文档库 最新最全的文档下载
当前位置:文档库 › 太原理工大学材料科学基础习题及参考答案

太原理工大学材料科学基础习题及参考答案

太原理工大学材料科学基础习题及参考答案
太原理工大学材料科学基础习题及参考答案

第一章原子结构与结合键

习题

1-1计算下列粒子的德布罗意波长:

(1) 质量为10-10 kg,运动速度为0.01 m?s-1的尘埃;

(2) 速度为103 m/s的氢原子;

(3) 能量为300 eV的自由电子。

1-2怎样理解波函数ψ的物理意义?

1-3在原子结构中,ψ2和ψ2dη代表什么?

1-4写出决定原子轨道的量子数取值规定,并说明其物理意义。

1-5试绘出s、p、d轨道的二维角度分布平面图。

1-6多电子原子中,屏蔽效应和钻穿效应是怎样影响电子的能级的?

1-7写出下列原子的基态电子组态(括号内为原子序号):

C (6),P (15),Cl (17),Cr (24) 。

1-8 形成离子键有哪些条件?其本质是什么?

1-9 试述共价键的本质。共价键理论包括哪些理论?各有什么缺点?

1-10 何谓金属键?金属的性能与金属键关系如何?

1-11 范德华键与氢键有何特点和区别?

参考答案:

1-1 利用公式λ = h/p = h/mv 、E = hν计算德布罗意波长λ。

1-8 离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原子相互作用时,产生电子得失而形成的离子固体的结合方式。

1-9 共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。共价键理论包括价键理论、分子轨道理论和杂化轨道理论。

1-10 当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属建。

由于存在自由电子,金属具有高导电性和导热性;自由电子能吸收光波能量产生跃迁,表现出有金属光泽、不透明;金属正离子以球星密堆方式组成,晶体原子间可滑动,表现出有延展性。

第二章材料的结构

习题

2-1定义下述术语,并注意它们之间的联系和区别。

晶系,空间群,平移群,空间点阵。

2-2名词解释:晶胞与空间格子的平行六面体,并比较它们的不同点。

2-3 (1) 一晶面在x、y、z轴上的截距分别为2a、3b和6c,求出该晶面的米勒指数。

(2) 一晶面在x、y、z轴上的截距分别为a/3、b/2和c,求出该晶面指数。

2-4 在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:

(001) 与[210],(111) 与[112],(110) 与[111],(322) 与[236],

(257) 与[1 11],(123) 与[121] 。

2-5 在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:

(102),(112),(213),[1 10],[1 11],[120] 和[321] 。

2-6 在六方晶胞中画出下列的晶面和晶向:

(0001),(0110),(2110),(1012),(1012),[0001],[1010],[1210],[0111] 。

2-7 (1) 写出六方体、八面体、六八面体、单形号分别为{100}、{111}、和{321}的晶面符号.(2) 写出六方晶系的晶胞晶面族为{100}、{111}、{321} 的等价晶面指数。

2-8 写出六方晶系晶胞的{1120} 和{1012} 晶面族的等价晶面指数。

2-9求 (1) 由面(121) 与(100) 所决定的晶带轴指数和(100) 与(010) 所决定的晶带轴指数。(2) 由晶向[001] 与[111] 所决定的晶面指数和[010] 与[100] 所决定的晶面指数。

2-10 (1) 已知室温下α-Fe的点阵常数为0.286 nm,分别求(100)、(110)、(123)的晶面间距。(2) 已知916℃时γ-Fe 的点阵常数为0.365 nm,分别求出(100)、(111) 和(112) 的

晶面间距。

2-11 (1) a≠b≠c、α = β = γ = 90°的晶体属于什么晶族和晶系?

(2) a≠b≠c、α≠β≠γ = 90°的晶体属于什么晶族和晶系?

(3) 你能否据此确定这2种晶体的布拉维点阵?

2-12 写出面心立方格子的单位平行六面体上所有结点的坐标。

2-13 根据对称要素组合规律,分别确定下列各种情况下对称要素的组合。

① L2⊥L2,L2⊥ L4,L2⊥L6;② P ⊥L2,P ⊥ L4,P ⊥ L6;

③ P + L2 (对称面包含L2 ),P + L3,P + L4,P + L6。

2-14 确定MgO、TlCl3、GaAs、ThO2、SnO2晶体结构的点群、空间群、晶族晶系、质点的空间坐标、正负离子的配位数、晶体的键型、一个晶胞占有正负离子的数目和堆积系数。

2-15 已知Cs+半径为0.170 nm,Cl-半径为0.181 nm,计算堆积系数( 堆积系数= V/ a3 =一个晶胞占有正负离子的体积/一个晶胞的体积) 。

2-16 已知Mg2+半径为0.072 nm,O2-半径为0.140 nm,计算MgO结构的堆积系数。

2-17 计算体心立方、面心立方、密排六方晶胞中的原子数、配位数和堆积系数。

2-18 用米勒指数表示出体心立方、面心立方、密排六方结构中的原子密排晶面和原子密排晶向。

2-19 Ag和Al 都是面心立方结构,且原子半径相似,r (Ag) = 0.288 nm,r (Al) =0.286 nm,但都不能形成连续(无限) 固溶体,为什么?

2-20 下列合金相属什么类型?指出其结构特点和主要控制因素。

铁素体,奥氏体,MnS,Fe3C,Mg2Si,Cu31Sn8.

2-21 (1) 叙述形成固溶体的影响因素。(2) 形成连续固溶体的充分必要条件是什么?

2-22 MgO-FeO、ThO2-UO2、Ni-Cu、MgO-CaO、Fe-C、Cu-Zn等各自两两可形成什么固溶体?为什么?

2-23 什么是金属间化合物?试叙述金属间化合物的结构类型和结构特点。

2-24 下列硅酸盐化合物属于什么结构类型?说明理由。

(MgFe)2 [ SiO4 ],Zn4 [ Si2O7 ] ( OH )2,BaTi [ Si3O9 ],Be3Al2 [Si4O18],Ca3 [Si3O8],

KCa4 [Si4O10]2 F8H2O,Ca [Al2Si2O8],K [AlSi2O6] 。

2-25(1) 为什么滑石与高岭石实际发生的那种解理是合理的?

(2) 为什么滑石比高岭石软的多?

2-26 叙述叶腊石的结构特点(结构类型、层内结构特点、层内带电荷情况、层间结合力)。

2-27 为什么石英不同系列变体之间转化温度比同系列变体之间转化温度高得多?

2-28 比较硅酸盐玻璃与金属玻璃的异同点。

2-29 玻璃的组成为w(Na2O)=13%、w (CaO)=13%和w(SiO2)=74%,计算该玻璃的4个结构参数。

2-30 有两种不同配比的破璃,其组成如下:

通过计算说明两种玻璃高温下的粘度大小。

2-31 名词解释:(1) 高分子的链结构;(2) 高分于的聚集态结构。

2-32 键接方式对高聚物材料的性能有何影喝? 分子链的几何形状对高分子的性能有何影响?

2-33 高分子的构型与构象有何不同?如果聚丙烯的等规度不高,能否用改变构象的方法提高等规度? 说明理由。

2-34 用密度梯度管测得某涤纶树脂试样的密度为ρ =1.36g/cm3,若涤纶树脂的晶区密度为ρc=1.50g/cm3,非晶区密度为ρa=1.34g/cm3,内聚能为?E=66.67kJ/mol,试计算涤纶树脂试样的内聚能密度和结晶度。

2-35 请用固体能带理论解释绝缘体、导体和半导体。

2-36 确定二十面体点群对称性。

2-37 确定斜方柱晶、四方双锥晶、六方双锥晶、六八体晶的点群,并画出极射赤平投影图。

参考答案:

2-2 组成各种晶体构造的最小体积单位称为晶胞。晶胞能反映真实晶体内部质点排列的周期性和对称性。 空间点阵是由晶体结构抽象而得到的几何图形。

空间格子中的平行六面体是由不具有任何物理、化学特性的几何点构成,而晶胞则由 实在的具体质点(原子或离子)组成。 2-5

2-6

2-7 {100} = (100) + (010) + (001)

{111} = (111) +(-

111)+(1-

11)+(11-

1) 2-8 {110} = (110) + (2

0) + (20)

{102} = (102) + (012) + (102) + (012) + (012) + (102) 2-9 (1):[012] [001] (2):(110) (001) 2-10 (1) d (100) =

2a = 0.143 nm d (110) = a 2

2 = 0.202 nm d (123) = 14

a = 0.0764 nm

(2) d (100) = 2a = 0.1825 nm d (111) = a 33 = 0.211 nm d (112) = 6

2a = 0.0745 nm 2-16 0.73

2-17

2-18

第三章 晶体结构缺陷

习 题

3-1 纯金属晶体中主要点缺陷类型是什么? 这些点缺陷对金属的结构和性能有何影响? 3-2 何谓空位平衡浓度? 影响空位平衡浓度的因素有哪些? 3-3 纯铁的空位形成能为105kJ/mol .将纯铁加热到850℃后激冷至室温 (20℃),假设高温下的空位能全部保留,试求过饱和空位浓度与空温平衡空位浓度的比值。 3-4 由600℃降低至300℃时,锗晶体中的空位平衡浓度降低了6个数量级,试计算锗晶体中的空位形成能。 (波尔兹曼常数 k = 8.617×10-5eV/K)

3-5 铝空位形成能和间隙原子形成能分别为0.76和3.0Ev ,求在室温(20℃)及500℃时铝中空位平衡浓度与间隙原子平衡浓度的比值,并讨论所得结果。(假定空位形成时振动熵的变化与间隙原子形成时振动熵变化相等) 3-6 画一个方形位错环并在这个平面上画出柏氏失量及位错线方向,使柏氏矢量平行于位错环的任意一条边,据此指出位错环各线段的性质。

3-7 画一个圆形位错环并在这个平面上任意画出它的柏氏矢量及位错线方向,据此指出位错环各线段的性质。 3-8 试比较刃型位错和螺型位错的异同点。

3-9 试说明滑移、攀移及交滑移的条件、过程和结果,并阐述如何确定位错滑移运动的方向。 3-10 何谓全位错、单位位错、不全位错? 指出几种典型金属晶体中单位位错的柏氏矢量。

3-11 试分析在面心立方金属中,下列位错反应能否进行,井指出其中3个位错各属于什么类型的位错,反应后生成的新位错能否在滑移面上运动。

21a [101] + 61a [-12-1] → 3

1

a [111] 3-12

割阶或扭折对原位错线运动有何影响?

3-13 何谓扩展位错?已知两平行位错间的F =

d b Gb π221。如果由一个全位错b =2

1

a[110] 分解成两个肖克莱不全位错,求证两者之间的平衡间距d S ≈πγ

242

Gb (γ是堆垛层错能)。

3-14 假定题图3-1中的这两个位错正在扩大,试问两个位错环在交互作用时,是因塞积而钉扎住还是形成一个大的位错环 (请用图示说明)?

3-15 题图3-1中这两个刃型位错AB 和CD 的方向相反时,问正在扩大的位错环是相互钉扎住还是形成一个大

的弗兰克-瑞德位错源? 为什么?

参考答案:

3-1 纯金属晶体中点缺陷主要类型包括空位、间隙原子、空位对等。

3-2 在某一温度下,晶体处于平衡状态时空位数(n e )和构成晶体的原子总数(N)之比称为晶体在该温度下空位的平衡浓度,用Ce 表示;其大小主要取决于空位形成能和温度。 3-3 解:由公式 C e = A exp (RT

Q f -

) 可得

21

e e C C = exp [1RT Q

f -- (2

RT Q f -)] = 6.847 × 1013

3-4 1.98(Ev )

3-5 20℃时, Ce/Ce ’= 3.3×1038

500℃时,Ce/Ce ’= 4.0×1014

3-11 反应后生成的新位错不能在滑移面上运动。 3-14 扩散成一个大位错环。

第四章 晶态固体中的扩散

习 题

4-1 w(C)=0.85%的普碳钢加热到900℃在空气中保温1h 后外层碳浓度降到零,假如要求零件表层的碳浓度为0.8%,表面应车去多少深度? (已知900℃时,Dc γ = 1.1×10-7cm 2/s).

4-2 纯铁在950℃渗碳10h ,所用渗碳气氛足以维持表面碳浓度为1.1%,分别求距表面0.5、1.0、1.2、1.5、2.0 mm 处的碳浓度,然后作出渗层内碳的浓度分布曲线.(已知950℃时,Dc γ = 5.8×10-2 mm 2/h)

4-3 20钢在930℃渗碳,若渗层深度定为从表面起测量到碳含量为0.4%的位置,求渗层深度与时间的关系.(设气氛的渗碳能力很强,可使表面碳浓度达到奥氏体中碳的饱和值C s =1.4%,此时Dc γ=3.6×10-2/h)

4-4 在一纯铁管内通入增碳气氛,管外为脱碳气氛,管子外径为1.11 cm ,内径为0.86 cm ,长10 cm ,100h 后,共有3.6 g 碳流经过管子,测得管子不同半径处的含碳量(质量分数)如下表,试计算不同含碳量的扩散系数,并作出D —C 曲线. r/cm 0.553 0.540 0.537 0.516 0.491 0.479 0.466 0.449 w/%

0.28

0.46

0.65

0.82

1.09

1.20

1.32

1.42

4-5 试说明钢的常规渗碳为什么在奥氏体状态下进行而不在铁素体状态下进行.

4-6 铸态钢锌合全存在晶内偏析,最大成分差达w(Zn)=5%.含锌最高处与最低处相距0.1

mm ,试求850℃均匀化退火使最大成分差降至w(Zn)=1%所需时间.(已知锌在铜中扩散时,D 0=2.1×10-5 m 2·s -1,Q = 171kJ/mol)

4-7 870℃渗碳与927℃渗碳相比较,优点是热处理产品晶粒细小,且淬火后变形较小. (1) 讨论上述两种温度下,碳在γ铁中的扩散系数.(已知D 0=2.0×10-5m 2/s ,Q =140 kJ/mo1) (2) 870℃渗碳需用多少时间才能获得927℃渗碳10h 的渗层厚度? (不同温度下碳在γ铁中溶解度的差别可忽略不计) 4-8 设纯铁和纯铬组成扩散偶扩散l h 后,Kirkendall 标志面移动了1.52×10-3cm ,已知摩尔分数C(Cr)=0.478时,?C/?x =126/cm ,互扩散系数D =1.34×10-9cm 2/s ,试求Kirkendall 标志面的移动速度和铁、铬的本征扩散系数D(Cr)、D(Fe). (实验测得Kirkendall 标志面移动距离的平方与扩散时间之比为常数) 4-9 纯铁渗硼,900℃ 4h 生成的Fe 2B 层厚度为0.068 mm ,960℃ 4h 为0.14 mm , 假定Fe 2B 的生长受扩散速度的控制,求出硼原子在Fe 2B 中的扩散激活能Q .

4-10 非定比过渡族金属氧化物因为有变价阳离子,故阳离子空位浓度比较大(例如Fe 1-x O 含有5% ~ 15%的铁空位).氧溶解在金属氧化物MO 中的溶解反应为2M M +

2

1

O 2(g) =O O +V ’’M + 2M ’M ,式中M ’M =M M + h ·,h ·为电子空穴.在平衡时,由上述溶解反应控制缺陷浓度,试求阳离子的扩散系数.

参考答案:

4-1 解: 由公式 C = C 1 – ( C 1 – C 2) erf

Dt

x 2 可得 x = 16.85 mm

即表面应车去的深度为16.85 mm .

4-2 解:距表面距离 x = 0.5 mm 时,碳浓度 C = 0.706 %

距表面距离 x = 1.0 mm 时,碳浓度 C = 0.387 % 距表面距离 x = 1.2 mm 时,碳浓度 C = 0.289 % 距表面距离 x = 1.5 mm 时,碳浓度 C = 0.1778 % 距表面距离 x = 2.0 mm 时,碳浓度 C = 0.067 % 4-3 解:渗层深度与时间的关系:x = 0.368t .

4-5 结构不同的固溶体对扩散元素的溶解度是不同的,由此所造成的浓度梯度不同,也会影响扩散速率。 4-7 解:(1) D 927℃ > D 870℃

(2) 已知:T 1 = 927℃ = 1200 K ,T 2 = 870℃ = 1143 K ,t 1 = 10 h ,

由 D = D 0 exp ?

?

? ??-

RT Q 和 211C C C C -- = erf Dt x 2

并且 21x x 代入数据可

得:t 2 = 20.1 h .

第五章 相平衡与相图

习 题

5-1 什么是凝聚系统? 什么是组元? 什么是相? 组成相与组元有什么不同?

5-2 何所谓平衡状态? 影响平衡的因素有哪些? 什么是相律?它有什么实际意义?

5-3 画出Pb-Sn 相图,标出各相区存在的组织,指出组织中含β??最多和最少的成分,指出共晶体最多和最少的成分.

5-4 根据Pb-Sn 相图,说明w (Sn) = 30% 的Pb-Sn 合金在下列温度其组织中存在哪些相,并求相的相对含量.

(1) 高于300℃;

(2) 刚冷至183℃ (共晶转变尚未开始);

(3) 在183℃共晶转变完毕;

(4) 冷到室温.

5-5 已知A 组元的熔点为1000℃,B 组元的熔点为700℃,

在800℃时发生:α ( w B = 5% ) + L ( w B = 50% ) β ( w B = 30% ) 在600℃时发生:L( w B = 80% ) β ( w B = 60% ) + γ (w B = 95%) 在400℃时发生:β ( w B = 50% ) α ( w B = 2% ) + γ (w B = 97%) 注明以上各反应的类型并根据这些数据绘出A-B 二元相图. 5-6 指出题图5-1相图中的错误,说明理由并加以改正.

5-7 画出Fe-Fe 3C 相图指出:S 、C 、J 、H 、E 、P 、N 、G 以及GS 、SE 、PQ 、HJB 、PSK 、ECF 各点、线的意义,并标出各相区的相组成物和组织组成物.

5-8 分析w(C)=0.2%、w(C)=0.6%、w(C)=1.0% 的铁碳合金从液态平衡冷却到室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织.并分别计算室温下的相组成物和组织组成物.

5-9 分析w(C)=3.5%、w(C)=4.5% 铁碳合金从液态平衡结晶过程,画出冷却曲线和组织变化示意图,并计算室温下的组织组成物和相组成物的含量. 5-10 Fe-Fe 3C 合金中的一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体的主要区别是什么? 根据Fe-Fe 3C 相图计算二次渗碳体和三次渗碳体的最大百分含量.

5-11 莱氏体与变态莱氏体的主要区别是什么?变态莱氏体的共晶渗碳体和共析渗碳体的含量各为多少? 5-12 Fe-C 相图和Fe-Fe 3C 相图二者的主要区别是什么? 分析并说明灰口铸铁的石墨化过程. 5-13 白口铸铁、灰口铸铁和钢三者的成分组织和性能有什么不同?

5-14 根据A-B-C 三元共晶投影图 (题图5-2) 分析合金n 1、n 2 、n 3 ( E 点)3个合金的结晶过程,求出其结晶完成后的组织组成物和相组成物的含量并作出Bb 变温截面.

5-15 绘出题图5-3中1、2、3、4合金冷却曲线和室温下的组织

示意图.

5-16 在A1-Cu-Mg 三元系液相面投影图 (图5-99) 中标出 w(Cu) = 5%,w(Mg) = 5%,w(A1) = 90% 和 w(Cu)=20%,w(Mg) = 20%,w(A1) = 60% 两个合金的成分点,并指出其初生相及开始结晶的温度.

5-17 试根据Fe-Fe 3C 相图作铁碳合金在950、860、727以及600℃时各有关相的自由能-成分[ w(C) ] 曲线(示意图).

5-18 试用自由能--成分曲线解释铁碳双重相图中的虚线位于实线的右上方的原因.

5-19 分折讨论题图5-4形成多种不稳定化合物的相图 ( BaO-TiO 2系相图).

参考答案:

5-1 凝聚系统—没有气相的系统。

组元-组成合金的各种化学元素或化合物。

相-合金内部具有相同的(或连续变化的)成分、结构和性能的部分或区域。

5-2 相律-处于热力学平衡状态的系统中自由度f与组元数c和相数p之间的关系定律。

吉布斯相律数学表达式: f=c-p+n

5-3 如P159图5-19 Pb-Sn相图,含βⅡ最多和最少的成分点分别为19 % Sn 和f 点.含共晶体最多和最少的成分点分别为61.9 % Sn和接近c、d点.

5-4 (1) 100% 液相;

(2) L、α相L % = 25.6 % α % = 74.4 %

(3) α、β相α = 86 % β = 14%

(4) α、β相α = 71.4 % β = 28.6 %

5-8 w(C)=0.2%:α=97.3%Fe3C =2.7%

α=72.6%P =23.85

w(C)=0.6%:α=91.3%Fe3C =8.7%

α=22.7% PⅠ=77.3%

w(C)=1.0%:α=85.3%Fe3C =14.7%

P =82.8% Fe3CⅡ=17.2%

5-9 w(C)=3.5%:α=47.8%Fe3C =52.2%

P = 28.28%Fe3CⅡ=8.25%Le =63.47%

w(C)=4.5%:α=32.8%Fe3C =67.2%

Le =91.6%Fe3CⅠ=8.4%

5-10一次渗碳体:从液相中直接结晶出,呈粗大长条状;

二次渗碳体:沿奥氏体晶界析出,呈网状;

三次渗碳体:从基体相铁素体晶界上析出,呈细片状;

共析渗碳体:共析反应后形成的渗碳体,呈片层状;

共晶渗碳体:共晶反应后形成的渗碳体,是连续的基体组织。

Fe3CⅡmax = 22.6 % Fe3CⅢmax = 0.326 %

5-14 合金n1、n2、n3 结晶完成后的相组成都为A、B、C三元相,各自含量为:

n 1:W A =

111Aa a n × 100% W B = 111Bb b n × 100% W C = 111Cc c

n × 100% n 2:W A =

22

2Aa a n × 100% W B = 222Bb b n × 100% W C = 222Cc c n × 100%

n 3:W A =

333Aa a n × 100% W B = 333Bb b n × 100% W C = 3

33Cc c

n × 100% 组织组成及相对含量为:

n 1:A+(A+B+C) W A =

AE E n 1× 100% W (A+B+C) = AE

An 1

× 100% n 2:B+(B+C)+(A+B+C) W B =

Bm m n 2× 100% W (A+B+C) = W LE =Eg

g

n 2× 100% W (B+C) = (1-

Bm m n 2- Eg

g

n 2)× 100% n 3:(A+B+C) W (A+B+C) = 100%

第六章 材料的凝固

习 题

6-1 试证明金属均匀形核时?G c = (1/2) V c ?G V ,非均匀形核时 ?G c * 与V * 又是什么关系? 6-2 说明固溶体合金结晶时浓度因素在晶体形核及长大过程中的作用.

6-3 在A-B 二元共晶系中说明共晶成分的合金在 T 1 ( < T E ) 温度下发生共晶转变时共晶体内的两个相互激发形核及合作协调,匹配长大的原理.

6-4 在C 0成分单相合金的棒料中存在成分不均匀,请指出为使之均匀化和提纯金属所采用的方法和措施. 6-5 为使固溶体合金在凝固中使晶体呈柱状树枝状生长应采取什么措施,而欲使生长界面保持稳定又采取什么措施?

6-6 说明玻璃态结构和性能上的特性,什么材料容易获得非晶固态,为什么? 6-7 说明T m 、T g 、T f 的物理意义和本质,分别为哪些材料所具有.

6-8 与金属材料比较,说明在结晶动力学上硅酸盐和聚合物的结晶过程的特点.聚合物的晶区与一般金属材料中的晶体比较有什么特性? 哪些因素影响聚合物结晶过程及结晶度? 6-9 用分子运动来说明非晶聚合物3种物理状态的特性及形变机理. 6-10 说明橡胶态、皮革态及玻璃态出现的条件.

6-11 高弹态的本质是什么? 什么条件下聚合物才充分表现出它的高弹性?

6-12 从金属、硅酸盐和高聚物材料的结构、熔体特性来分析这3类材料的结晶有什么共性和个性.

参考答案:

6-1 证明: 金属均匀形核时,

因为临界晶核半径

V C G ?=σγ2 临界形核功 2

3

)(316V C G G ?=?πσ

故临界晶核体积 V

C C C G G V ??=

=

234

3πγ 所以 V C C G V G ?=?21 非均匀形核时,有同样的关系式:

V C C G V G ?=

?*

*

2

1 第七章 晶态固体材料中的界面

习 题

7-1 面心立方金属的键能ε 可从升华热L s 估算,即L s = 12N A ε/2.试证明在温度很低时,面心立方金属的 (111) 面的比表面能γ 可以下式表示:

γ = 0.577 L s / (a 2 N A )

式中:a 为晶格常数;N A 为阿伏加德罗常数.

7-2 一根直径很细的铜丝中有一个大角度晶界贯穿其截面并和丝轴呈25°,问经加热退火后将发生什么变化? 若上述界面两侧晶粒的 [111] 都垂直于界面,两晶粒位向是以 [111] 轴相对转动了60°,则退火后有何变化? 7-3 一个体积为10-2 m 3 的第二相颗粒B 存在于金属A 中,如果γAA = γAB =2 J/m 2,计算B 颗粒位于晶界上和位于晶粒内的能量差,并说明它择优位于晶界上还是位于晶粒内部. 7-4 已知小角度晶界单位面积的晶界能可表达为γgb = γ0θ (A - ln θ). (1) 说明如何用作图法求得γ0和A ; (2) 证明γgb / (γgb )m = θ/ θm · [1 – ln (θ/θm ) ]

7-5 Bi 在Cu 的界面内吸附饱和后 (C = 0.99),可使Cu 完全变脆,如果Bi 在Cu 晶界中的含量是饱和时的1/3,可认为这时Cu 不具脆性.设Cu 晶界厚度为3个原子,晶界中可接受溶质原子的位置占1/3.问:

(1) 含Bi 的平均浓度为多大时,Cu 完全变脆 (设晶粒直径为0.01mm ,平均每原子体积为0.25 nm 3,Bi 在Cu 中引起的畸变能为6.6 × 10-4 J/mol)?

(2) 加热到多高温度淬火才能暂时消除脆性?

7-6 A 、B 两晶粒如题图7-1所示,试从界面能与扩散驱动力的观点分析晶界在加热时热蚀沟槽的形成.

7-7 题图7-2给出的1、2、3和4四个晶粒,交于一个公共的晶棱O .这个类型的结点叫四叉结点.如果晶界CO 移到CP ,DO 迁移到DP 四叉结点就分解为两个三叉结点DPC 和AOB ,并形成一段新晶界OP . (1) 确定何者较为稳定,两个三叉结点还是一个四叉结点,为什么?在此,取α为30°,并假设所有晶界为大角度晶界.由于后一假设,可以忽略扭矩项,并对所有5个晶界均可取γ为常数. (2) 假设α为70°,此时四叉结点稳定否?解释之.

7-8 二维晶体内含有第二相粒子,粒子的平衡形貌是边长为l 1和l 2的矩形,矩形两边的界面能分别为γ1和γ2,若矩形的面积不变,证明矩形粒子的平衡形状为 γ1 γ2 = l 1 l 2

7-9 第二相β存在于金属α中.当它整个位于一个晶粒内部时,小体积的β将为球状.然而当它位于分割两个α晶粒的界面上时,它将为双球冠形 (题图7-3).

V 双球冠 = 2 [π r 2

αβ (3

323

S S +-) ]

A 双球冠 = 2 [2π r 2αβ (1 - S) ]

式中,S = cos θ,r = r αβcos θ,球冠就是球的一部分.因此,r αβ是截取球冠的球的半径,换句话说,它是αβ界面的曲率半径.问:

(1) 如β在α中的二面角正好是120°,分析并确定β将择优位于境界上还是位于晶粒内部? (2) 在二面角为零的情况下,β将择优位于晶界上还是位于晶粒内部?

第八章 固态相变

习 题

8-1 固-固相变与液-固相变有何异同点?

8-2 为何固态相变时形成的新相往往呈薄片状或针状? 如新相呈球状,新相与母相之间是否存在位向关系? 8-3 已知 ?G =- bn (?G V - ?G E ) + an 2/ 3γ表示含n 个原子的晶胚形成时所引起系统自由焓的变化.式中:?G V 为形成单位体积晶胚时的自由焓变化;γ为界面能;?G E 为应变能;a 、b 为系数,其值由晶胚的形状决定.试求晶胚为球状时的a 和b 值.假定?G V 、?G E 、γ均为常数,试导出球状晶核的临界形核功?G *.

8-4 固态相变时,设单个原子的体积自由焓变化为?G V =200?T/T c ,单位为J/cm 3,临界转变温度T c = 1000 K ,应变能?G E =4 J/cm 3,共格界面能γ共格 = 4×10-6J/cm 2,非共格界面能γ非共格 = 4 ×10-5J/cm 2,非共格时可忽略应变能,试计算:

(1) ?T =50℃时的临界形核功 ?G *共格 与 ?G *非共格 之比; (2) ?G *共格=?G *非共格 时的?T .

8-5 已知α相中析出β,其非共格界面能为0.5 J/cm 2,共格界面能为0.05 J/cm 2,两相接触角为60°,若忽略应变能,试问:(1) 若在晶粒内及晶界都是非共格形核,那么何处形核率大? (2) 若在晶粒内是共格形核,在晶界是非共格形核,核胚为圆盘状,厚度与直径之比t/D =0.08,那么何处形核率最大?

8-6 假设在固态相变过程中,新相形核率I 和长大率u 为常数,则经t 时间后所形成新相的体积分数f 可用Johnson-Mehl 方程得到,即f =1–exp [ - (π/3) Iu 3η 4].已知形核率I =l 000/(cm 3·s),长大率u = 3×10-5cm/s ,试计算:(I) 相变速度最快时的时间;(2) 过程中的最大相变速度;(3) 获得50%转变量所需的时间.

8-7 若金属B 溶入fcc 金属A 中,试问合金有序化的成分更可能是A 3B 还是A 2B? 为什么? 试用20个A 原子和B 原子作出原子在fcc 金属 (111) 面上的排列图形.

8-8 试述在时效过程中为何先出现介稳过渡相而不直接形成稳定相.

8-9 已知θ’’呈圆盘形薄片状析出长大,惯习面为 {100}α,点阵错配度δ为10%,片厚为5 nm ,设由共格界面引起的畸变能为E S =(3/2) V E δ2 ( V 为每个原子的体积,E 为平均弹性模量),试计算共格破坏时圆盘的直径 (设E =7×104 MPa ,共格破坏后的非共格界面能为0.5J/m 2).

8-10 简述时效合金在时效时的性能变化规律. 8-11 何为调幅分解? 它和脱溶沉淀有何异同?

8-12 设共析成分奥氏体与珠光体自由焓差 ?H 及熵差 ?S 均与温度无关,试证明体积自由焓差 ?G V 与过冷度 ?T 之间的关系为:?G V ≈ ?H ·?T/ T m ,式中:T m 为共析成分奥氏体与珠光体自由焓相等的温度.

8-13 试以 ?G V ≈ ?H ·?T/ T m 为基础,并忽略珠光体转变时弹性应变能的作用,试从能量角度推导珠光体片间距S 0与过冷度?T 的关系.

8-14 称马氏体转变时的惯习面为不变平面的含义是什么? 如何证明马氏体转变的惯习面为不变平面?

h ’ h – k 8-15 应用矩阵证明Bain 机制的晶面关系 k ’ =

2

1

h + k 和晶向关系 l ’ b 2l f

u ’ – v

v ’ = ,式中 (h ’ k ’ l ’)b 、[u ’ v ’ w ’]b 和 (h k l)f 、[u v w]f 分别为新相和

w ’ f w f

母相的晶面指数和晶向指数.

8-16 简述钢中板条状马氏体和片状马氏体的形貌特征、晶体学特点和亚结构,并说明它们的性能差异.

8-17 绘图说明按K-S 关系,马氏体在母相奥氏体中可以有24种不同的取向,而按N-W 关系只有12种,并绘图计算K-S 关系和N-W 关系的取向差.

8-18 如马氏体与奥氏体保持K-S 关系,马氏体惯习面为 {111}γ,试问在界面上马氏体与奥氏体两相原子配置情况如何?

8-19 何谓伪弹性? 何谓形状记忆效应? 并说明二者宏观应变恢复和显微组织变化之间的关系.

8-20 试述钢中典型上贝氏体、下贝氏体的组织形态、立体模型,并比较它们的形成特点和力学性能有何异同 8-21 以一种碳含量较高的钢为例,分析贝氏体形成温度对强度、韧度、塑性的影响规律,并作简要解释. 8-22 试比较珠光体转变、马氏体转变、贝氏体转变的异同.

8-23 试述过冷奥氏体连续冷却转变动力学图和等温转变动力学图的建立方法. 8-24 试述可用来描述CCT 图中冷却速度的各种方法.

8-25 何谓临界淬火冷却速度? 如何根据CCT 图确定临界淬火冷却速度?

8-26 根据图8-103 (c) 求40MnB 钢按图中自左向右第5条冷却曲线冷却时所获得的组织组成和硬度. 8-27 奥氏体等温转变动力学图有哪些基本类型? 受哪些因素的影响?

参考答案:

8-1 两类相变的特点见下表。

8-4 解:(1) 固态相变时,若新相晶核为球形,则其形核功为 ?G * =

(3316E

V G G ?-?β

απγ

由于相界面新相与母相原子排列的差异引起的弹性应变能,以共格界面最大,半共格界面次之,非共格界面为零 (但其表面能最大)。故

*

?共格

G

= ()

2

3

316E V G G ?-?共格

πγ

*

?非共格

G

=

2

3

316V

G

?非共格

πγ

所以

*

*??非共格

共格

G

G =

()3

2

32非共格

共格

γγE V V G G G ?-?? =()

()

3

72

372

1040041000502001040100050200--?????

?

?-?

????? ??? = 2.77 × 10-3

(2) *?共格G = *

?非共格G

()

2

3

7410002001040???

?

?-??

?-T =

()

2

3

7100020010400?

?

? ??

???-T

解得 ?T ≈ 21 K 8-6 解:(1) f = 1 – exp (3

π

-

Iu 3t 4 )

dt df = (34πu 3t 3) exp (3

π

-Iu 3t 4) 2

2dt

f

d = – (34πIu 3t 3)2 exp (–3πIu 3t 4) + (312πIu 3t 2) exp (–3πIu 3t 4) 令2

2dt f

d = 0,即

– (

34πIu 3t 3)2 + (3

12πIu 3t 2) = 0 t max = 41

349??

? ??Iu π = ()

4

13510

3100014.349

???

?

????????- = 403 s 即 相变速度最快时的时间为403 s . (2) (

dt df )max = (34πIu 3t 3) exp (3

π

-Iu 3t 4) = [34×3.14×1000×(3×10-5)3×4033] × exp [3

14.3-× 1000 × (3×10-5)3 × 4034 ] = 3.50 ×10-3 cm/s

即 过程中的最大相变速度为3.50 ×10-3 cm/s . (3) f = 1 – exp (3

π

-

Iu 3t 4 )

50% = 1 – exp (3

π

-Iu 3t 4 )

0.6931 =

3

π

× 1000 × (3 × 10-5)3t 4 t 4 = 2.45 × 1010

t = 395 s

即 获得50 %转变量所需的时间为395 s .

第九章 材料的变形与再结晶

习 题

9-1 指出下列名词的主要区别:(1) 弹性变形与塑性变形;(2) 脆性断裂与塑性断裂;(3) 一次再结晶与二次再结晶;(4) 热加工与冷加工;(5) 丝织构与板织构.

9-2 写出面心立方金属在室温下所有可能的滑移系统.

9-3 比较面心立方金属铝的 (111) 和 (110) 面面密度及面间距大小,并说明滑移可能在哪一个面上进行. 9-4 试述Zn 、,α-Fe 、Cu 等几种金属塑性不同的原因. 9-5 沿铁单晶的 [110] 方向对其施加拉力,当力的大小为50MPa 时,在 (101) 面上的 [111] 方向的分切应力应为多少? 若ηc =31.1MPa ,外加拉应力应为多大? 9-6 孪晶和滑移的变形机制有何不同?

9-7 为什么晶粒大小会影响屈服强度? 经退火的纯铁当晶粒大小为16个/mm 2时,ζs =100 MN/mm 2;而当晶粒大小为4096个/mm 2时,ζs =250 MN/mm 2,试求晶粒大小为256个/mm 2时的ζs . 9-8 题图9-l 为一多晶体金属的应力--应变曲线,试回答下列问题:

(1) 当应力达到屈服点B 时,用位错理论解释所发生的现象.

(2) 应力从B 增加到C 和D ,材料发生了加工硬化,试用位措理论说明强度增加的原因. 9-9 讨论金属中内应力的基本特点、成因和对金属加工、使用的影响.

9-10 为什么陶瓷材料的理论与实际断裂强度的差异很大? 在什么条件下易产生沿晶脆断?如何减小这种倾向? 9-11 细化晶粒可使材料的室温力学性能 (强度和塑性) 显著提高,这一结论在高温下还成立吗? 为什么?

9-12 在室温下对铅板进行弯折,越弯越硬,但如果稍隔一段时间再行弯折,铅板又像最初一样柔软,这是什么原因?

9-13 拉制半成品铜丝的过程如题图9-2所示.试绘制不同阶段的组织和性能示意图,并加以解释.

9-14 银的冷加工变形量为26%,界面能为0.4 J/m 2,畸变能约为16.7 J/mol ,在晶界移动形成再结晶核心时,若弓出的晶界长度为l μm ,问是否符合晶界弓出生核的能量条件.

参考答案:

9-2 共有12个可能的滑移系统:(111)[10]、(111)[01]、(111)[10]、(11)[110]、(11)[01]、(11)[101]、(11)[110]、

(11)[10]、(11)[011]、(11)[011]、(11)[101]、(11)[10]。 9-3 铝为面心立方金属,

(111)晶面面密度 222

)111(3.23342

3213613a a a S ==?+?

=

(110)晶面面密度 222

)110(4.122212414a a a S ==?+?

=

所以 S (110) > S (111)

(111) 晶面面间距 a d 33)111(=

(110)晶面面间距 a d 4

2)110(=

所以 d (111) > d (110)

滑移可能在(111)晶面上进行。

9-4 η=20.4MPa ,ζ=76.2MPa 9-11 不成立。

第十章 材料的强韧化

习 题

10-1 位错在金属晶体中运动可能会受到哪些阻力? 10-2 在碳钢中碳原子以何种方式对位错产生作用?

10-3 Ni 在钢的合金化中为一重要的合金元素,它既可提高钢的强度,又有韧化作用,为什么? 10-4 时效铝合金从高温淬火下来为什么强度下降而塑性、韧性提高? 10-5 塑料中的填料和固化剂有何作用?

10-6 塑料中的增塑剂对塑料的力学性能有何影响?

10-7 金属纤维陶瓷中纤维增强剂为钨丝、钼丝,它们与氧化铝、氧化锆结合成复合材料.实验表明,它们之间没有化学反应,结合紧固.实验样品断口上有纤维拔出的痕迹,请预计这些材料的韧化如何. 10-8 聚丙烯熔体缓冷或在138℃左右充分退火后,材料的强度就高,请简述原因. 10-9 马氏体比铁素体强度高得多,分析马氏体的强化机理. 10-10 钢的淬火与结晶性高分子材料淬火有何不同?

10-11 喷丸处理是用高速弹丸流冲击工件表面.这种工艺提高了工件的疲劳强度,延长了使用寿命.简述喷丸处理强化机理.

材料科学基础习题与答案

第二章思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al、α-Fe、Mg三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu的原子直径为A,求Cu的晶格常数,并计算1mm3Cu的原子数。 7. 已知Al相对原子质量Ar(Al)=,原子半径γ=,求Al晶体的密度。 8 bcc铁的单位晶胞体积,在912℃时是;fcc铁在相同温度时其单位晶胞体积是。当铁由bcc转变为fcc时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何

10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。 14. 在立方晶系中的一个晶胞内画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 15 在六方晶系晶胞中画出[1120],[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 16.在立方晶系的一个晶胞内同时画出位于(101),(011)和(112)晶面上的[111]晶向。 17. 在1000℃,有W C为%的碳溶于fcc铁的固溶体,求100个单位晶胞中有多少个碳原子(已知:Ar(Fe)=,Ar(C)=) 18. r-Fe在略高于912℃时点阵常数a=,α-Fe在略低于912℃时a=,求:(1)上述温度时γ-Fe和α-Fe的原子半径R;(2)γ-Fe→α-Fe转变时的体积变化率;(3)设γ-Fe→α-Fe转变时原子半径不发生变化,求此转变时的体积变

材料科学基础习题及答案

习题课

一、判断正误 正确的在括号内画“√”,错误的画“×” 1、金属中典型的空间点阵有体心立方、面心立方和密排六方三种。 2、位错滑移时,作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。 3、只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。 4、金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。 5、固溶体凝固形核的必要条件同样是ΔG<0、结构起伏和能量起伏。 6三元相图垂直截面的两相区内不适用杠杆定律。 7物质的扩散方向总是与浓度梯度的方向相反。 8塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。 9.晶格常数是晶胞中两相邻原子的中心距。 10.具有软取向的滑移系比较容易滑移,是因为外力在在该滑移系具有较大的分切应力值。11.面心立方金属的滑移面是{110}滑移方向是〈111〉。 12.固溶强化的主要原因之一是溶质原子被吸附在位错附近,降低了位错的易动性。13.经热加工后的金属性能比铸态的好。 14.过共析钢的室温组织是铁素体和二次渗碳体。 15.固溶体合金结晶的过程中,结晶出的固相成份和液相成份不同,故必然产生晶内偏析。16.塑性变形后的金属经回复退火可使其性能恢复到变形前的水平。 17.非匀质形核时液体内部已有的固态质点即是非均匀形核的晶核。 18.目前工业生产中一切强化金属材料的方法都是旨在增大位错运动的阻力。 19、铁素体是α-Fe中的间隙固溶体,强度、硬度不高,塑性、韧性很好。 20、体心立方晶格和面心立方晶格的金属都有12个滑移系,在相同条件下,它们的塑性也相同。 21、珠光体是铁与碳的化合物,所以强度、硬度比铁素体高而塑性比铁素体差。 22、金属结晶时,晶粒大小与过冷度有很大的关系。过冷度大,晶粒越细。 23、固溶体合金平衡结晶时,结晶出的固相成分总是和剩余液相不同,但结晶后固溶体成分是均匀的。 24、面心立方的致密度为0.74,体心立方的致密度为0.68,因此碳在γ-Fe(面心立方)中的溶解度比在α-Fe(体心立方)的小。 25、实际金属总是在过冷的情况下结晶的,但同一金属结晶时的过冷度为一个恒定值,它与冷却速度无关。 26、金属的临界分切应力是由金属本身决定的,与外力无关。 27、一根曲折的位错线不可能是纯位错。 28、适当的再结晶退火,可以获得细小的均匀的晶粒,因此可以利用再结晶退火使得铸锭的组织细化。 29、冷变形后的金属在再结晶以上温度加热时将依次发生回复、再结晶、二次再结晶和晶粒长大的过程。 30、临界变形程度是指金属在临界分切应力下发生变形的程度。 31、无限固溶体一定是置换固溶体。 32、金属在冷变形后可形成带状组织。 33、金属铅在室温下进行塑性成型属于冷加工,金属钨在1000℃下进行塑性变形属于热加工。

材料科学基础习题及参考答案复习过程

材料科学基础习题及 参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213) (112) (102) [111] [110] [120] [321] 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面: (1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112) 2110<>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011<>的等价晶向: [1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011] 4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为 晶格常数。该晶面的面法线与a ,b ,c 轴的夹角分别为119.0、43.3和60.9度。请据此确定晶面指数。 h:k:l=cos α:cos β:cos γ l k h d a 2 22hk l ++= 5. Cu 具有FCC 结构,其密度为8.9g/cm 3,相对原子质量为63.546,求铜的原子半径。

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

材料科学基础课后习题

1.作图表示立方晶体的晶面及晶向。 2.在六方晶体中,绘出以下常见晶向 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的 等价晶面。 4.镁的原子堆积密度和所有hcp金属一样,为。试求镁单位晶胞的 体积。已知Mg的密度,相对原子质量为,原子半径r=。 5.当CN=6时离子半径为,试问: 1)当CN=4时,其半径为多少? 2)当CN=8时,其半径为多少? 6.试问:在铜(fcc,a=)的<100>方向及铁(bcc,a=的<100>方向,原 子的线密度为多少? 7.镍为面心立方结构,其原子半径为。试确定在镍的 (100),(110)及(111)平面上1中各有多少个原子。 8.石英的密度为。试问: 1)1中有多少个硅原子(与氧原子)? 2)当硅与氧的半径分别为与时,其堆积密度为多少(假设原子是 球形的)?

9.在800℃时个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时个原子中则只有一个原子,试求其激活能(J/原 子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空 位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J)。 11.设图1-18所示的立方晶体的滑移面ABCD平行于晶体的上、下底面。 若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b∥AB。 1)有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台 阶应为4个b,试问这种看法是否正确?为什么? 2)指出位错环上各段位错线的类型,并画出位错运动出晶体后, 滑移方向及滑移量。 12.设图1-19所示立方晶体中的滑移面ABCD平行于晶体的上、下底面。 晶体中有一条位错线段在滑移面上并平行AB,段与滑移面垂直。位错的柏氏矢量b与平行而与垂直。试问: 1)欲使段位错在ABCD滑移面上运动而不动,应对晶体施加 怎样的应力? 2)在上述应力作用下位错线如何运动?晶体外形如何变化? 13.设面心立方晶体中的为滑移面,位错滑移后的滑移矢量为 。 1)在晶胞中画出柏氏矢量b的方向并计算出其大小。 2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方 向,并写出此二位错线的晶向指数。

材料科学基础习题及答案

《材料科学基础》习题及答案 第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷 1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论 图2-1 MgO 晶体中不同晶面的氧离子排布示意图 2 面排列密度的定义为:在平面上球体所占的面积分数。 (a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。 解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b )在面心立方紧密堆积的单位晶胞中,r a 220= (111)面:面排列密度= ()[] 907.032/2/2/34/222==?ππr r

材料科学基础第一章全部作业

(一) 1 谈谈你对材料学科及材料四要素之间的关系的认识 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 画出立方晶系中(011),(312),[211],[211],[101],(101) 7, 画出六方晶系中(1120),(0110),(1012),(110),(1012) 8. 原子间的结合键共有几种?各自特点如何? 9.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),() 123,(130),[211],[311];

10.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。 11.计算面心立方结构(111)、(110)与(100)面的面密度和面间距。 12. 标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),()123,(130),[211],[311]; b)六方晶系()2111, ()1101,()3212,[2111],1213????。 13 在体心立方晶系中画出{111}晶面族的所有晶面。 14 画出<110>晶向族所有晶向

15.写出密排六方晶格中的[0001],(0001),()1120,()1100,()1210 16. 在一个简单立方晶胞内画出一个(110)晶面和一个[112]晶向。 17. 标出具有下列密勒指数的晶面和晶向: 立方晶系(421),()123,(130),[211],[311]; 18.计算晶格常数为a 的体心立方结构晶体中八面体间隙的大小。 19.画出面心立方晶体中(111)面上的[112]晶向。 20.已知某一面心立方晶体的晶格常数为a ,请画出其晶胞模型并分别计算该晶体 的致密度、{111}晶面的面密度以及{110}晶面的面间距。 21.表示立方晶体的(123),[211],()012 22. 写出密排六方晶格中()1120,()1100,()1210[2111],1213???? 23. 画出密排六方晶格中的[0001], ,()0110,()1010,[2110],[1120] 24 在面心立方晶胞中的(1 1 1)晶面上画出[110]晶向 25 指出在一个面心立方晶胞中的八面体间隙的数目,并写出其中一个八 面体间隙的中心位置坐标。假设原子半径为r ,计算八面体间隙的半径。 26.画出密排六方晶格中的(0001),()1120,()1100,()1210 27.立方晶系中画出(010),(011),(111),(231),[231],[321] 29.计算晶格常数为a 的面心立方结构晶体中四面体间隙和八面体间隙的大小。(4分) 30.写出立方晶系{}110、{}123晶面族的所有等价面 31.立方晶胞中画出以下晶面和晶向:()102,(112),(213) ,[110], 32.六方晶系中画出以下晶面和晶向:(2110),(1012),1210????,0111???? 33.写出立方晶系{}100、{}234晶面族的所有等价面 34.画出立方晶胞内(111),[112], 35.画出六方晶胞内(1011),[1123]

(完整版)材料科学基础练习题

练习题 第三章晶体结构,习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四 面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空 隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置 的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四 面体间隙位置数与氧离子数之比又为若干? (b)在氧离子面心立方密堆积结构中,对于获得稳定结构各需何 种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。1:1和2:1 (b)对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子 及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。 3-3 MgO晶体结构,Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO的密度。并说明为什么其体积分数小于74.05%?

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目) 有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

材料科学基础部分习题

晶体结构 1、解释下列概念 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/ 3、b/2、c,求出该晶面的米勒指数。 3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321] 4、写出面心立方格子的单位平行六面体上所有结点的坐标。 5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。 6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。 7、从理论计算公式计算NaC1与MgO的晶格能。MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。 8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有34.01%),为什么它也很稳定? 9、证明等径圆球面心立方最密堆积的空隙率为25.9%; 10、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。 11、根据半径比关系,说明下列离子与O2—配位时的配位数各是多? r o2-=0.132nm r Si4+=0.039nm r K+=0.133nm r Al3+=0.057nm r Mg2+=0.078n m 12、为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多? 13、有效离子半径可通过晶体结构测定算出。在下面NaCl型结构晶体中,测得MgS 和MnS的晶胞参数均为a=0.52nm(在这两种结构中,阴离子是相互接触的)。若CaS(a=0.567nm)、CaO(a=0.48nm)和MgO(a=0.42nm)为一般阳离子——阴离子接触,试求这些晶体中各离子的半径。

《材料科学基础》课后答案章

第 一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101).(011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的a=b,c=a/2。某晶面在三个晶轴上的截距分别为6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的{111},1110},{123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题: (1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。 (2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。 6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。 解:1、体心立方

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度 为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与 点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度 为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系 是 ;hcp 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 , 致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数 为 ,四面体间隙数为 。 3. 纯铁冷却时在912e 发生同素异晶转变是从 结构转变为 结构,配位数 , 致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平面上的 方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径 R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间 隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ;(2) ; (3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑 性 ,导电性 。 6)间隙固溶体是 ,间隙化合物 是 。 二、 问答 1、 分析氢,氮,碳,硼在a-Fe 和g-Fe 中形成固溶体的类型,进入点阵中的位置和固 溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼: 0.091nm ,a-Fe :0.124nm ,g-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

材料科学基础经典习题及答案

第一章 材料科学基础 1.作图表示立方晶体的()()()421,210,123晶面及[][ ][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动, 而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。 11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。 1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么? 2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。 12.设图1-19所示立方晶体中的滑移面ABCD 平行于晶体的上、下底面。晶体中有一条位错线de fed ,段在滑移面上并平行AB ,ef 段与滑移面垂直。位错的柏氏矢量b 与de 平行而与ef 垂直。试问:1) 欲使de 段位错在ABCD 滑移面上运动而ef 不动,应对晶体施加怎样的应

材料科学基础习题与答案

第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因? 2. 从结构、性能等面描述晶体与非晶体的区别。 3. 谓理想晶体?谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数? 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。)谓配位数?谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等面比较有异同? 5. 固溶体和中间相的类型、特点和性能。谓间隙固溶体?它与间隙相、间隙化合物之间有区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么? 6. 已知Cu 的原子直径为2.56A ,求Cu 的晶格常数,并计算1mm 3 Cu 的原子数。 7. 已知Al 相对原子质量Ar (Al )=26.97,原子半径γ=0.143nm ,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是0.02464nm 3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm 3。当铁由bcc 转变为fcc 时,其密度改变的百分比为多少? 9. 谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如? 10. 在面心立晶胞中画出[012]和[123]晶向。在面心立晶胞中画出(012)和(123)晶面。 11. 设晶面()和(034)属六晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个

【上海交大材料科学基础复习要点(原版)】材料科学基础习题及参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。 (213) 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112) 2110 <>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011 <>的等价晶向:[1011][1101][0111][0111][1101][1011] [1011][1101][0111][0111][1101][1011]

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

相关文档
相关文档 最新文档