文档库 最新最全的文档下载
当前位置:文档库 › 关于线性相关系数r的临界值表

关于线性相关系数r的临界值表

关于线性相关系数r的临界值表

关于线性相关系数r的临界值表

相关系数临界值表

附表二:相关系数临界值表 (表中是自由度) n -2 0.10 0.05 0.02 0.01 0.001 n -2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50 60 70 80 90 100 0.987 69 0.900 00 0.805 4 0.729 3 0.669 4 0.621 5 0.582 2 0.549 4 0.521 4 0.497 3 0.476 2 0.457 5 0.440 9 0.425 9 0.412 4 0.400 0 0.388 7 0.378 3 0.368 7 0.359 8 0.323 3 0.296 0 0.274 6 0.257 3 0.242 8 0.230 6 0.210 8 0.195 4 0.182 9 0.172 6 0.163 8 0.099 692 0.950 00 0.878 3 0.811 4 0.754 5 0.706 7 0.666 4 0.631 9 0.602 1 0.576 0 0.552 9 0.532 4 0.513 9 0.497 3 0.482 1 0.468 3 0.455 5 0.443 8 0.432 9 0.422 7 0.380 9 0.349 4 0.324 6 0.304 4 0.287 5 0.273 2 0.250 0 0.231 9 0.217 2 0.205 0 0.194 6 0.999 507 0.980 00 0.934 33 0.882 2 0.832 9 0.788 7 0.749 8 0.715 5 0.685 1 0.658 1 0.633 9 0.612 0 0.592 3 0.574 2 0.557 7 0.542 5 0.528 5 0.515 5 0.503 4 0.492 1 0.445 1 0.409 3 0.381 0 0.357 8 0.338 4 0.321 8 0.294 8 0.273 7 0.256 5 0.242 2 0.230 1 0.999 877 0.990 00 0.958 73 0.917 20 0.874 5 0.834 3 0.797 7 0.764 6 0.734 8 0.707 9 0.683 5 0.661 4 0.641 1 0.622 6 0.605 5 0.589 7 0.575 1 0.561 4 0.548 7 0.536 8 0.486 9 0.448 7 0.418 2 0.393 2 0.372 1 0.354 1 0.324 8 0.301 7 0.283 0 0.267 3 0.254 0 0.999 998 8 0.999 00 0.991 16 0.974 06 0.950 74 0.924 93 0.898 2 0.872 1 0.847 1 0.823 3 0.801 0 0.780 0 0.760 3 0.742 0 0.724 6 0.708 4 0.693 2 0.678 7 0.665 2 0.652 4 0.597 4 0.554 1 0.518 9 0.489 6 0.464 8 0.443 3 0.407 8 0.379 9 0.356 8 0.337 5 0.321 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50 60 70 80 90 100

统计临界值表

目录 附表一:随机数表 _________________________________________________________________________ 2附表二:标准正态分布表 ___________________________________________________________________ 3附表三:t分布临界值表____________________________________________________________________ 4 附表四: 2 分布临界值表 __________________________________________________________________ 5 附表五:F分布临界值表(α=0.05)________________________________________________________ 7附表六:单样本K-S检验统计量表___________________________________________________________ 9附表七:符号检验界域表 __________________________________________________________________ 10附表八:游程检验临界值表 _________________________________________________________________ 11附表九:相关系数临界值表 ________________________________________________________________ 12附表十:Spearman等级相关系数临界值表 ___________________________________________________ 13附表十一:Kendall等级相关系数临界值表 ___________________________________________________ 14附表十二:控制图系数表 __________________________________________________________________ 15

相关系数检验表

自由度自由度n -m -10.10 0.05 0.01 n -m -10.10 0.05 0.01 10.987690.996920.999882010.018230.010910.0028820.900000.950000.990002020.050680.043320.0258130.805380.878340.958742030.068740.066150.0518940.729300.811400.917202040.079150.080690.0725350.669440.754490.874532050.085730.090380.0880760.621490.706730.834342060.090190.097180.0998670.582210.666380.797682070.093370.102170.1089880.549360.631900.764592080.095730.105950.1161890.521400.602070.734792090.097520.108880.12197100.497260.575980.707892100.098910.111200.12670110.476160.552940.683532110.100010.113070.13062120.457500.532410.661382120.100890.114600.13390130.440860.513980.641142130.101600.115860.13667140.425900.497310.622592140.102170.116900.13903150.412360.482150.605512150.102640.117770.14106160.400030.468280.589712160.103020.118500.14281170.388730.455530.575072170.103320.119110.14432180.378340.443760.561442180.103560.119620.14564190.368740.432860.548712190.103760.120060.14679200.359830.422710.536802200.103910.120420.14780210.351530.413250.525622210.104020.120720.14869220.343780.404390.515102220.104100.120970.14946230.336520.396070.505182230.104160.121170.15015240.329700.388240.495812240.104190.121340.15075250.323280.380860.486932250.104200.121470.15127260.317220.373890.478512260.104190.121570.15173270.311490.367280.470512270.104170.121640.15214280.306060.361010.462892280.104130.121690.15249290.300900.355050.455632290.104080.121720.15279300.295990.349370.448702300.104020.121730.15306310.291320.343960.442072310.103950.121730.15328320.286860.338790.435732320.103870.121700.15348330.282590.333840.429652330.103780.121670.15364340.278520.329110.423812340.103680.121620.15377350.274610.324570.418212350.103580.121560.15388360.270860.320220.412822360.103470.121490.15396370.267270.316030.407642370.103360.121410.15403380.263810.312010.402642380.103240.121320.15407390.260480.308130.397822390.103120.121220.15409400.257280.304400.393172400.103000.121120.15410410.254190.300790.388682410.102870.121010.1541042 0.251210.297320.38434242 0.102740.120900.15408 显著性水平(a ) 显著性水平(a ) 相关系数检验临界值表

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

线性回归方程中的相关系数r教学教材

线性回归方程中的相 关系数r

线性回归方程中的相关系数r r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]

R2就是相关系数的平方, R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2 也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS 该统计量越接近于1,模型的拟合优度越高。 问题:在应用过程中发现,如果在模型中增加一个解释变量, R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 ——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1)) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。 总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。 R = R接近于1表明Y与X1, X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1, X2 ,…,Xk之间的线性关系程度不密切

相关系数就是线性相关度的大小,1为(100%)绝对正相关,0为0%,-1为(100%)绝对负相关 相关系数绝对值越靠近1,线性相关性质越好,根据数据描点画出来的函数-自变量图线越趋近于一条平直线,拟合的直线与描点所得图线也更相近。 如果其绝对值越靠近0,那么就说明线性相关性越差,根据数据点描出的图线和拟合曲线相差越远(当相关系数太小时,本来拟合就已经没有意义,如果强行拟合一条直线,再把数据点在同一坐标纸上画出来,可以发现大部分的点偏离这条直线很远,所以用这个直线来拟合是会出现很大误差的或者说是根本错误的)。 分为一元线性回归和多元线性回归 线性回归方程中,回归系数的含义 一元: Y^=bX+a b表示X每变动(增加或减少)1个单位,Y平均变动(增加或减少)b各单位多元: Y^=b1X1+b2X2+b3X3+a 在其他变量不变的情况下,某变量变动1单位,引起y平均变动量 以b2为例:b2表示在X1、X3(在其他变量不变的情况下)不变得情况下,X2每变动1单位,y平均变动b2单位 就一个reg来说y=a+bx+e a+bx的误差称为explained sum of square e的误差是不能解释的是residual sum of square 总误差就是TSS 所以TSS=RSS+ESS 判定系数也叫拟合优度、可决系数。表达式是

线性相关系数的计算

Spss电脑实验-第六节(3)线性相关系数的计算 https://www.wendangku.net/doc/e51472410.html,更新时间:2006-1-19 21:11:30 关注指数:7992 Ⅲ.线性相关系数的计算 1. 线性相关的概念 如果各统计指标是定量数据,要了解它们间的关系密切程度,可用线性相关分析。 例如:大家都知道的糖尿病病人,它靠胰岛素来治疗。现测量20 名糖尿病病人(以ID 来编号)血中的血糖值(y)、胰岛素值(x1)和生长激素值(x2)。我们即可分析 y、x1 和x2 间的两两/ 双变量间的线性关系。数据见下面的程序文件CorreRegre2.sps 的例*2。 2. 线性相关计算的所用命令 用SPSS Analyze 菜单中的子菜单Correlate,其中的Bivariate 对话框即可计算两两/ 双变量间的线性相关系数r 及其显著性。这是通常最常见、最常用的情况。 本例所用程序文件名为CorreRegre2.sps 中的例*2。(例*2 中还有用于偏相关系数与距离相关系数的计算命令,详后)。 ---------------------------------------------------------------- *2. Prof. Zhang Weng-Tong: SPSS 11, P.273-277:. DATA LIST FREE /ID y x1 x2. BEGIN DATA. 1 12.21 15.20 9.51 2 14.54 16.70 11.43 3 12.27 11.90 7.53 4 12.04 14.00 12.17 5 7.88 19.80 2.33 6 11.10 16.20 13.52 7 10.43 17.00 10.07 8 13.32 10.30 18.89 9 19.59 5.90 13.14 10 9.05 18.70 9.63 11 6.44 25.10 5.10 12 9.49 16.40 4.53 13 10.16 22.00 2.16 14 8.38 23.10 4.26 15 8.49 23.20 3.42 16 7.71 25.00 7.34 17 11.38 16.80 12.75 18 10.82 11.20 10.88 19 12.49 13.70 11.06 20 9.21 24.40 9.16 END DATA. CORRELATIONS /VARIABLES=y x1 x2 /PRINT=TWOTAIL NOSIG. NONPAR CORR /VARIABLES=y x1 x2 /PRINT=SPEARMAN TWOTAIL NOSIG.

T检验临界值表

自由度自由度(df )0.100.05 0.01 (df )0.100.05 0.01 n -m -1n -m -11 6.31412.70663.657301 1.650 1.968 2.5922 2.920 4.3039.925302 1.650 1.968 2.5923 2.353 3.182 5.841303 1.650 1.968 2.5924 2.132 2.776 4.604304 1.650 1.968 2.5925 2.015 2.571 4.032305 1.650 1.968 2.5926 1.943 2.447 3.707306 1.650 1.968 2.5927 1.895 2.365 3.499307 1.650 1.968 2.5928 1.860 2.306 3.355308 1.650 1.968 2.5929 1.833 2.262 3.250309 1.650 1.968 2.59210 1.812 2.228 3.169310 1.650 1.968 2.59211 1.796 2.201 3.106311 1.650 1.968 2.59212 1.782 2.179 3.055312 1.650 1.968 2.59213 1.771 2.160 3.012313 1.650 1.968 2.59214 1.761 2.145 2.977314 1.650 1.968 2.59215 1.753 2.131 2.947315 1.650 1.968 2.59216 1.746 2.120 2.921316 1.650 1.967 2.59117 1.740 2.110 2.898317 1.650 1.967 2.59118 1.734 2.101 2.878318 1.650 1.967 2.59119 1.729 2.093 2.861319 1.650 1.967 2.59120 1.725 2.086 2.845320 1.650 1.967 2.59121 1.721 2.080 2.831321 1.650 1.967 2.59122 1.717 2.074 2.819322 1.650 1.967 2.59123 1.714 2.069 2.807323 1.650 1.967 2.59124 1.711 2.064 2.797324 1.650 1.967 2.59125 1.708 2.060 2.787325 1.650 1.967 2.59126 1.706 2.056 2.779326 1.650 1.967 2.59127 1.703 2.052 2.771327 1.650 1.967 2.59128 1.701 2.048 2.763328 1.650 1.967 2.59129 1.699 2.045 2.756329 1.649 1.967 2.59130 1.697 2.042 2.750330 1.649 1.967 2.59131 1.696 2.040 2.744331 1.649 1.967 2.59132 1.694 2.037 2.738332 1.649 1.967 2.59133 1.692 2.035 2.733333 1.649 1.967 2.59134 1.691 2.032 2.728334 1.649 1.967 2.59135 1.690 2.030 2.724335 1.649 1.967 2.59136 1.688 2.028 2.719336 1.649 1.967 2.59137 1.687 2.026 2.715337 1.649 1.967 2.59038 1.686 2.024 2.712338 1.649 1.967 2.59039 1.685 2.023 2.708339 1.649 1.967 2.59040 1.684 2.021 2.704340 1.649 1.967 2.59041 1.683 2.020 2.701341 1.649 1.967 2.59042 1.682 2.018 2.698342 1.649 1.967 2.59043 1.681 2.017 2.695343 1.649 1.967 2.59044 1.680 2.015 2.692 344 1.649 1.967 2.590 显著性水平(a )显著性水平(a )T 检验临界值表

实验十三 二项分布的计算与中心极限定.

实验十三二项分布的计算与中心极限定 [实验目的] 1.研究用Poisson逼近与正态逼近进行二项分布近似计算的条件 2.检验中心极限定理 §1 引言 二项分布在概率论中占有很重要的地位。N次Bernoulli实验中正好出现K次成功的概 率有下式给出b k;n,p C n k p k1p n k ,k=0,1,2,……..n.二项分布的 值有现成的表可查,这种表对不同的n及p给出了b(k;n.p)的数值。在实际应用中。通常可用二项的Poisson逼近与正态逼近来进行二项分布的近似计算。在本实验中,,我们来具体地研究在什么条件下,可用Poisson逼近与正态逼近来进行二项分布的近似计算。 在概率论中,中心极限定理是一个很重要的内容,在本实验中,我们用随即模拟的方法来检验一个重要的中心极限定理——Liderberg-Levi中心极限定理。 §2 实验内容与练习 1.1二项分布的Poisson逼近 用Mathematica软件可以比较方便地求出二项分布的数值。例如n=20;p=0,1;Table[Binomial[n,k]*p^k*(1-p)(n-k),{k,0,20}]给出了b(k;20,0.1)(k=0,1,2,…..,20)的值。 联系 1 用Mathematica软件给出了b(k;20,0.1),b(k;20,0.3)与 b (k;20,0.5)(k=0,1,2,…..,20)的值。 我们可用Mathematica软件画出上述数据的散点图,下面的语句给出了b(k;20.0.1)的(连线)散点图(图13。1): LISTpOLT[table[Binomi al[20,k]*0.1^k*0.9^(20-k), {k,0,20}],PlotJoined->True] 图13.1 b(k;20,0.1) b k;n,p C n k p k1p n k (k=1,1,2,……,20)的散点图 练习2绘出b(l;20,0.3)与b(k;20,0.5)(k=0,1,2,…,20)的散点图 根据下面的定理,二项分布可用Poisson分布来进行近似计算。 定理13。1 在Bernoulli实验中,以P n 代表事件A在试验中出现的概率,它与试验总数有关. 如果np n→→λ,则当n→∞时,b k;n,p k k e 。 由定理13,1在n很大,p很小,而λ=np大小适中时,有 b k;n.p c k n p k1p n k k k e

线性回归中的相关系数

线性回归中的相关系 数 Revised on November 25, 2020

线性回归中的相关系数 山东胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当 x不全 i 为零,y i也不全为零时,则两个变量的相关系数的计算公式是: r就叫做变量y与x的相关系数(简称相关系数). 说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关; (2)另外注意r的大小,如果[] r∈,,那么正相关很强;如果 0.751 [] ,或[) 0.300.75 r∈,,那么相关 r∈-- 0.750.30 r∈-- ,,那么负相关很强;如果(] 10.75 性一般;如果[] 0.250.25 r∈-,,那么相关性较弱. 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 例1测得某国10对父子身高(单位:英寸)如下: (1)对变量y与x进行相关性检验;

(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,102 144794i i x ==∑,10 2144929.22i i y ==∑,4475.6x y =,2 4462.24x =, 24489y =,10 144836.4i i i x y ==∑, 所以10i i x y nx y r -∑ 80.40.9882.04 =≈≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则 101 102211010i i i i i x y xy b x x ==-=-∑∑44836.4447560.46854479444622.4 -=≈-, 670.468566.835.7042a y bx =-=-?=. 故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =?+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸. 点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表:

统计分布临界值表

附录 附表一:随机数表 _________________________________________________________________________ 2附表二:标准正态分布表 ___________________________________________________________________ 3附表三:t分布临界值表____________________________________________________________________ 4 附表四: 2 分布临界值表 __________________________________________________________________ 5 附表五:F分布临界值表(α=0.05)________________________________________________________ 7附表六:单样本K-S检验统计量表___________________________________________________________ 9附表七:符号检验界域表 __________________________________________________________________ 10附表八:游程检验临界值表 _________________________________________________________________ 11附表九:相关系数临界值表 ________________________________________________________________ 12附表十:Spearman等级相关系数临界值表 ___________________________________________________ 13附表十一:Kendall等级相关系数临界值表 ___________________________________________________ 14附表十二:控制图系数表 __________________________________________________________________ 15

统计分布临界值表

附表一:随机数表_____________________________________________________________________________ 2附表二:标准正态分布表______________________________________________________________________ 3附表三:t分布临界值表________________________________________________________________________ 4 2 附表四:分布临界值表_____________________________________________________________________ 5附表五:F分布临界值表(a =0.05)7附表六:单样本K-S检验统计量表_______________________________________________________________ 9附表七:符号检验界域表______________________________________________________________________ 10附表八:游程检验临界值表___________________________________________________________________ 11附表九:相关系数临界值表____________________________________________________________________ 12附表十:Spearman等级相关系数临界值表 _____________________________________________________ 13附表十一:Kendall等级相关系数临界值表_______________________________________________________ 14附表十二:控制图系数表_____________________________________________________________________ 15

高中数学人教版 选修2-3(理科) 第二章 随机变量及其分布 2.2.3独立重复试验与二项分布D卷

高中数学人教版选修2-3(理科)第二章随机变量及其分布 2.2.3独立重复试验与 二项分布D卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共10题;共19分) 1. (2分) (2016高一下·兰州期中) 从一批羽毛球产品中任取一个,质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是() A . 0.62 B . 0.38 C . 0.7 D . 0.68 2. (2分)已知随机变量ξ服从二项分布ξ~B(n,p),且E(ξ)=7,D(ξ)=6,则p等于() A . B . C . D . 3. (2分) (2016高二下·邯郸期中) 设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)= ,则P(Y≥1)为() A . B . C .

D . 1 4. (2分) (2017高二下·洛阳期末) 设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)= ,则D( Y+1)=() A . 2 B . 3 C . 6 D . 7 5. (2分)设随机变量X~B(2,P),随机变量Y~B(3,P),若P(X≥1)=,则D(3Y+1)=() A . 2 B . 3 C . 6 D . 7 6. (2分)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于() A . B . 0 C . 1 D . 7. (2分)某人射击一次击中目标的概率为0.6,此人射击3次恰有两次击中目标的概率为() A . B .

C . D . 8. (2分) (2017高二下·南阳期末) 设随机变量ξ~B(2,p),随机变量η~B(3,p),若,则Eη=() A . B . C . 1 D . 9. (2分) (2018高二下·黄陵期末) 若随机变量X服从二项分布,且 ,则 =________ , =________. 10. (1分) (2018高二下·枣庄期末) 已知随机变量,且,则 ________. 二、填空题 (共2题;共6分) 11. (1分)已知随机变量X服从二项分布B(n,p),若E(X)=40,D(X)=30,则p=________ 12. (5分)(2019·天津) 设甲、乙两位同学上学期间,每天7:30之前到校的概率均为 .假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望; (Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率. 三、解答题 (共2题;共20分) 13. (10分)(2019·大连模拟) 随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数 复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。 偏相关系数: 又叫部分相关系数:部分相关系数反映校正其它变量后某一变量与另一变量的相

(完整版)相关系数临界值表

附表7. 相关系数临界值表 (表中是自由度) n-20.100.050.020.010.001 n-2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0.987 69 0.900 00 0.805 4 0.729 3 0.669 4 0.621 5 0.582 2 0.549 4 0.521 4 0.497 3 0.476 2 0.457 5 0.440 9 0.425 9 0.412 4 0.400 0 0.099 692 0.950 00 0.878 3 0.811 4 0.754 5 0.706 7 0.666 4 0.631 9 0.602 1 0.576 0 0.552 9 0.532 4 0.513 9 0.497 3 0.482 1 0.468 3 0.999 507 0.980 00 0.934 33 0.882 2 0.832 9 0.788 7 0.749 8 0.715 5 0.685 1 0.658 1 0.633 9 0.612 0 0.592 3 0.574 2 0.557 7 0.542 5 0.999 877 0.990 00 0.958 73 0.917 20 0.874 5 0.834 3 0.797 7 0.764 6 0.734 8 0.707 9 0.683 5 0.661 4 0.641 1 0.622 6 0.605 5 0.589 7 0.999 998 8 0.999 00 0.991 16 0.974 06 0.950 74 0.924 93 0.898 2 0.872 1 0.847 1 0.823 3 0.801 0 0.780 0 0.760 3 0.742 0 0.724 6 0.708 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

二项分布临界值表

附表1 二项分布临界值表 在p=q=下,x或n–x(不论何者为大)的临界值 n 单侧检验()双侧检验()0.050.010.050.01 55———66—6—7777—8788—98989 10910910 119101011 1210111011 1310121112 1411121213 1512131213 1612141314 1713141315 1813151415 1914151516 2015161517 2115171617 2216171718 2316181719 2417191819

2518191820 2618201920 2719202021 2819212022 2920222122 3020222123

附表2 正态分布概率表 Z F(Z)Z F(Z)Z F(Z)Z F(Z) 0.000.00000.350.27370.700.5161 1.050.7063 0.010.00800.360.28120.710.5223 1.060.7109 0.020.01600.370.28860.720.5285 1.070.7154 0.030.02390.380.29610.730.5346 1.080.7199 0.040.03190.390.30350.740.5407 1.090.7243 0.050.03990.400.31080.750.5467 1.100.7287 0.060.04780.410.31820.760.5527 1.110.7330 0.070.05580.420.32550.770.5587 1.120.7373 0.080.06380.430.33280.780.5646 1.130.7415 0.090.07170.440.34010.790.5705 1.140.7457 0.100.07970.450.34730.800.5763 1.150.7499 0.110.08760.460.35450.810.5821 1.160.7540 0.120.09550.470.36160.820.5878 1.170.7580 0.130.10340.480.36880.830.5935 1.180.7620 0.140.11130.490.37590.840.5991 1.190.7660 0.150.11920.500.38290.850.6047 1.200.7699 0.160.12710.510.38990.860.6102 1.210.7737 0.170.13500.520.39690.870.6157 1.220.7775 0.180.14280.530.40390.880.6211 1.230.7813 0.190.15070.540.41080.890.6265 1.240.7850

线性回归中的相关系数

线性回归中的相关系数 山东 胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量就是否就是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法就是绘制散点图;另外一种方法就是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r 来衡量两个变量之间的线性相关的强弱,当i x 不全为零,y i 也不全为零时,则两个变量的相关系数的计算公式就是: ()() n n i i i i x x y y x y nx y r ---= = ∑∑r 就叫做变量y 与x 的相关系数(简称相关系数). 说明:(1)对于相关系数r ,首先值得注意的就是它的符号,当r 为正数时,表示变量x ,y 正相关;当r 为负数时,表示两个变量x ,y 负相关; (2)另外注意r 的大小,如果[]0.751r ∈,,那么正相关很强;如果[]10.75r ∈--,,那么负相关很强;如果(]0.750.30r ∈--, 或[)0.300.75r ∈,,那么相关性一般;如果[]0.250.25r ∈-,,那么相关性较弱. 下面我们就用相关系数法来分析身边的问题,确定两个变量就是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 (1)对变量y 与x 进行相关性检验; (2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,10 2 1 44794i i x ==∑,10 21 44929.22i i y ==∑,4475.6x y =,2 4462.24x =, 2 4489y =,10 1 44836.4i i i x y ==∑,

相关文档