文档库 最新最全的文档下载
当前位置:文档库 › 抑制载波双边带调幅(DSB-SC)和解调的实现.

抑制载波双边带调幅(DSB-SC)和解调的实现.

抑制载波双边带调幅(DSB-SC)和解调的实现.
抑制载波双边带调幅(DSB-SC)和解调的实现.

西南科技大学

通信系统设计报告

课程名称:通信系统课程设计

设计名称:抑制载波双边带调幅(DSB-SC)和解调的实现

姓名:

学号:

班级:通信1104

指导教师:秦明伟

起止日期:2014.6.20-6.30

西南科技大学信息工程学院制

方 向 设 计 任 务 书

学生班级: 通信1104 学生姓名: 学号: 2011

设计名称: 双边带抑制载波调幅与解调的实现

起止日期: 2014.6.20-2014.6.30 指导教师:秦明伟

设计要求:对于信号0sin (200)

||()0

c t t t f t ≤?=?

?其它

(其中02t s =,载波为cos2c f t π,200c f Hz =),用抑制载波的双边带调幅实现对信号进行调制和解调。 要求:

采用matlab 或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC )和解调,并且绘制:

● 信号()f t 及其频谱; ● 载波cos2c f t π;

● DSB-SC 调制信号及其频谱; ● DSB-SC 调制信号的功率谱密度;

● 相干解调后的信号波形。

方 向 设 计 学 生 日 志

时间 设计内容

6.21 查阅资料,确定方案

6.22 复习抑制载波双边带调幅的原理 6.23 设计总体方案 6.24 安装 MATLAB 6.25-26 学习MATLAB 6.27 编写 m 文件 6.28 调试程序 6.29 完成实验报告 6.30

答辩

抑制载波双边带调幅(DSB-SC)和解调的实现

一、摘要

抑制载波双边带也称双边带,它是在常规双边带的基础上抑制掉载波分量,使总功率全部包含在双边带中。和常规双边带信号相比,它节省了载波功率,调制效率得以提高。它的带宽仍与常规双边带信号一样,是基带信号带宽的两倍。抑制载波双边带信号的解调只能采用相干解调。本文对抑制载波双边带信号的实现和解调进行了分析。

二、设计目的与意义

本设计要求采用matlab或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,并且绘制相关的图形。

在通信系统中,从消息变换过来的信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这些信号在信道中直接传输,则会严重影响信号传输的有效性和可靠性。因此这种信号在许多信道中均是不适宜直接进行传输的。在通信系统的发射端通常需要调制过程,将信号的频谱搬移到所希望的位置上,使之转化成适合信道传输或便于信道多路复用的以调信号。而在接收端则需要解调过程,以恢复原来有用的信号。调制解调过程常常决定了一个通信系统的性能。随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调的过程。同时调制还可以提高性能,特别是抗干扰能力,以及更好的利用频带。

三、设计原理

3.1 调制

调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输号的,调制过程可以将信号的频谱搬移到容易一电磁波形式辐射的较高频范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。

设调制函数为f(t) ,载 波 函 数 为

cos c w t ,则调制后的函数表达式为

()()cos c SDSB t f t w t =,根据题目要求

0sin (200)||()0

c t t t f t ≤?=?

?其它

载波函数为

cos(400)

t π,所以调制后的函数表达式为:

sin (200)cos(400)||20(){c t t t f t π≤=

振幅调制是一种实用很广的连续波调制方式。调幅信号X(t)主要有调制信号和载波信号组成。调幅器原理如图1所示:

图一:调幅器原理框图

其中载波信号C(t)用于搭载有用信号,其频率较高。幅度调制信号含有有用信息,其频率比较低。 3.2 解调

相干解调就是将得到的调制后信号乘以载波函数, 然后通过低通滤波器, 就可以恢复出原始信号。 将原始信号做 fft 变换就可以得到其频率特性。其原理框图为:

图二:解调器原理框图

3.3 频谱分析

当制信号f(t)为确定信号时,已调信号的频谱为

()c c SDSB=1/2F -+1/2F(+)ωωωω

图三:双边带调幅频谱图

3.4、功率谱密度分析

通信中,调制信号通常是平稳随机过程。其功率谱密度与自相关函数之间是一对付氏变换关系。这样就可以先找到信号的自相关函数,然后通过付氏变换来实现信号的功率谱密度。

四、详细设计步骤

4.1 绘制已知信号f(t)

根据f(t) 表达示0sin (200)

||()0

c t t t f t ≤?=?

?其它

,02t s =。由于函数是辛格

函数故利用时间t 与f(t)的关系,再利用subplot 函数实现子图的画法,并且对所画的图做标识,如标题,幅度。具体图形如图4:

图四:已知信号波形

4.2 绘制f(t)信号的频谱

已知信号f(t),现在我们可以将其做 fft 变换,具体可以取40000个点来实现。并且运用算法yw=2* /40000*abs(fftshift(yk)),fw=[-25000:24999]/50000*fs 将信号由时域转到频域,运行程序,如下:

图五:已知信号波形的频谱

4.3 绘制载波的波形

由给定的载波为cos2c f t π,200c f Hz =,的出余弦信号的画法,这样再利用函数实现图的画法,并且对所画的图做标识,如标题,幅度,时间。具体图形如图6:

图六:载波信号

4.4 绘制已调信号

由于调制信号知:抑制载波双边带调幅的调制过程实际上就是调制信号与载波的相乘运算。故此时将上述两个信号相乘,就可以得出已调信号y4, y4=sinc(t.*200).*cos(2*π.*fc.*t). 这样再利用subplot 函数实现子图的画法,并且对所画的图做标识,如标题,幅度,时间。具体图形如图7:

图七:已调信号

4.5 绘制已调信号频谱

已知y4=sinc(t.*200).*cos(2*π.*fc.*t),现在我们可以将其做 fft 变换,具体可以取4000个点来实现。并且运用算法yw=2*π/4000*abs(fftshift(yk)),fw=[-2500:2499]/5000*fs,将信号由时域转到频域,通过 abs 函数求出其对应点的模,运行程序,生成的图下:

图八:已调信号频谱图

4.6 绘制DSB-SC调制信号的功率谱密度

调制信号通常是平稳随机过程。其功率谱密度与自相关函数之间是一对付氏变换关系。此时先求调制信号的自相关函数,利用命令[c,lags]=xcorr(y4,20)以及plot(lags/fs,c)以及plot(lags/fs,c)就可以实现调制信号的自相关函数,此时将自相关函数求付氏变换,利用SDSBp=fft(c,5000;fw=[-2500:2499]/5000*fs;yw=2* /4000*abs(fftshift(SDSBp))即可实现,然后取绝对值可以实现。也可以用直接法直接求功率谱密度函数:yw=yw.*yw。运行程序,生成的图下:

图九:调制信号的自相关函数图与调制信号的功率谱密度图

4.7绘制相干解调后的波形

由抑制载波双边带调幅的解调过程实际上实际是将已调信号乘上一个同频同相

的载波。即y7=y4.*y3=sinc(t.*200).*cos(2*π.*fc.*t)*cos(2*π.*fc.*t).

运行程序,生成的图下:

图十:相干解调后的波形

4.8 经低通滤波器恢复信号

用一个低通滤波器就可以恢复原始的调制信号,这种调制方法称为相干解调。主

要程序语句为[n,Wn]=ellipord(Wp,Ws,Rp,Rs);[b,a]=ellip(n,Rp,Rs,Wn);这

样可以实现求取阶数n和传递函数的分子分母b,a;Wp=40/100; Ws=45/100; 这时的100是最高频率的一半,而40则是在100/π和45之间。

Xl=5*filter(b,a,y7)。通过这样可以使滤波后的波形失真更小。

图十一:滤波后的波形图

五、设计结果与分析

1、原始信号以及频谱的分析:由于原始信号是辛格函数,所以经过傅立叶变换后应该是一个方波。频率为100/ 。故图形如图2。

2、由于载波信号为余弦,频率为200HZ。故图形如图6。

3、对于已调信号则是由原信号与载波信号相乘的结果。由于辛格函数只是中间幅度大,故与载波信号相乘后,主要幅度仍然集中在0附近。此时在对已调信号求取频谱,由已调信号可知,只是一个双边带信号,而且频率应该在200HZ 左右,而结果图形如图8所示,恰好与分析相吻合。此过程证明了双边带调制过程中有频谱的搬移。

4、在求已调信号的的功率谱密度函数波形时,首先要求自相关函数。这一个过程即为两个辛格函数的乘积。故如图9所示。然后在把自相关函数经过傅立叶变换,此时即可得到相应的功率谱密度函数波形,如图9所示,同样也是将频率搬移到200HZ附近。

5、最后将已调的信号通过乘以同频同相的本地载波,即为相干解调。此时的波形没有经过低通滤波器,所以波形与原始信号有点不一致,如图10所示。最后通过椭圆滤波器后,在设计参数的调整下,可以恢复出原始的信号。但要求

本过程的参数选择一定要合理,最到最理想,最后得出的波形去图11所示。

六、总结

通过画原始信号的波形,频谱以及载波的波形并且分析两个波形之间频率的大小关系,再实现两个函数的相乘,可以得出已调信号,并且利用傅立叶变换可以找到其频谱。此时可以看出抑制载波双边带调幅的实质为频谱的搬移。同时通过自相关函数,并且求自相关函数的傅立叶变换就可以实现功率谱密度函数波形的画法。最后将已调信号与载波信号相乘经过低通滤波器作相干解调,就可以恢复出原始信号。对椭圆滤波器的参数做调整,则可以改变其恢复信号的准确度。而抑制载波双边带调幅的优点在于可以提高效率,减少干扰。

七、体会

本设计要求采用matlab或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,并且绘制相关的图形。通过设计完成了题目的要求。

本次设计,首先针对题目进行分析,将所涉及的波形,频谱及相关函数做了研究,大体上能够把握了设计的流程以及思路。再通过查阅相关资料,能对相关的知识做正确的记录,以便随时查看。在问题的分析阶段中,就原始信号的频率和载波信号的频率做了比较,确定了具体的方案后,在针对matlab中的有关画图处理函数进行学习和分析,这样就提高了学习的针对性,同时节约了设计的时间。在设计过程中,充分的利用matlab的相关函数,如傅立叶变换,自相关函数以及椭圆滤波器的函数,使自己掌握了更多有用的函数。通过查看函数的用法以及例题,句可以正确的实现本设计的部分函数的编写。同时本设计中所运用的通信原理中的自相关函数与功率频密度函数的知识也在设计过程中得到了正确的理解,并且成功的实现了图形的绘制。

在设计过程中,也遇到了许多的困难。如原始波形的频谱应该是方波,可结果却只是一条直线,经过分析,原来是采样点过少,同时在设计时也要随时考虑到数字信号处理中所学的抽样频率必须大于两倍信号谱的最高频率(FS.>2FH)以及抽样点数N大于M点的有限长序列。这样就成功的将matlab,通信原理和数字信号处理有机的结合在一起。此外在分析所设计的图中,根据相关的通信原理知识可以对结果作出判断,这样就提高了自己的相关知识,同时加深了对matlab的运用。

八、参考文献

[1]. 曹志刚,钱亚生.现代通信原理. 清华大学出版社,2006年10月第24版

[2].刘树棠. 信号与系统. 西安交通大学出版社2005年4月

[3] 张威.MATLAB基础与编程入门(第二版).西安电子科技大学出版社,2008年1月

[4] 陈怀琛,数字信号处理教程——MATLAB释义与实现.电子工业出版社,2004年12月

附录

Matlable设计程序:

t=-2:0.0001:2

y1=sinc(t*200)

figure(1)

plot(t,y1)

title('已知信号')

xlabel('时间:s')

ylabel('幅度')

grid on

xlim([-0.1,0.1])

fs=3000 %信号频谱

y1=sinc(t*200)

yk=fft(y1,50000) %对信号做傅立叶变换

yw=2*pi/40000*abs(fftshift(yk)) %频谱搬移

fw=[-25000:24999]/50000*fs

plot(fw,yw)

title('已知信号的频谱')

xlabel('频率:hz')

ylabel('幅度')

grid on

xlim([-50,50])

y3=cos(2*pi*200*t)

figure(3)

plot(t,y3)

title('载波信号')

xlabel('时间:s')

ylabel('幅度')

grid on

xlim([-0.02,0.02])

y4=sinc(t*200).*cos(2*pi*200*t)

figure(4)

plot(t,y4)

title('已调信号')

xlabel('时间:s')

ylabel('幅度')

grid on

xlim([-0.02,0.02])

fs1=1000 %已调信号频谱

yk=fft(y4,5000) %对信号做傅立叶变换yw=2*pi/4000*abs(fftshift(yk)) %频谱搬移fw=[-2500:2499]/5000*fs1

plot(fw,yw,'r-')

title('已调信号的频谱')

xlabel('频率:hz')

ylabel('幅度')

grid on

xlim([-500,500])

[c,lags]=xcorr(y4,200) %%DSB信号自相关函数subplot(211)

plot(lags/fs,c)

title('DSB信号自相关函数')

xlabel('t')

ylabel('Rxx(t)')

grid on

y7=y4.*y3

figure(7)

plot(t,y7)

title('解调信号')

xlabel('时间:s')

ylabel('幅度')

grid on

xlim([-0.02,0.02])

Rp=0.5

Rs=40

Wp=0.03

Ws=0.1

[n,Wn]=buttord(Wp,Ws,Rp,Rs,'s')

[b,a]=butter(n,Wn,'low')

Xl=filter(b,a,y7)

figure (8)

plot(t,Xl)

title('滤波后的 f(t)信号')

xlabel('时间单位:s')

ylabel('幅度')

grid on

xlim([-0.05,0.05])

抑制载波的双边带调制仿真(DSB-SC)

通信模块设计与仿真 学院计算机与电子信息学院 专业通信工程 班级通信091班

DSB-SC系统仿真 (3) 摘要 (3) 一、设计目的 (4) 二、设计要求 (4) 三、系统原理 (5) (一)系统框图: (5) (二)各模块原理及M文件实现 (5) 1.调制部分 (5) 2.高斯白噪声信道特性分析 (6) 4.解调部分 (9) (三)Simulink仿真 (11) 四、M文件完整程序 (13) 五、结束语 (17) 六、参考文献 (18)

DSB-SC系统仿真 摘要 信号的调制与解调在通信系统中具有重要的作用。调制过程实际上是一个频谱搬移的过程,即是将低频信号的频谱(调制信号)搬移到载频位置(载波)。而解调是调制的逆过程,即是将已调制信号还原成原始基带信号的过程。调制与解调方式往往能够决定一个通信系统的性能。幅度调制就是一种很常见的模拟调制方法,在AM信号中,载波分量并不携带信息,仍占据大部分功率,如果抑制载波分量的发送,就能够提高功率效率,这就抑制载波双边带调制DSB-SC(Double Side Band with Suppressed Carrier),因为不存在载波分量,DSB-SC信号的调制效率就是100%,即全部功率都用于信息传输。但由于DSB-SC信号的包络不再与调制信号的变化规律一致,因而不能采用简单的包络检波来恢复调制信号,需采用同步检波来解调。这种解调方式被广泛应用在载波通信和短波无线电话通信中。但是由于在信道传输过程中必将引入高斯白噪声,虽然经过带通滤波器后会使其转化为窄带噪声,但它依然会对解调信号造成影响,使其有一定程度的失真,而这种失真是不可避免的。本文介绍了M文件编程和Simulink 两种方法来仿真DSB-SC系统的整个调制与解调过程。 关键词DSB-SC调制同步检波信道噪声M文件Simulink仿真

频率调制与解调实验报告

1.熟悉LM566单片集成电路的组成和应用。 2.掌握用LM566单片集成电路实现频率调制的原理和方法。 3.了解调频方波、调频三角波的基本概念。 4.掌握用LM565单片集成电路实现频率解调的原理,并熟悉其方法。 5.了解正弦波调制的调频方波的解调方法。 6.了解方波调制的调频方波的解调方法。 二、实验准备 1.做本实验时应具备的知识点: ? LM566单片集成压控振荡器 ?LM566组成的频率调制器工作原理 ? LM565单片集成锁相环 ?LM565组成的频率解调器工作原理 2.做本实验时所用到的仪器: ?万用表 ?双踪示波器 ? AS1637函数信号发生器 ?低频函数发生器(用作调制信号源) ?实验板5(集成电路组成的频率调制器单元) 三、实验内容 1.定时元件R T、C T对LM566集成电路调频器工作的影响。 2.输入调制信号为直流时的调频方波、调频三角波观测。 3.输入调制信号为正弦波时的调频方波、调频三角波观测4.输入调制信号为方波时的调频方波、调频三角波观测。 5.无输入信号时(自激振荡产生)的输出方波观测。 6.正弦波调制的调频方波的解调。 7.方波调制的调频方波的解调。 四、实验步骤 1.实验准备 ⑴在箱体右下方插上实验板5。接通实 验箱上电源开关,此时箱体上±12V、±5V电 源指示灯点亮。 ⑵把实验板5上集成电路组成的频率 调制器单元右上方的电源开关(K5)拨到ON 位置,就接通了±5V电源(相应指示灯亮), 即可开始实验。 2.观察R T、C T对频率的影响(R T = R3+W l、

C T = C1) ⑴实验准备 ① K4置ON位置,从而C1连接到566的管脚⑦上; ②开关K3接通,K1、K2断开,从而W2和C2连接到566的管脚⑤上; ③调W2使V5=3.5V(用万用表监测开关K3下面的测试点); ④将OUT1端接至AS1637函数信号发生器的INPUT COUNTER来测频率。 ⑵改变W1并观察输出方波信号频率,记录当W1为最小、最大(相应地R T为最小、最大)时的输出频率,并与理论计算值进行比较,给定:R3 =3kΩ,W1=1kΩ,C1=2200pF。 ⑶用双踪示波器观察并记录当R T为最小时的输出方波、三角波波形。 ⑷若断开K4,会发生什么情况?最后还是把K4接通(正常工作时不允许断开K4)。 3.观察输入电压对输出频率的影响 ⑴直流电压控制(开关K3接通,K1、K2断开) 先把W l调至最大(振荡频率最低),然后调节W2以改变输入电压,测量当V5在2.4V~4.8V变化(按0.2V递增)时的输出频率f,并将结果填入表1。 第二部分: 1.实验准备 ⑴在箱体右下方插上实验板5。接通实验箱上电源开关,此时箱体上±12V、±5V电源指示灯点亮。 ⑵把实验板5上集成电路组成的频率调制器单元(简称566 调频单元)的电源开关(K5)和集成电路组成的频率解调器单元(简称565鉴频单元)的电源开关(K1)都拨到ON位置,就接通了这两个单元的±5V电源(相应指示灯亮),即可开始实验。 2.自激振荡观察 在565鉴频单元的IN端先不接输入信号,把示波器探头接到A点,便可观察到VCO自激振荡产生的方波(峰-峰值4.5V左右)。 3.调制信号为正弦波时的解调 ⑴先按实验十的实验内容获得正弦调制的调频方波(566调频单元上开关K1、K2接通,K3断开,K4接通)。为此,把低频函数发生器(用作调制信号源)的输出设置为:波形选择—正弦波,频率—1kHz,峰-峰值—0.4V,便可在566调频单元的OUT1端上获得正弦调制的调频方波信号。 ⑵把566调频单元OUT1端上的调频方波信号接入到565鉴频单元的IN端,并把566调频单元的W l调节到最大(从而定时电阻R T最大),便可用双踪示波器的CH1观察并记录输入调制信号(566调频单元IN端),CH2观察并记录565鉴频单元上的A点波形(峰-峰值为4.5V左右的调频方波)、B点波形(峰-峰值为40mV左右的1kHz正弦波)和OUT端波形(需仔细调节565鉴频单元上的W1,可观察到峰-峰值为4.5V左右的1kHz方波)。 ⑶调节565鉴频单元上的W1,可改变565鉴频单元OUT端解调输出方波的占空比。 五、数据处理

双边带抑制载波调幅与解调实验

实验类型:□验证□综合□设计□创新实验日期: 实验成绩:___ 实验名称实验二双边带抑制载波调幅与解调实验(DSB—SC AM) 指导教师 实验目得 1、掌握双边带抑制载波调幅与解调得原理及实现方法。 2、掌握相干解调法原理。 3、了解DSB调幅信号得频谱特性、 4、了解抑制载波双边带调幅得优缺点。 仪器设备 与耗材 1、信号源模块 2、模拟调制模块 3、模拟解调模块 4、20M双踪示波器 实验 基本原理 1、DSB调幅典型波形与频谱如图1所示: 图1DSB信号得波形与频谱 实验中采用如下框图实现DSB调幅、 图2 DSB调幅实验框图 由信号源模块提供不含直流分量得2K正弦基波信号与384K正弦载波信号sinwct经乘法器相乘,调制深度可由“调制深度调节"旋转电位器调整,得到 DSB调幅信号输出。 2、相干解调法 实验中采用如下框图实现相干解调法解调DSB信号: 调幅输入相乘输出解调输出 图3 DSB解调实验框图(相干解调法) 实验步骤 与 实验记录 实验步骤: 1、将模块小心地固定在主机箱中,确保电源接触良好。 2、插上电源线,打开主机箱右侧得交流开关,再分别按下三个模块中得电源开关,对应得发光二极管灯亮,三个模块均开始工作。(注意,此处只就是验证 通电就是否成功,在实验中均就是先连线,后打开电源做实验,不要带电连线) 3、DSB调幅 (1)信号源模块“2K正弦基波”测试点,调节“2K调幅"旋转电位器,使其 输出信号峰峰值为1V左右;“384K正弦载波”测试点,调节“384K调幅"旋 转电位器,使其输出信号峰峰值为3.6V左右。 (2)实验连线如下: 信号源模块?------—-——模拟调制模块“相乘调幅1” 2K正弦基波——-——-—-——基波输入 384K正弦载波———-----载波输入 (3)调节“调制深度调节1"。旋转电位器,用示波器观测“调幅输出"测试

基于simulink的抑制载波的双边带调制解调系统仿真

抑制载波的双边带调制解调系统仿真 一、抑制载波调制解调仿真原理: 在AM 信号中,载波分量并不携带信息,信息完全由边带传送。如果将载波抑制,只需在将直流0A 去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。 假定调制信号()m t 的平均值为0,与载波相乘,即可形成DSB 信号,其时域表达式为()cos DSB c s m t t ω=式中,()m t 的平均值为 0。DSB 的频谱为 ()1[()()]2DSB c c s M M ωωωωω=++- DSB 信号的包络不再与调制信号的变化规律一致,因而不能采用简单的包络检波来恢复调制信号, 需采用相干解调(同步检波)。另外,在调制信号()m t 的过零点处,高频载波相位有180°的突变。除了不再含有载频分量离散谱外,DSB 信号的频谱与AM 信号的频谱完全相同,仍由上下对称的两个边带组成。所以DSB 信号的带宽与AM 信号的带宽相同,也为基带信号带宽的两倍, 即2DSB AM H B B f == 双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。在解调过程中,输入信号和噪声可以分别单独解调。 设传输的基带信号为正弦波,其幅度为1,频率范围为1Hz 到10Hz ,载波频率为100Hz 。传输信道为高斯白噪声信道,其信噪比SNR 为10dB 。系统仿真采样率设置为1000Hz 。 二、Simulink 仿真模型:

三、仿真结果:

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

双边带调幅

计算机与信息工程学院验证型实验报告 一、实验目的 1.掌握普通双边带调幅与解调原理及实现方法。 2.掌握调幅信号的频谱特性。 3.了解普通双边带调幅与解调的优缺点。 二、实验仪器 装有MATLAB的计算机一台 三、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示:

由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2.信号解调 从高频已调信号中恢复出调制信号的过程称为解调。对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程。解调是调制的逆过程。 可利用乘积型同步检波器实现振幅的解调,让已调信号与本地恢复载波信号相乘并通过低通滤波可获得解调信号。 3..滤波器 解调后的信号还需要进行低通滤波滤去高频部分才能获得所需信号。低通滤波器种类繁多,每一种原理各不相同。本系统有FIR与IIR两种滤波器可供选择。 三、仿真设计 实验结果&分析讨论 实验仿真结果

从仿真结果看,AM调制信号包络清晰,可利用包络检波恢复原信号,接收设备较为简单。其频谱含有离散大载波,从理论分析可知,此载波占用了较多发送功率,使得发送设备功耗较大。 3、结果分析: 根据通原理论课的知识可知,信号的AM调制比较容易实现,但其功率谱中有相当大一部分是载频信号,效率非常低。 四、程序代码 //基带信号m(t)=sin(2000*pi*t)+2cos(1000*pi*t),fc=20khz,求AM clear all exec t2f.sci; exec f2t.sci; fs=800; //采样速率 T=200; //截短时间 N=T*fs; //采样点数 dt=1/fs; //时域采样间隔 t=[-T/2:dt:T/2-dt]; //时域采样点 df=1/T; //频域采样间隔 f=[-fs/2:df:fs/2-df]; //频域采样点数 fm1=1; //待观测正弦波频率,单位KHz,下同 fm2=0.5; //待观测余弦波频率 fc=20; //载波频率 //以上为初始化参数设置 m1=sin((2*%pi)*fm1*t); //待观测正弦波部分 M1=t2f(m1,fs); //傅里叶变换 MH1=-%i*sign(f).*M1; //希尔伯特变换 mh1=real(f2t(MH1,fs)); //希尔伯特反变换 m2=2*cos((2*%pi)*fm2*t); //待观测余弦波部分

抑制载波双边带调幅(DSB-SC)和解调的实现

抑制载波双边带调幅(DSB-SC)和解调的实现 一、设计目的和意义 本设计要求采用软件Matlab实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,并且绘制相关的图形。 在通信系统中,从消息变换过来的信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这些信号在信道中直接传输,则会严重影响信号传输的有效性和可靠性。因此这种信号在许多信道中均是不适宜直接进行传输的。 在通信系统的发射端通常需要调制过程,将信号的频谱搬移到所希望的位置上,使之转化成适合信道传输或便于信道多路复用的以调信号。而在接收端则需要解调过程,以恢复原来有用的信号。调制解调过程常常决定了一个通信系统的性能。随着数字化波形测量技术和计算机技术的发展,可以使用数字化方法实现调制与解调的过程。同时调制还可以提高性能,特别是抗干扰能力,以及更好的利用频带。 二、设计原理 (1):调制与解调的MATLAB实现: 调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易以电磁波形式辐射的较高频范围; 此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。 振幅调制是一种实用很广的连续波调制方式。调幅信号X(t)主要有调制信号和载波信号组成。调幅器原理如图1所示:

其中载波信号C(t)用于搭载有用信号,其频率较高。幅度调制信号g(t)含有有用信息,频率较低。运用MATLAB 信号g(t)处理工具箱的有关函数可以对信号进行调制。对于信号x(t),通信系统就可以有效而可靠的传输了。 在接收端,分析已调信号的频谱,进而对它进行解调,以恢复原调制信号。解调器原理如图2所示: 对于调制解调的过程以及其中所包含的对于信号的频谱分析均可以通过MATLAB 的 相关函数实现。 (2):频谱分析 当调制信号 f(t)为确定信号时,已调信号的频谱为 ()c c SDSB=1/2F -+1/2F(+)ωωωω. 双边带调幅频谱如图3所示: 图3 双边带调幅频谱 抑制载波的双边带调幅虽然节省了载波功率,但已调信号的频带宽度仍为 调制信号的两倍,与常规双边带调幅时相同。 (3):功率谱密度分析 通信中,调制信号通常是平稳随机过程。其功率谱密度与自相关函数之间是一对付氏变换关系。这样就可以先找到信号的自相关函数,然后通过付氏变换来实现信号的功率谱密度。 三、 详细设计步骤 (1)利用Matlab 绘制已知信号f(t)

双边带抑制载波DSB调幅电路

抑制双边带DSB调幅电路的设计 1. 摘要 抑制双边带调制方式广泛应用于彩色电视和调频-调幅立体声广播系统中。在通信系统中, 从消息变换过来的信号所占的有效频带往往具有频率较低的频谱分量(例如语音信号),如果将这些信号在信道中直接传输,则会严重影响信号传输的有效性和可靠性。因此这种信号在许多信道中均是不适宜直接进行传输的。在通信系统的发射端通常需要调制过程,将信号的频谱搬移到所希望的位置上,使之转化成适合信道传输或便于信道多路复用的以调信号。而在接收端则需要解调过程,以恢复原来有用的信号。调制解调过程常常决 定了一个通信系统的性能。随着数字化波形测量技术和计算机技术的发展, 可以使用数字化方法实现调制与解调的过程。同时调制还可以提高性能,特别是抗干扰能力,以及更好的利用频带。 2. 设计目的 设计目的:本设计要求采用matlab实现对信号进行抑制载波双边带调幅(DSB-SC)和解调,要求如下: 1、用simulink对系统建模。 2、输入模拟话音信号观察其输出波形。 3、对所设计的系统性能进行仿真分析。 4、对其应用举例阐述。 3. 设计原理 3.1调制与解调的 MATLAB 实现 调制在通信过程中起着极其重要的作用: 无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易一电磁波形式辐射的较高频范围;此外,调制过 程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。 V主要有调制信号和载波信振幅调制是一种实用很广的连续波调制方式。调幅信号DSB 号组成。调幅器原理如图3-1-1所示:

图3-1-1调幅器原理框图 其中载波信号c(t)用于搭载有用信号,其频率较高。幅度调制信号g(t)含有有用信息,频率较低。运用 MATLAB 信号 g(t)处理工具箱的有关函数可以对信号进行调制。对于信号 x(t),通信系统就可以有效而可靠的传输了。 在接收端,分析已调信号的频谱,进而对它进行解调,以恢复原调制信号。解调器原理如图3-1-2所示: 图3-1-2解调器原理框图 对于调制解调的过程以及其中所包含的对于信号的频谱分析均可以通过 MATLAB 的相关函数实现。 3.2频谱分析 当调制信号f(t)为确定信号时,已调信号的频谱为f=1/2F(ω+cω)+1/2F(ω-cω),双边带调幅频谱如图3-2所示: 图3-2双边带调幅信号频谱图

实验六调幅波解调器实验报告

实验六调幅波解调器实验报告 实验六调幅波解调器 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、了解二极管包括检波的主要指标、检波效率及波形失真。 3、掌握用集成电路实现同步检波的方法。 二、预习要求 1、复习课中有关调幅和解调原理。 2、分析二极管包络检波产生波形失真的主要因素。 三、实验仪器设备 1、双踪示波器 2、万用表 3、高频电路实验装置 四、实验电路说明 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。调幅波解调方 法有二极管包括检波器、同 步检波器。 6 1、二极管包络检波器

适合于解调含有较大载波分量的大信号的检波过程,它具电路简单,易于实现,本实验 如图6-1所示主要由二极管D及RC低通滤波器组成,它利用二极管的单向导电特性和检波 负载RC的充放电过程实现检波,所以RC时间常数选择很重要,RC时间常数过大,则会 产生对角切割失真。RC时间常数太小,高频分量会滤不干净,综合考虑要求满足下式: ,m211/fo<

` 图 6-2 1496构成的解器 五、实验内容及步骤 注意:做出实验之前需恢复实验五的实验内容2(1)的内容。 (一)二极管包络检波器 实验电路见图6-1 1、解调全载波调幅信号 (1)m<30,的调幅波的检波 载波信号仍为Vc=100mV/100KHZ(有效值)调节调制信号幅度, 按调幅实验中实验内容3(2)的条件获得调制度m<30,的调幅度,并 将它加至图6-1二极管包括检波器V信号输入端,观察记录检波电AM 容为C1时的波形。

现在通信原理参考答案(第三_四章)

参考答案 第三章 模拟线性调制 3.7证明只要适当选择题图3.7中的放大器增益K ,不用滤波器即可实现抑制载波双边带调制。 解: t t Af b aK t A t f b aK t A t f b t A t f aK t A t f b t A t f K a t S c c c c c c DSB ωωωωωωcos )(2)(]cos )()[(]cos )([]cos )([]cos )([)]cos )(([)(222222 222 2?+++-=--+=--+= 令 02 =-b aK ,则a b K /2 = t t bAf t S c D SB ωcos )(4)(= 3.13 用 90相移的两个正交载波可以实现正交复用,即两个载波可分别传输带宽相等的两个独立的基带信号)(1t f 和)(2t f ,而只占用一条信道。试证明无失真恢复基带信号的必要条件是:信道传递函数)(f H 必须满足 W f f f H f f H c c ≤≤-=+0), ()( 证明: )(]sin )([)(]cos )([)(21t h t t f t h t t f t S c c *+*=ωω )]}()([)()(){(2 1 )(2211c c c c F F j F F H S ωωωωωωωωωω--++++-= 以t t C c d ωcos )(=相干解调,输出为 )(*)()(t C t S t S d p =

)]}()2([)2()(){(4 1 )]}2()([)()2(){(41 )] ()([21 )(22112211ωωωωωωωωωωωωωωωωωωωωωF F j F F H F F j F F H S S S c c c c c c c c p -++++++--++--=++-= 选择适当滤波器,滤掉上式中c ωω2±项,则 )]()()[(4 )]()()[(41)(21c c c c d H H F j H H F S ωωωωωωωωωωω+--+++-= 要无失真恢复基带信号,必须 ? ? ?=++-+=-常数)()() ()(c c c c H H H H ωωωωωωωω 此时可恢复)(1t f 。 对于)(2t f ,使用t t C c d ωsin )(=相干解调,可以无失真地恢复)(2t f ,用样须满足 )()(c c H H ωωωω+=- 3.29 双边带抑制载波调制和单边带调制中若消息信号均为kHz 3限带低频信号,载频为 MHz 1,接收信号功率为mW 1,加性白色高斯噪声双边功率谱密度为Hz W /103μ-。接收 信号经带通滤波器后,进行相干解调。 (1) 比较解调器输入信噪比; (2) 比较解调器输出信噪比; 解:kHz W 3=, mW S i 1=, Hz W n /102 30 μ-= (1)W B n N D SB D SB i 636301012103210102)(---?=?????== B W mW N S DSB i i d 2.193.83101216即=?=? ??? ??- ()W W n N SSB i 6 3 6 3 010*********---?=????== dB N S SSB i i 2.227.166********即=??=???? ??-- 所以 DSB i i SSB i i N S N S ???? ??>???? ??

抑制载波双边带调幅和解调的实现

西南科技大学 课程设计报告 课程名称:数字通信课程设计 设计名称:抑制载波双边带调幅和解调的实现 姓名: 学号: 班级: 指导教师: 起止日期: 西南科技大学信息工程学院制

课 程 设 计 任 务 书 学生班级: 学生姓名: 学号: 设计名称: 抑制载波双边带调幅(DSB-SC )和解调的实现 起止日期: 指导教师: 设计要求: 对于信号0sin (200) ||()0 c t t t f t ≤?=? ?其它 (其中02t s =,载波为cos 2c f t π,200c f Hz =),用抑制载波的双边带调幅实现对信号进行调制和解调。 要求: 采用matlab 或者其它软件工具实现对信号进行抑制载波双边带调幅(DSB-SC )和解调,并且绘制: (1) 信号()f t 及其频谱; (2) 载波cos 2c f t π; (3) DSB-SC 调制信号及其频谱; (4) DSB-SC 调制信号的功率谱密度; (5) 相干解调后的信号波形。 说明: 采用matlab 实现时可以使用matlab 工具箱中的函数。

课程设计学生日志 时间设计内容 2011.6.21 查阅资料,确定方案 2011.6.24 设计总体方案 2011.6.25 看书复习抑制载波双边带调幅和解调的原理 2011.6.28 查阅matlab相关书籍 2011.6.30 根据题目编写m文件,生成所需的图 2011.7.2 检查 2011.7.3 实验报告的撰写 2011.7.4 答辩

课程设计考勤表 周星期一星期二星期三星期四星期五 课程设计评语表指导教师评语: 成绩:指导教师: 年月日

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波

相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。

周炯盘《通信原理》(第3版)笔记和课后习题(含考研真题)详解 第4章~第5章【圣才出品】

第4章模拟通信系统 4.1复习笔记 一、基本概念 1.模拟信号 模拟信号是指在时间上和幅度上是连续的信号。 2.基带信号 基带信号是指频谱限于f=0(直流)附近的低通型信号,模拟的基带信号为模拟基带信号。 3.模拟信号的调制 模拟基带信号m(t)按其自身的变化规律去控制载波的幅度、频率和相位对载波的过程称为模拟信号的调制,这三种调制方式分别称为幅度调制(AM)、频率调制(FM)和相位调制(PM)。 4.调制的作用 (1)通过频谱搬移使得所发送的基带信号的频谱匹配于频带信道的带通特性。 (2)频分复用,即同一时间同一信道内传输多路信号而不混叠。 (3)增大抗噪声能力。 二、幅度调制 1.双边带抑制载波调幅 (1)双边带抑制载波调幅(DSB-SC AM)信号的产生

双边带抑制载波调幅信号s(t)由模拟基带信号m(t)与正弦载波c(t)相乘得到,如图4-1所示。 图4-1双边带抑制载波调幅信号的产生 其数学表示式为 m(t)和s(t)的信号波形分别如图4-2(a)和(b)所示。 图4-2m(t)和s(t)的信号波形 (2)双边带抑制载波调幅信号的频谱特性 ①确定调制信号 a.定义 该信号的频谱表达式为 振幅频谱图如图4-3所示

图4-3双边带抑制载波调幅信号的频谱 b.频谱特点 第一,经幅度调制后,基带信号的频谱被搬移到载频f c和-f c处; 第二,调幅信号的频谱中不包含离散的载频分量; 第三,调幅信号的带宽是基带信号的2倍。 ②随机调制信号 a.S(t)的均值 b.自相关函数 c.平均自相关函数 d.DSB-SC AM信号的平均功率 式中,是载波分量的平均功率,R M(0)是模拟基带信号的平均功率。e.DSB-SC AM信号的双边功率谱密度 式中P M是调制信号s(t)的功率谱密度。 (3)双边带抑制载波调幅信号的相干解调 相干解调的原理框图如图4-4所示。

抑制载波双边带的产生

《通信原理软件》实验报告 实验一抑制载波双边带的产生 摘要 该实验目的在于掌握抑制载波双边带(SC-DSB)调制的基本原理以及测试SC-DSB调制器的特性。将正弦波发生器、触发时钟、乘法器、示波器模块、和频谱示波器模块连接并设置适宜参数,查看信号波形及频谱图,适当改变参数,观察波形及频谱变化。 关键词:双边带,载波

目录 实验一抑制载波双边带的产生 (1) 实验目的 (1) 实验原理 (1) 实验方案 (2) 试验过程 (2) 参数设置 (3) 实验过程中遇到的问题及解决方案 (5) 设计中实现功能的程序以及说明 (5) 实验使用的模块及其使用说明 (5) 设计结果 (5) 思考题 (9) 设计总结 (10) 参考文献 (10) 附件一、各模块的使用说明 (11)

实验一抑制载波双边带的产生实验目的 1. 了解抑制载波双边带(SC-DSB)调制的基本原理 2. 了解双边带调制的特点 3. 学习使用SCICOS模块 实验原理 双边带抑制载波调幅信号的产生 Ac为载波的幅值 调制信号s(t),是利用均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到。其原理框图如下: 为了简化,设m(t)为单一频率,c(t)的初始相位为零:即 c ? =0, 其中μ 是源信号频率, c w 是载波频率。则: 以下为信号波形以及频谱图

图1 基带信号波形 图2 调制信号波形 图3 基带信号频谱图 图4 调制信号频谱图 实验方案 试验过程 1. 将正弦波发生器(sinusoid generator)、触发时钟(CLOCK_c)、乘法器、示波器模 块(CSCOPE)、和频谱示波器模块(FFT*,来自modnum_Sinks元件库)按下图连接。 2.源信号与高频载波通过乘法器 3乘法器输出的信号最后显示在时域和频域示波器上,示波器与始终相连

数字调制与解调 实验报告材料

计算机与信息工程学院实验报告 一、实验目的 1.掌握绝对码、相对码概念及它们之间的变换关系。 2.掌握用键控法产生2FSK信号的方法。 3.掌握2FSK过零检测解调原理。 4.了解2FSK信号的频谱与数字基带信号频谱之间的关系。 二、实验仪器或设备 1.通信原理教学实验系统 TX-6(武汉华科胜达电子有限公司 2011.10) 2.LDS20410示波器(江苏绿扬电子仪器集团有限公司 2011.4.1) 三、总体设计 3.1数字调制 3.1.1实验内容: 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2FSK信号波形。 3、用频谱仪观察数字基带信号频谱及2FSK信号的频谱。 3.1.2基本原理: 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2FSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图1-1所示。 图1-1 数字调制方框图 本单元有以下测试点及输入输出点:

? CAR 2DPSK 信号载波测试点 ? BK 相对码测试点 ? 2FSK 2FSK 信号测试点/输出点,V P-P >0.5V 用1-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对 应关系如下: ? ÷2(A ) U8:双D 触发器74LS74 ? ÷2(B ) U9:双D 触发器74LS74 ? 滤波器A V6:三极管9013,调谐回路 ? 滤波器B V1:三极管9013,调谐回路 ? 码变换 U18:双D 触发器74LS74;U19:异或门74LS86 ? 2FSK 调制 U22:三路二选一模拟开关4053 ? 放大器 V5:三极管9013 ? 射随器 V3:三极管9013 2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,通过分频和滤波得到。 2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。时域表达式为 t t m t t m t S c c 21cos )(cos )()(ωω+= 式中m(t)为NRZ 码。 2FSK 信号功率谱 设码元宽度为T S ,f S =1/T S 在数值上等于码速率, 2FSK 的功率谱密度如图所示。多进制的MFSK 信号的功率谱与二进制信号功率谱类似。 本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2FSK 也具有离散谱。 3.2 数字解调 3.2.1 实验内容 1、 用示波器观察2FSK 过零检测解调器各点波形。 3.2.2 基本原理 2FSK 信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

实验七调幅波信号的解调

实验七 调幅波信号的解调 一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.了解二极管包络检波的主要指标,检波效率及波形失真。 3.掌握用集成电路实现同步检波的方法。 二、预习要求 1.复习课本中有关调幅和解调原理。 2.分析二极管包络检波产生波形失真的主要因素。 三、实验仪器设备 1.双踪示波器 2.高频信号发生器 3.万用表 4.实验板G3 四、实验电路说明 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。调幅波解调方法有二极管包络检波器和同步检波器。 1. 二极管包络检波器 适合于解调含有较大载波分量的大信号的检波过程,它具有电路简单,易于实现,本实验如图6-1所示,主要由二极管D 及RC 低通滤波器组成,它利用二极管的单向导电特性和检波负载RC 的充放电过程实现检波。 所以RC 时间常数选择很重要, RC 时间常数过大, 则会产生对角切割失真。RC 时间常数太小,高频分量会滤不干净。 综合考虑要求满足下式: m m RC f Ω-<<<<2 011 图中A 对输入的调幅波进行幅度放大(满足大信号的要求),D 是检波二极管, R4、C2、C3滤掉残余的高频分量,R5、和R P1是可调检波直流负载,C5、R6、R P2是可

调检波交流负载,改变R P1和R P2可观察负载对检波效率和波形的影响。 2.同步检波器 利用一个和调幅信号 的载波同频同相的载波信 号与调幅波相乘,再通过低 通滤波器滤除高频分量而 获得调制信号。本实验如图 6-2所示,采用1496集成 电路构成解调器,载波信号 V C经过电容C1加在⑧、⑩ 脚之间,调幅信号V AM经电 容C2加在①、④脚之间, 相乘后信号由(12)脚输出, 经C4、C5、R6组成的低通 滤波器,在解调输出端,提 取调制信号。 图7-2 1496构成的解调器 五、实验内容及步骤 注意:做此实验之前需恢复实验五的实验内容2(1)的内容。 (一)二极管包络检波器 实验电路见图7-1 1.解调全载波调幅信号 (1).m<30%的调幅波的检波 载波信号仍为V C(t)=25sin2π×105(t)(mV)调节调制信号幅度,按调幅实验中实 验内容2(1)的条件获得调制度m<30%的调幅波,并将它加至图6-1信号输入端, (需事先接入-12V电源),由OUT1处观察放大后的调幅波(确定放大器工作正 常),在OUT2观察解调输出信号,调节R P1改变直流负载,观测二极管直流负载 改变对检波幅度和波形的影响,记录此时的波形。 (2).适当加大调制信号幅度,重复上述方法,观察记录检波输出波形。 (3).接入C4,重复(1)、(2)方法,观察记录检波输出波形。 (4).去掉C4,R P1逆时针旋至最大,短接a、b两点,在OUT3观察解调输出信号,调节 R P2改变交流负载,观测二极管交流负载对检波幅度和波形的影响,记录检波输出 波形。 2.解调抑制载波的双边带调幅信号。 载波信号不变,将调制信号V S的峰峰值电压调至160mV,调节R P1使调制器输出为抑制载波的双边带调幅信号,然后加至二极管包络检波器输入端,断开a、b两点,观察记录检波输出OUT2端波形,并与调制信号相比较。 (二)集成电路(乘法器)构成解调器 实验电路见图7-2 1.解调全载波信号

基于MATLAB的抑制载波的双边带幅度调制(DSB)与解调分析

目录 1基于MA TLAB的抑制载波的双边带幅度调制(DSB)与解调分析摘要 (2) 2、设计目的 (3) 3、设计要求 (3) 4、系统原理 (4) 4.1系统框图: (4) 4.2各模块原理及M文件实现 (4) 4.2.1.发送与接收滤波器 (7) 4.2.2.解调部分 (7) 5 Simulink仿真 (9) 5.1:调制仿真 (9) 5.2:调制+解调 (12) 5.3:调制+高斯噪声+解调 (15) 5.4总结: (17) 6、M文件完整程序 (18) 7、个人小结 (24) 8、参考文献 (25)

1基于MATLAB的抑制载波的双边带幅度调制(DSB)与解调分析摘要信号的调制与解调在通信系统中具有重要的作用。调制过程实际上是一个频谱搬移的过程,即是将低频信号的频谱(调制信号)搬移到载频位置(载波)。而解调是调制的逆过程,即是将已调制信号还原成原始基带信号的过程。调制与解调方式往往能够决定一个通信系统的性能。幅度调制就是一种很常见的模拟调制方法,在AM信号中,载波分量并不携带信息,仍占据大部分功率,如果抑制载波分量的发送,就能够提高功率效率,这就抑制载波双边带调制DSB-SC(Double Side Band with Suppressed Carrier),因为不存在载波分量,DSB-SC信号的调制效率就是100%,即全部功率都用于信息传输。但由于DSB-SC信号的包络不再与调制信号的变化规律一致,因而不能采用简单的包络检波来恢复调制信号,需采用同步检波来解调。这种解调方式被广泛应用在载波通信和短波无线电话通信中。但是由于在信道传输过程中必将引入高斯白噪声,虽然经过带通滤波器后会使其转化为窄带噪声,但它依然会对解调信号造成影响,使其有一定程度的失真,而这种失真是不可避免的。本文介绍了M文件编程和Simulink两种方法来仿真DSB-SC系统的整个调制与解调过程。 关键词DSB-SC调制同步检波信道噪声M文件Simulink仿真

北邮版通信原理课后习题的答案第四章

4.1将模拟信号()sin 2m m t f t π=载波()sin 2c c c t A f t π=相乘得到双边带抑制载波调幅(DSB-SC )信号,设: (1)请画出DSB-SC 的信号波形图; (2)请写出DSB-SC 信号的傅式频谱式,并画出它的振幅频谱图; (3)画出解调框图,并加以简单说明。 解:(1) y(t) (2)()()()sin(2)sin(2)m c s t m t c t f t Ac f t ππ== [c o s 2()c o s 2()]2c m c m Ac f f t f f t ππ= --+ (){[()][()]}4c m c m Ac S f f f f f f f δδ=+-+-- {[( )][()]}4 c m c m Ac f f f f f f δδ-+++-+

(3)相干解调 相干解调:将接收信号与载波信号sin(2)fct π相乘,得到 ()s i n (2)()s i n (2)s i n c c c c r t f t A m t f t f t πππ=()[1c o s (4)] 2 c c A m t f t π=- 通过低通滤波器抑制载频的二倍频分量,得到解调信号为0()()2 c A y t m t = 4.2已知某调幅波的展开式为: 4 4 4 )4c o s ()c o s (2 1.2 10)()c o s (2 102 1.110t t t s t πππ++=????? (1)求调幅系数和调制信号频率; (2)写出该信号的傅式频谱式,画出它的振幅频谱图; (3)画出该信号的解调框图。 解:(1)444)4cos()cos(2 1.210)()cos(2102 1.110t t t s t πππ++=????? 444cos(2 1.110)[10.5cos(20.110)]t t ππ=+???? 调制系数是a=0.5; 信号频率是f=1000Hz (2)44441 ()[(10)(10)]2[( 1.110)( 1.110)]2S f f f f f δδδδ=++-+++-?? 441 [( 1.210)( 1.210)]2 f f δδ+++-?? (3)

抑制载波的双边带信号(DSB)的实现

实验二 振幅调制实验——抑制载波的双边带信号 (DSB )的实现 一、实验原理 1、振幅调制的一般概念 调制,就是用调制信号(如声音、图像等低频或视频信号)去控制载波(其频率远高于调制信号频率,通常又称“射频” )某个参数的过程。载波受调制后成为已调波。 振幅调制,就是用调制信号去控制载波信号的振幅, 使载波的振幅按调制信号的规律变化。 设调制信号为 ()c o s f f m f v t V w t = 载波信号为 且 c f w w 则根据振幅调制的定义,可以得到普通调幅波的表达为: ()(1cos )cos AM cm f c v t V m w t w t =+ (2—1) 式中 c m a m c m c m V K V m V V Ω?== (2—2) 称为调幅度(调制度), a K 为调制灵敏度。为使已调波不 失真,调制度m 应小于或等于 1、当 m>1 时, 此时产生严重失真,称之为过调制失真,这是应该避免的。 将式(2—1)用三角公式展开,可得到: ()cos cos()cos()22AM cm c cm c f cm c f m m v t V w t V w w t V w w t =+++- (2—3) 由式(2—3)看出,单频调制的普通调幅波由三个高频正弦波叠加而成:载波分量,上 边频分量,下边频分量。在多频调制的情况下,各边频分量就组成了上下边带。普通调幅波 可用 AM 表示。 在调制过程中,将载波抑制就形成了抑制载波双边带信号,简称双边带信号,用 DSB 表示;如果 DSB 信号经边带滤波器滤除一个边带或在调制过程中直接将一个边带抵消,就 形成单边带信号,用 SSB 表示。 由以上讨论可以看出, 若先将调制信号和一个直流电压相加,然后再与载波一起作用 到 乘法器上,则乘法器的输出将是一个普通调幅波;若调制信号直接与载波相乘,或在 AM 调 制的基础上抑制载波,即可实现 DSB 调制;将 DSB 信号滤掉一个边带,即可实现 SSB 调 制。 2、抑制载波的双边带信号(DSB )的实现 由于 DSB 信号可以通过调制信号与载波信号直接相乘获得,因此,可以通过二极管电 路、差分对电路、模拟乘法器等电路实现。 利用二极管平衡电路实现 DSB 信号如图 2-8 所

相关文档
相关文档 最新文档