文档库 最新最全的文档下载
当前位置:文档库 › 高斯求和习题及答案

高斯求和习题及答案

高斯求和习题及答案
高斯求和习题及答案

高斯求和习题

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如:

(1)1,2,3,4,5,…,100 (2)1,3,5,7,9,…,99 (3)8,15,22,29,36,…,71 末项=首项+公差×(项数-1)

项数=(末项-首项)÷公差+1 等差数列的和=(首项+末项)×项数÷2

例1、求等差数列3,7,11,15,19,…的第10项和第25项。例2、在等差数列2,5,8,11,14,…中,101是第几项?

例3、在5和61之间插入七个数后,使它成为一个等差数列,写出这个数列。

例4、1+2+3+4+…+1999

例5、3+7+11+…+99

练习:1、计算下面各题。

(1)3+10+17+24+…+101 (2)17+19+21+…+39

2、求首项是5,末项是93,公差是4的等差数列的和。

3、求首项是13,公差是5的等差数列的前30项的和。

4、已知等差数列2,5,8,11,14,…(1)这个数列的第13项是多少?

(2)47是其中的第几项?

5、已知等差数列的第1项是12,第6项是27,求公差。

6、如果一个数列的第4项为21,第6项为33,求它的第9项。

7、求首项是5,末项是93,公差是4的等差数列的和。

8、已知等差数列6,13,20,27…,问这个数列前30项的和是多少?

9、①7+10+13+…+37+40

②2000-3-6-9-…-51-54 10、一个剧场设置了22排座位,第一排有36个座位,往后每排都比前一排多2个座位,这个剧场共有多少个座位?

答案:

例1、39,99 例2、34

例3、5,12,19,26,33,40,47,54,61 例4、1999000 例5、1275

练习1(1)780 (2)336 2、1127 3、2565 4、(1)38 (2)16 5、51 6、1127

7、3225 8、(1)282 (2)1487 9、1254

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 112342421 {},1(1,2,3,)3 (1),,{}.(2)n n n n n n a n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求 1112 {},1(1,2,).:(1){ };(2)4n n n n n n n n a n S a a S n n S n S a +++== ==L 数列的前项和记为已知,证明数列是等比数列 *121 {}(1)()3 (1),; (2):{}. n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列 11211 {},,.2n n n n a a a a a n n +==++ 已知数列满足求 练习1 练习2 练习3 练习4

112{},,,.31n n n n n a a a a a n += =+ 已知数列满足求 1 11511{},,().632n n n n n a a a a a ++==+ 已知数列中,求 1 11{}:1,{}. 31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式 练习8 等比数列 {}n a 的前n 项和S n =2n -1,则 2 232221n a a a a ++++Λ 练习9 求和:5,55,555,5555,…,5(101)9n -,…; 练习5 练习6 练习7

练习10 求和: 111 1447(32)(31) n n +++ ??-?+ L 练习11 求和: 111 1 12123123n ++++= +++++++ L L 练习12 设{} n a 是等差数列, {} n b 是各项都为正数的等比数列,且11 1 a b == ,35 21 a b += , 5313 a b += (Ⅰ)求{} n a , {} n b 的通项公式;(Ⅱ)求数列 n n a b ?? ?? ??的前n项和n S.

高斯求和公式,分组计算

整数巧算问题2-高斯求和与分组求和 授课时间:年月日 一、知识要点 (一)高斯求和公式 当一个算式中每两个相邻数之间的差值一定时我们可以使用高斯求和公式达到简便运算的目的。 和=(首项+尾项)项数 项数=(尾项-首项)公差+1 其中项数就是整个算式的数字个数,在运用高斯公式时,难点就是找准算式的项数。 (二)分组求和 在数学计算特别是繁杂的计算中往往在题目之后隐藏着一些规律,我们可以按照规律对算式中的数字先进行分组,再计算,可以极大的节省我们的计算时间。 二、精讲精练 (一)高斯求和公式 【例题1】计算1+2+3+……+99 练习1: 1、1+2+3+……+198+199 2、2+3+4+……+199+200 3、2+3+4+……+997+998 【例题2】现在有一组数字为2,4,6……98,100请问这组数一共有多少个数字?

1、现在有一组数字为3,4,5……98,917请问这组数一共有多少个数字? 2、现在有一组数字为98,100,102……1234,1236请问这组数一共有多少个数字? 3、现在有一组数字为3,6,9……99,102请问这组数一共有多少个数字? 【例题3】计算2+4+6+……+998+1000 练习3: 1、1+3+5+……+97+99 2、3+6+9+……+198+201 3、7+14+21+……+994+1001 【例题4】有一组数为1,3,5……97,99,这组数中的第30项是多少?

1、有一组数为2,4,6……98,100,在这组数中的第40项是多少? 2、有一组数为1,3,5……97,99,在这组数中的第20项和第30项的差是多少? 3、有一组数为1,3,5……97,99……999,1001,在这组数中的第400项和第100项的差是多少?【例题5】1+2-3-4+5+6-7-8+……+97+98-99-100+101 练习5: 1、1+2-3-4+5+6-7-8+9+10 2、1+2-3-4+5+6-7-8+……+197+198-199-200+201 3、1+3-5-7+9+11-13-15+……-1999+2001

高斯求和讲解

第3讲高斯求和 德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。 例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

数列求和精选难题易错题含答案

1、数列{an}的前n项和记为Sn,a1=t,点在直线y=2x+1上,。(1)若数列{an}是等比数列,求实数t的值; (2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn; (3)设各项均不为0的数列{cn}中,所有满足的整数的个数称为这个数列的”,令(),在(2)的条件下,求数列的“积异号数”。解:(1)由题意,当时,有 两式相减,得即:() 当时,是等比数列,要使时是等比数列, 则只需,从而得出 (2)由(1)得,等比数列的首项为,公比, ① 可得② 得 (3)由(2)知, ,, ,数列递增 由,得当时,数列的“积异号数”为1。 2、已知数列{an}的前n项和为Sn,满足. (Ⅰ)求数列{an}的通项公式an;

(Ⅱ)令,且数列{bn}的前n项和为Tn满足,求n的最小值; (Ⅲ)若正整数m,r,k成等差数列,且,试探究:am,ar,ak能否成等比数列证明你的结论. 解:(Ⅰ)∵, 由,∴, 又,∴数列是以为首项,为公比的等比数列, ∴,即; (Ⅱ),? ∴? ,? ∴,即n的最小值为5; (Ⅲ)∵, 若,,成等比数列,? 即 由已知条件得,∴, ∴, ∴上式可化为, ∵,∴, ∴, ∴为奇数,为偶数, 因此不可能成立,? ∴,,不可能成等比数列. 3、设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a2+b2=8,T3-S3=15? (1)求{an},{bn}的通项公式。? (2)若数列{cn}满足求数列{cn}

的前n项和Wn。 设等差数列{an}的公差为d,等比数列{bn}的公比为q ∵a1=1,b1=3由a2+b2=8,得1+d+3q=8 ① 由T3-S3=15得3(q2+q+1)-(3+3d)=15 ② 化简①②∴消去d得q2+4q-12=0 ∴q=2或q=-6 ∵q>0∴q=2则d=1∴an=n bn=3·2n-1? ⑵∵an=n∴① 当时,…② 由①-②得∴cn=3n+3? 又由⑴得c1=7∴? ∴{an}的前n项和…? 4、已知各项均不相等的等差数列的前四项和是a1,a7。? (1)求数列的通项公式;? (2)设Tn为数列的前n项和,若对一切恒成立,求实数的最大值。 解:(1)设公差为d ,由已知得解得d=1或d=0(舍去)? 。 (2) ,即 又

2109年小学四年级奥数经典30讲

2109年小学四年级奥数经典30讲 目录 第1讲速算与巧算(一) 第2讲速算与巧算(二) 第3讲高斯求和 第4讲 4,8,9整除的数的特征 第5讲弃九法 第6讲数的整除性(二) 第7讲找规律(一) 第8讲找规律(二) 第9讲数字谜(一) 第10讲数字谜(二) 第11讲归一问题与归总问题 第12讲年龄问题 第13讲鸡兔同笼问题与假设法 第14讲盈亏问题与比较法(一) 第15讲盈亏问题与比较法(二) 第16讲数阵图(一) 第17讲数阵图(二) 第18讲数阵图(三)

第19将乘法原理 第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题 第25讲智取火柴 第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则 第29讲抽屉原理(一)第30讲抽屉原理(二)

第1讲速算与巧算(一) 计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。 我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。 例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下: 86,78,77,83,91,74,92,69,84,75。 求这10名同学的总分。 分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下: 6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到 总和=80×10+(6-2-3+3+11- =800+9=809。 实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:

三年级奥数等差数列求和习题及标准答案

三年级奥数等差数列求和习题及答案

————————————————————————————————作者:————————————————————————————————日期:

计算(三)等差数列求和 知识精讲 一、定义:一个数列的前n 项的和为这个数列的和。 二、表达方式:常用n S 来表示 。 三:求和公式:和=(首项+末项)?项数2÷,1()2n n s a a n =+?÷。 对于这个公式的得到可以从两个方面入手: (思路1)1239899100++++++L 11002993985051=++++++++L 1444444442444444443 共50个101 ()()()() 101505050=?= (思路2)这道题目,还可以这样理解: 2349899100 1009998973212101101101101101101101 +++++++=+++++++=+++++++L L L 和=1+和倍和 即,和 (1001)100 2 10150 5050=+?÷=?=。 四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的 平均数,也等于首项与末项和的一半;或者换句话说,各项和等于 中间项乘以项数。 譬如:① 48123236436922091800+++++=+?÷=?=L (), 题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209?; ② 65636153116533233331089++++++=+?÷=?=L (), 题中的等差数列有33项,中间一项即第17项的值是33,而和恰等 于3333?。 例题精讲: 例1:求和: (1)1+2+3+4+5+6 = (2)1+4+7+11+13= (3)1+4+7+11+13+ (85)

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列) 德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题 让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案 等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好能够分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广 泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中 第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列 称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末 项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式:

和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加 数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时 就需要先求出项数。根据首项、末项、公差的关系,能够得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。

数列求和习题及答案.docx

§ 数列求和 ( : 45 分 分: 100 分) 一、 ( 每小 7 分,共 35 分 ) * 1 1.在等比数列 {a n } ( n ∈ N ) 中,若 a 1= 1, a 4= 8, 数列的前 10 和 ( ) A . 2- 18 B . 2- 19 2 2 C . 2- 1 10 D . 2- 1 11 2 2 2.若数列 {a n } 的通 公式 a n =2n + 2n - 1, 数列 {a n } 的前 n 和 ( ) n 2 n + 1 2 A . 2 + n -1 B . 2 + n - 1 C . 2n + 1+ n 2- 2 D . 2n + n - 2 3.已知等比数列 {a n } 的各 均 不等于 1 的正数, 数列 {b } 足 b = lg a , b = 18,b = 12, n n n 3 6 数列 {b n } 的前 n 和的最大 等于 ( ) A . 126 B . 130 C . 132 D . 134 4.数列 {a } 的通 公式 n - 1 ·(4 n - 3) , 它的前 100 之和 S 等于 ( ) n a = ( - 1) n 100 A . 200 B .- 200 C . 400 D .- 400 5.数列 1·n , 2(n -1),3(n -2) ,?, n ·1的和 ( ) n(n + 1)(n + 2) n(n + 1)(2n + 1) n(n + 2)(n + 3) n(n + 1)(n + 2) 二、填空 ( 每小 6 分,共 24 分 ) 6.等比数列 {a } 的前 n 和 n 2 2 2 S =2 - 1, a + a +?+ a = ________. n n 1 2 n 7.已知数列 {a } 的通 a 与前 n 和 S 之 足关系式 S = 2- 3a , a = __________. n n n n n n 8.已知等比数列 {a } 中, a 1= 3,a 4= 81,若数列 {b } 足 b =log 3a , 数列 的前 n n n n n 1 b b n + 1 n 和 S = ________. n 9. 关于 x 的不等式 x 2- x<2nx (n ∈ N * ) 的解集中整数的个数 a n ,数列 {a n } 的前 n 和 S n , S 100 的 ________. 三、解答 ( 共 41 分 ) 10. (13 分 ) 已知数列 n n 和, 于任意的 * {a } 的各 均 正数, S 其前 n n ∈N 足关系式 2S n = 3a n -3. (1) 求数列 {a } 的通 公式; n (2) 数列 {b } 的通 公式是 b = 1 ,前 n 和 T ,求 : 于任意的 n n n log 3a n ·log 3a n + 1 正数 n , 有 T n <1. } 足 a + a + a = 28,且 a + 2 是 a , a 的等差 11. (14 分) 已知 增的等比数列 {a n 2 3 4 3 2 4

奥数高斯求和

奥数高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1 + 2+3 + 4+ …+ 99+ 100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1 + 100= 2+ 99= 3 + 98=-= 49+ 5 2 = 50+ 51。 1?100正好可以分成这样的50对数,每对数的和都相等。于是, 小高斯把这道题巧算为 (1 + 100)X 100 + 2 = 5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1) 1, 2, 3, 4, 5, (100) (2) 1, 3, 5, 7, 9,…,99;( 3) 8, 15, 22, 29, 36,…, 其中(1)是首项为1,末项为100,公差为1的等差数列; 是首项为1,末项为99,公差为2的等差数列;(3)是首项为末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和二(首项+末项)X项数+ 2。 例1 1+2+3+ …+ 1999=? 分析与解:这串加数1, 2, 3,-, 1999是等差数列,首项是1,末(2) 8,

项是1999,共有1999个数。由等差数列求和公式可得 原式=(1 + 1999)X 1999- 2= 1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+ 31 = ? 分析与解:这串加数11, 12, 13,…,31是等差数列,首项是11, 末项是31,共有31-11 + 1 = 21 (项)。 原式二(11+31)X 21-2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数二(末项-首项)+公差+1, 末项二首项+公差x(项数-1 )。 例3 3 + 7+11+ …+ 99=? 分析与解:3, 7, 11,…,99是公差为4的等差数列, 项数二(99- 3)- 4+ 1= 25, 原式=(3+ 99)X 25- 2= 1275。 例4求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+ 3X(40-1 ) = 142, 和=(25+ 142)X 40- 2= 3340。

三年级奥数简单数阵与幻方

数阵与幻方 【知识点与方法】 一、数阵和幻方的概念:(1)数阵:每一条直线段的数字和相等。(2)幻方:在一个由若干个排列整齐的数组成的正方形中,任意一横行、一纵行及对角线的和都相等。 二、联系之前所学的高斯求和的知识,首先找到中心项:首项、末项、中间项。然后对称找和相等的成对的项。 【经典例题】 例1、将1、2、3、4、5这五个数分别填入下图中,使横行3个数的和与竖行3个数的和相等。 例2、将1、4、7、10、13这五个数分别填入下图中,使横行3个数的和与竖行3个数的和都等于25。 例3、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都相等。 例4、将5~11这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于24。 例5、将1~9这九个自然数填入下图的九个方格内,使得它成为一个幻方(每行、每列、每条对角线和都相等)。 练习与思考

1.将3、6、9、12、15这五个数分别填入下图中,使横行3个数的和与竖行3个数的和相等。 2. 将1、3、5、7、9这五个数分别填入下图中,使横行3个数的和与竖行3个数的和为17。 (2题图) (3题图a) (3题图b) 3. 将1~9这九个数分别填入右上图的小方格里,使横行和竖列上五个数之和相等。(至少找出两种本质上不同的填法) 4.将3~9这七个数分别填入左下图的○里,使每条直线上的三个数之和等于20。 (4题图) (5题图) 5.将1~11这十一个数分别填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大。 6. 将2~10这九个自然数填入下图的九个方格内,使得它成为一个幻方(每行、每列、每条对角线和都相等)。 7.将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。

(完整版)数列求和练习题(含答案)

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n (n +1) ,则S 5等于( ) A .1 B.5 6 C.16 D.130 B [∵a n =1n (n +1)=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.(2016·广东中山华侨中学3月模拟)已知等比数列{a n }中,a 2·a 8=4a 5,等差数列{b n }中,b 4+b 6=a 5,则数列{b n }的前9项和S 9等于( ) A .9 B .18 C .36 D .72 B [∵a 2·a 8=4a 5,即a 25=4a 5,∴a 5=4, ∴a 5=b 4+b 6=2b 5=4,∴b 5=2, ∴S 9=9b 5=18,故选B.] 已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n = 1 a n a n +1 ,求数列{b n }的前n 项和. [解] (1)由已知得???? ? 2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×9 2d =10a 1+45d =100, 解得??? a 1=1, d =2, 3分 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.5分 (2)b n = 1(2n -1)(2n +1)=12? ?? ??1 2n -1-12n +1,8分 所以T n =12? ? ???1-13+13-15+…+12n -1-12n +1 =12? ????1-12n +1=n 2n +1 .12分

四年级数学高斯求和讲解

四年级数学高斯求和讲解 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。 例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

小学数学《数列求和》练习题(含答案)

小学数学《数列求和》练习题(含答案) 【例1】找找下面的数列有多少项? (1)2、4、6、8、……、86、98、100 (2)3、4、5、6、……、76、77、78 (3)4、7、10、13、……、40、43、46 (4)2、6、10、14、18、……、82、86 分析:(1)我们都知道:1、2、3、4、5、6、7、8、……、95、96、97、98、99、100 这个数列是100项,现在不妨这样去看:(1、2)、(3、4)、(5、6)、(7、8)、……、(95、96)、(97、98)、(99、100),让它们两两一结合,奇数在每一组的第1位,偶数在第2位,而且每组里偶数比奇数大,小朋友们一看就知道,共有100÷2=50组,每组把偶数找出来,那么原数列就有50项了。 (2)连续的自然数列,3、4、5、6、7、8、9、10……,对应的是这个数列的第1、2、3、4、5、6、7、8、……,发现它的项数比对应数字小2,所以78是第76项,那么这个数列就有76项。对于连续的自然数列,它们的项数是:末项—首项+ 1 。 (3)配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组。当然,我们还可以有其他的配组方法。 (4)22项. 对于一个等差数列的求和,在许多时候我们不知道的往往是这个数列的项数。这种找项数的方法在学生学习了求项数公式后,也许稍显麻烦,但它的思路很重要,对于以后学习数论知识有较多的帮助。希望教师能帮助孩子牢固掌握。 【例2】计算下列各题: (1)2+4+6+…+96+98+100 (2)2+5+8+…+23+26+29 分析:(1)这是一个公差为2的等差数列,首项是2,末项是100,项数为50。 所以:2+4+6+…+96+98+100=(2+100)×50÷2=2550 (2)这是一个公差为3,首项为2,末项为29,项数是10的等差数列。 所以:2+5+8+…+23+26+29=(2+29)×10÷2=155 其实在这里,我们还有一个找项数的公式。那么让我们一起从等差数列的特性来找找吧! 【例3】你能找出几个等差数列的特征?从你的结果中,你能找到等差数列求项数的公式么? 分析:我们都知道,所谓等差数列就是:从第二项开始,每一项与它前一项的差都相等,那么我们可以得

高斯求和讲解

高斯求和讲解 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第3讲高斯求和 德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100= 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+ (1999) 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。

数列求和汇总例题与答案(新)

数列求和汇总答案 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:????--==)1()1(111 q a a q a q na S n n n 299100--+)()2100=++-()((656510099=-++-=S 二、错位相减法求和 b n }的前n ①-②得n n n x n x x x x x S x )12(222221)1(1432--+???+++++=--(错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+

练习:求数列 ??????,22,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积 设n n n S 2226242232+???+++=…………………………………① 264221+???+++=n S ………………………………②(设制错位) =∴例S ①+2S ∴S 例解:原式=()n x x x x ++++ 32??? ? ??++++n y y y 1112

= () y y y x x x n n 1111111- ???? ? ?-+-- =n n n n y y y x x x --+--++1 111 S n 当当例则1 1 321211+++???++++=n n S n (裂项求和) =)1()23()12(n n -++???+-+- =11-+n 练习:求13,115,135,163之和。

四年级奥数《高斯求和》答案及解析

高斯求和 德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100= 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 ]例1 1+2+3+ (1999) 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+ (31) 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+ (99) 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

四年级奥数高斯求和问题知识分享

四年级奥数高斯求和 问题

小学奥数专题——高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。 从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。 在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1

小学奥数基础教程(四年级)

小学奥数基础教程(四年级) 第1讲速算与巧算(一) 第2讲速算与巧算(二) 第3讲高斯求和 第4讲 4,8,9整除的数的特征 第5讲弃九法 第6讲数的整除性(二) 第7讲找规律(一) 第8讲找规律(二) 第9讲数字谜(一) 第10讲数字谜(二) 第11讲归一问题与归总问题 第12讲年龄问题 第13讲鸡兔同笼问题与假设法 第14讲盈亏问题与比较法(一) 第15讲盈亏问题与比较法(二) 第16讲数阵图(一) 第17讲数阵图(二) 第18讲数阵图(三) 第19将乘法原理 第20讲加法原理(一) 第21讲加法原理(二) 第22讲还原问题(一) 第23讲还原问题(二) 第24讲页码问题 第25讲智取火柴 第26讲逻辑问题(一) 第27讲逻辑问题(二) 第28讲最不利原则 第29讲抽屉原理(一) 第30讲抽屉原理(二) 第1讲速算与巧算(一) 计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。 我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。 例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下: 86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。 分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下: 6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到 总和=80×10+(6-2-3+3+11- =800+9=809。 实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下: 通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。 例1所用的方法叫做加法的基准数法。这种方法适用于加数较多,而且所有的加数相差不大的情况。作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。由例1得到: 总和数=基准数×加数的个数+累计差, 平均数=基准数+累计差÷加数的个数。 在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。 例2 某农场有10块麦田,每块的产量如下(单位:千克): 462,480,443,420,473,429,468,439,475,461。求平均每块麦田的产量。 解:选基准数为450,则 累计差=12+30-7-30+23-21+18-11+25+11 =50, 平均每块产量=450+50÷10=455(千克)。 答:平均每块麦田的产量为455千克。 求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。下面通过例题来说明这一方法。 例3 求292和822的值。 解:292=29×29 =(29+1)×(29-1)+12 =30×28+1 =840+1 =841。 822=82×82 =(82-2)×(82+2)+22 =80×84+4 =6720+4 =6724。 由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一

求数列前N项和的七种方法(含例题和答案)

求数列前N 项和的七种方法 点拨: 1. 公式法 等差数列前n 项和: 11()(1) 22 n n n a a n n S na d ++= =+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 等比数列前n 项和: q=1时,1n S na = ( )1111n n a q q S q -≠= -,,特别要注意对公比的讨论。 其他公式: 1、)1(211+==∑=n n k S n k n 2、)12)(1(611 2 ++==∑=n n n k S n k n 3、21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利 用常用公式)

=x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 1++=+n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 n n 8= ,即n =8时,501)(max =n f 2. 错位相减法 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的 通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和.

相关文档
相关文档 最新文档