时m 30=x ,0=v 时(相应s 1=t )m 32 31=x ,m 3 201=-=?x x x 。 3.(1) ??? ??==-=-332 2211a m g m a m g m T a m T g m μμ 解得 ??? ????=====+-=23232 2121m/s 96.12.0m/s 88.56.0g g m m a g g m m m m a μμ

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理习题册答案 (2)

x O 1A 2 2 练习 十三 (简谐振动、旋转矢量、简谐振动的合成) 一、选择题 1. 一弹簧振子,水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 解:(C) 竖直弹簧振子:kx mg l x k dt x d m )(22(mg kl ),0222 x dt x d 弹簧置于光滑斜面上:kx mg l x k dt x d m sin )(22 (mg kl ),0222 x dt x d 2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前 2π; (B )A 落后2π;(C )A 超前π; (D )A 落后π。 解:(A)t A x A cos ,)2/cos( t A x B 3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B ) (A )4T ; (B )12T ; (C )6T ; (D )8 T 。 解:(B)振幅矢量转过的角度6/ ,所需时间12 /26/T T t , 4. 分振动表式分别为)π25.0π50cos(31 t x 和)π75.0π50cos(42 t x (SI 制)则它们的合振动表达式为: (C ) (A ))π25.0π50cos(2 t x ; (B ))π50cos(5t x ; (C )π1 5cos(50πarctan )27 x t ; (D )7 x 。 解:(C)作旋转矢量图或根据下面公式计算 )cos(210202122 2 1 A A A A A 5)25.075.0cos(432432 2 ; 7 1 2)75.0cos(4)25.0cos(3)75.0sin(4)25.0sin(3cos cos sin sin 112021012021011 0 tg tg A A A A tg 5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l 和2l ,且212l l ,则两弹簧振子的周期之比21:T T 为 (B ) (A )2; (B )2; (C )2/1; (D )2/1。 解:(B) 弹簧振子的周期k m T 2 ,11l mg k , 22l mg k ,22 121 l l T T 6. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为 x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是: (B ) (A) 2 max 2max /x m k v ; (B) x mg k / ; (C) 2 2/4T m k ; (D) x ma k / 。 解:B 7. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动表式为x 1 = A cos(t + ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质 点的振动表式为 (B ) (A) )π21 cos( 2 t A x ; (B) )π2 1cos(2 t A x ; x t o A B 1 A 4 / 4 /3 2 A A x O )0(A )(t A 3/ 6/

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理课后习题答案

大学物理课后习题答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第十一章 磁场与介质的相互作用 1、试用相对磁导率r 表征三种磁介质各自的特性。 解:顺磁质r >1,抗磁质r <1,铁磁质r >>1 2、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质。若线圈中载有稳恒电流I ,求管中任意一点的磁场强度大小。 解:磁场强度大小为H = NI / l . 3、置于磁场中的磁介质,介质表面形成面磁化电流,试问该面磁化电流能否产生楞次─焦耳热为什么 答:不能.因为它并不是真正在磁介质表面流动的传导电流,而是由分子电流叠加而成,只是在产生磁场这一点上与传导电流相似。 4、螺绕环上均匀密绕线圈,线圈中通有电流,管内充满相对磁导率为r =4200的磁介质.设线圈中的电流在磁介质中产生的磁感强度的大小为B 0,磁化电流 在磁介质中产生的磁感强度的大小为B',求B 0与B' 之比. 解:对于螺绕环有:nI B r μμ0=,nI B 00μ= 5、把长为1m 的细铁棒弯成一个有间隙的圆环,空气间隙宽为mm 5.0,在环上绕有800匝线圈,线圈中的电流为1A ,铁棒处于初始磁化曲线上的某个状态,并测得间隙的磁感应强度为T 5.0。忽略在空气隙中的磁通量的分散,求铁环内的磁场强度及铁环的相对磁导率。 解:⑴沿圆环取安培环路,根据∑?=?i L I l d H ,得 NI d B HL =+00 μ (此处d L >>,忽略空气隙中的B φ分散)

于是 m A L d B NI H /60100 ≈-=μ ⑵ H B r μμ0= ,而0B B ≈,37.6620== ∴H B r μμ 6、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为 A 时,测得铁环内的磁感应强度的大小B 为 T ,求铁环的相对磁导率r (真空磁导率0 =4×10-7 T ·m ·A -1)。 解:因为:I l N nI B r μμμ0== 所以: 7、一根很长的同轴电缆,由一导体圆柱 (半径为a )和同轴的导体圆管(内、外半 径分别为b 、c )构成。使用时,电流I 从一导体流出,从另一导体流回,设电流都是均匀地分布在导体的横截面上,求导体圆柱内(a r <)和两导体之间 (b r a <<)的磁场强度H 的大小。 解:由于电流分布具有对称性,因而由此产生的磁场分布也必然具有相应的轴对称性,所以在垂直于电缆轴的平面内,以轴为中心作一圆环为安培环路。应用磁介质中的安培环路,计算安培环路的磁场强度矢量的线积分。 据 ∑?=?i L I l d H ,当a r <时,22a Ir H π= 当b r a <<时,r I H π2= 8、在无限长载流空心螺线管内同轴地插入一块圆柱形顺磁介质,若1、2点为圆柱介质中分面上靠近柱面而分居柱面两边的两个点。在1、2点处的磁感应强度分别为1B 、2B ,磁场强度分别为21H 、H ,则它们之间的关系是怎样的

大学物理第一学期练习册答案概要

练习一 质点运动学 一、选择题 1.【 A 】 2. 【 D 】 3. 【 D 】 4.【 C 】 二、填空题 1. (1) 物体的速度与时间的函数关系为cos dy v A t dt ωω= =; (2) 物体的速度与坐标的函数关系为2 2 2 ()v y A ω +=. 2. 走过的路程是 m 3 4π ; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3 π α= 3.在第3秒至第6秒间速度与加速度同方向。 4.则其速度与时间的关系v=3 2 03 1Ct dt Ct v v t = =-? , 运动方程为x=4 0012 1Ct t v x x +=-. 三、计算题 1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2 ? ?? ? -+=分别以m 和s 为单位,求: (1) 质点的轨迹方程,并作图; (2) t=0s 和t=2s 时刻的位置矢量; (3) t=0s 到t=2s 质点的位移?v ,?r ==? ?? (1)轨迹方程:08y 4x 2 =-+; (2) j 2r 0?? =,j 2i 4r 2???-= (3) j 4i 4r r r 02??? ??-=-=?,j 2i 2t r v ????-==?? 2. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图5所示。如用速度V 0收绳,计算船行至离岸边x 处时的速度和加速度。 选取如图5所示的坐标,任一时刻小船满足: 222h x l +=,两边对时间微分 dt dx x dt dl l =,dt dl V 0-=,dt dx V = 02 2V x h x V +-= 方向沿着X 轴的负方向。 5 图

相关文档
相关文档 最新文档