文档库 最新最全的文档下载
当前位置:文档库 › 半角模型题

半角模型题

半角模型题
半角模型题

半角模型

例1(海淀201405-8) 如图,点P 是以O 为圆心, AB 为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P 重合, 当此三角板绕点P 旋转时,它的斜边和直角边所在的直线与直径AB 分别相交于C 、D 两点.设线段AD 的长为x ,线段BC 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是

A B

C

D

例2.(海201311-24).

已知在ABC △中,

90=∠ACB ,26=

=CB CA ,

AB CD ⊥于D ,点E 在直线CD 上,CD DE 2

1

=

,点F 在线段AB

上,M 是DB 的中点,直线AE 与直线CF 交于N 点.

(1)如图1,若点E 在线段CD 上,请分别写出线段AE 和CM 之间的位置关系和数量关系:___________,___________; (2)在(1)的条件下,当点F 在线段AD 上,且2AF FD =时,求证:

45=∠CNE ; (3)当点E 在线段CD 的延长线上时,在线段AB 上是否存在点F ,使得

45=∠CNE .若存在,请直接写出AF 的长度;若不存在,请说明理由.

D

C

B

A

N

M F

E

D C

B

24. (本小题满分8分)

(1)AE ⊥CM ,AE =CM

(2)如图,过点A 作AG ⊥AB ,且AG =BM,,连接CG 、FG ,延长AE 交CM 于H .

∵ 90=∠ACB ,26==CB CA ,

∴∠CAB =∠CBA =45°,

12. ∴∠GAC =∠MBC =45°. ∵AB CD ⊥,

∴CD=AD=BD =162

AB =.

∵ M 是DB 的中点, ∴3BM DM ==. ∴3AG =. ∵2AF FD =, ∴4 2.AF DF ==, ∴+2+3=5.FM FD DM ==

∵AG ⊥AF ,

∴FG

∴.FG FM =

在△CAG 和△CBM 中, CA CB CAG CBM AG BM =??

∠=∠??=?

,,

, ∴△CAG ≌△CBM . ∴CG =CM ,ACG BCM ∠=∠.

∴++90MCG ACM ACG ACM BCM ∠=∠∠=∠∠=.在△FCG 和△FCM 中, CG CM FG FM CF CF =??

=??=?

,,

, ∴△FCG ≌△FCM . ∴FCG FCM ∠=∠. ∴45FCH ∠=.

由(1)知AE ⊥CM , ∴90CHN ∠= ∴ 45=∠CNE .

(3)存在.

AF =8.

M'

A

B C

D

E

F M

N

例3.(平谷201405-24)(1)如图1,点E 、F 分别是正方形ABCD 的边BC 、CD 上的点,∠EAF =45°,连接EF ,

则EF 、BE 、FD 之间的数量关系是:EF =BE +FD .连结BD ,交AE 、AF 于点M 、N ,且MN 、BM 、DN 满足2

2

2

DN BM MN +=,请证明这个等量关系;

(2)在△ABC 中, AB =AC ,点D 、E 分别为BC 边上的两点. ①如图2,当∠BAC =60°,∠DAE =30°时,BD 、DE 、EC 应满足的等量关系是__________________; ②如图3,当∠BAC =α,(0°<α<90°),∠DAE =α2

1

时,BD 、DE 、EC 应满足的等量关系是____________________.【参考:1cos sin

22

=+αα】

24. (1) 在正方形ABCD 中,AB =AD ,∠BAD =90°,

∠ABM =∠ADN=45°.

把△ABM 绕点A 逆时针旋转90°得到M AD '?. 连结M N '.则,,AM AM BM M D =='',

?=∠='∠45ABM M AD ,BAM M DA ∠='∠.

∵∠EAF =45°,∴∠BAM +∠DAN =45°,

∠DAM ′+∠DAF =45°, ?=∠=∠45'MAN AN M . ∴N AM '?≌AMN ?. ∴N M '=MN .

在N DM '?中,?=∠+∠=∠90''ADM ADN DN M , 222''DM DN N M +=

∴222BM DN MN +=

(2)① 222EC EC BD BD DE +?+=; -

② 222cos 2EC EC BD BD DE +??+=α

A

B C

E

F 图1

B C

D

E 图2

A

D

图3

A

M

N

例4.半角模型的应用: (2012西城期末改编).如图1,平面直角坐标系中,抛物线

2

12

y x bx c =

++与轴交于A 、B 两点,点C 是AB 的中点,CD ⊥AB 且CD =

AB .直线BE 与轴平行,点F 是射线BE 上的一个动点,连接AD 、AF 、DF .

(1)若点F 的坐标为(9

2,1),AF .

①求此抛物线的解析式;

②点P 是此抛物线上一个动点,点Q 在此抛物线的对称轴上,以点A 、F 、P 、Q 为

顶点构成的四边形是平行四边形,请直接写出点Q 的坐标;

的长为kt ,其中0t >.如图2,当∠DAF =45°

xOy x y

中考数学 几何专题——半角模型

几何模型之半角模型 一、旋转性质 1.图形对应边相等(易得等腰,且等腰均相似) 2.对应角相等 3.对应点与旋转中心连线构成旋转角,旋转角处处相等 二、半角模型 半角模型(90°含45°) 条件模型结论 ①等腰直角△ABC; ②∠DAE=45° DE2=BD2+CE2 ①等腰直角△ABC; ②∠DAE=45° DE2=BD2+CE2 ①正方形ABCD; ②∠EAF=45°①EF=BE+DF; ②△CEF的周长是正方形周长的一半; ③点A到EF的距离等于正方形的边长. ①正方形ABCD; ②∠EAF=45°EF=DF-BE 三、模型演练 1.如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF 于点H.若EF=BF+DF.那么下列结论:①AE平分∠BEF;②FH=FD; ③∠EAF=45°;④S△E A F=S△A B E+S△A D F;⑤△CEF的周长为2.其中正确结论的 是.

2.在Rt△ABC中,AB=AC,D?E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论①△AEF≌△AED;②∠AED=45°; ③BE+DC=DE;④BE2+DC2=DE2,其中正确的是() A.②④ B.①④ C.②③ D.①③ 3如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长. 4.如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=25.若∠EOF=45°,则F点的坐标是. 5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交

半角模型题

半角模型题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

半角模型 例1(海淀201405-8) 如图,点P 是以O 为圆心, AB 为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P 重合, 当此三角板绕点P 旋转时,它的斜边和直角边所在的直线与直径AB 分别 相交于C 、D 两点.设线段AD 的长为x ,线段BC 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是 A B C D 例2.(海201311-24).已知在ABC △中, 90=∠ACB ,26==CB CA , AB CD ⊥于D ,点E 在直线CD 上,CD DE 2 1=,点F 在线段AB 上,M 是DB 的中点,直线AE 与直线CF 交于N 点. (1)如图1,若点E 在线段CD 上,请分别写出线段AE 和CM 之间的位置关系和数量关系:___________,___________; (2)在(1)的条件下,当点F 在线段AD 上,且2AF FD =时,求证: 45=∠CNE ; (3)当点E 在线段CD 的延长线上时,在线段AB 上是否存在点F ,使得 45=∠CNE .若存在,请直接写出AF 的长度;若不存在,请说明理由. D C B A N F E C B A

24. (本小题满分8分) (1)AE ⊥CM ,AE =CM (2)如图,过点A 作AG ⊥AB ,且AG =BM,,连接CG 、FG ,延长AE 交CM 于H . ∵ 90=∠ACB ,26==CB CA , ∴∠CAB =∠CBA =45°, 12. ∴∠GAC =∠MBC =45°. ∵AB CD ⊥, ∴CD=AD=BD =162 AB =. ∵ M 是DB 的中点, ∴3BM DM ==. ∴3AG =. ∵2AF FD =, ∴4 2.AF DF ==, ∴+2+3=5.FM FD DM == ∵AG ⊥AF , ∴FG = ∴.FG FM = 在△CAG 和△CBM 中, ∴△CAG ≌△CBM . ∴CG =CM ,ACG BCM ∠=∠. ∴++90MCG ACM ACG ACM BCM ∠=∠∠=∠∠=.在△FCG 和△FCM 中, ∴△FCG ≌△FCM . ∴FCG FCM ∠=∠. ∴45FCH ∠=. 由(1)知AE ⊥CM , ∴90CHN ∠= ∴ 45=∠CNE . (3)存在. AF =8. 例3.(平谷201405-24)(1)如图1,点E 、F 分别是正方形ABCD 的边BC 、CD 上的点,∠EAF =45°,连接EF , 则EF 、BE 、FD 之间的数量关系是:EF =BE +FD .连结BD ,交AE 、AF 于点M 、N ,且MN 、BM 、DN 满足222DN BM MN +=,请证明这个等量关系;

初二上学期全等三角形专题之半角模型教案(有答案)

半角模型 互动精讲 【知识梳理】 半角模型(内夹补短,外夹截长;先证小全等,再证大全等。) 1、90° 夹45° (1)内夹(90°角完全包含45°角) 角) (2)外夹(90°角不完全包含45° (1)内夹(120°角完全包含60°角) 角) (2)外夹(120°角不完全包含 60° A

【例题精讲】例1、正方形ABCD中,M, N分别是直线CB、DC上的动点,ZMAN=45°。 (1)当ZMAN交边CB、DC于点H、N (如图①)时,线段B\I、DN和MN之间有怎样的数量关系?请写出你的猜想,并加以证明; (2)当ZMAN分别交边CB, De的延长线于点M/N时(如图②),线段BH, DN和MN 之间的乂有怎样的数量关系?请写出你的猜想,并加以证明。 MΛr (2)DN一BAI = MN. 理由如下: 如图,在DC上截取DF = BM ,连接AF. VAB=AD,Bxf =^ADF = 90ΛI ??? ^ABM^^ADF(SAS) :.AM = AF t ZAfAB = ZFAD? ??.ΔMA13 + ZZ?/IF = ΔFAD ^BAF = 9O c . 即 ZMAF = ZBAD = 9(『? 又 ZMTIN = 45。, .?^NAF = ΛMAN = 45? ???AN = AN J ???ΔFAN? ??.MN = FN I 即 MN = DN 一DF = DN- BM;

在厶MDN 与厶EDy 中: (D-W = DE < ZΛ∕D.V 二 AEDN t I DN = DN 所以V 空 I)X(SAS)- 所以对.\「= NE = .VC+ 〃対? Δ.43∕.V 的周长 Q = AM + AN + MN =AM + AN + (NC+ ΠM) =(∕LV/ + BM) + (/LV + NC) =AB+AC =2A1L 而等边△ ABCm 长L = 3.4B. 因为= CD I S. DC = 120° 所以 ZDBC =厶 DCB = 30° 又因为Δ.1BC 是等边三角形, 所以 ΛMΓ3D = ZLNCD = 90°. 在厶MBD 与厶ECD 中: (BM = CE < Δ?il3D - AECU I BD = Dc 所以△ MliL) ≤ ^ECD(SAS)- 所以 D.” = DE^BDM = ACDE 1 所以ZEZZY =乙BDC- ZA/P.V = 60° 例2、在等边AABC 的两边AB 、AC 所在直线上分别有两点M 、X, D 为AABC 外一 点, 且ZMDN 二60° , ZBDC=I20o , BD=DC.探究:当M 、N 分别在直线AB 、AC 上移 动时,BM 、NC 、MN 之间的数量关系及AAMN 的周长Q 与等边AABC 的周长L 的关 系. (I) 如图1,当点M 、N 边AB 、Ae 上,且DM 二DN 时,BM 、NC. MN 之间的数量关 系是 _______ ; 此时—= ____________ ; L (II) 如图2,点M 、\边AB 、AC ±,且当DM≠DN 时,猜想(I)问的两个结论 还成立吗?写出你的猜想并加以证明; (IlI)如图3,当M 、N 分别在边AB 、CA 的延长线上时,若AN=Λ,则Q 二 (用八L 表示)? (3)如图,当M-V 分别在AB. CT 的延长线上 时,若.LV = z, SMQ = 2了+話(用八Z 表示)? 3 解:⑴如图,BAf 、NC 、M 之间的数屋关系 DM + NC = 此时Q=? L 3 (2)猜想:结论仍然成立. 证明:如图,延长.1C 至&使CE= I3M.连接DE

专题20 半角模型(解析版)

中考常考几何模型 专题20 半角模型 倍长中线或类中线(与中点有关的线段)构造全等三角形 如图①: (1)∠2=2 1 ∠AOB ;(2)OA=OB 。 如图②: 连接 FB ,将△FOB 绕点 O 旋转至△FOA 的位置,连接 F ′E 、FE ,可得△OEF ′≌△OEF 。 模型精练 1.(2019秋?九龙坡区校级月考)如图.在四边形ABCD 中,∠B +∠ADC =180°,AB =AD ,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =1 2 ∠BAD ,求证:EF =BE ﹣FD . 【点睛】在BE 上截取BG ,使BG =DF ,连接AG .根据SAA 证明△ABG ≌△ADF 得到AG =AF ,∠BAG =∠DAF ,根据∠EAF =1 2∠BAD ,可知∠GAE =∠EAF ,可证明△AEG ≌△AEF ,EG =EF ,那么EF =

GE =BE ﹣BG =BE ﹣DF . 【解析】证明:在BE 上截取BG ,使BG =DF ,连接AG . ∵∠B +∠ADC =180°,∠ADF +∠ADC =180°, ∴∠B =∠ADF . 在△ABG 和△ADF 中, {AB =AD ∠B =∠ADF BG =DF , ∴△ABG ≌△ADF (SAS ), ∴∠BAG =∠DAF ,AG =AF . ∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =1 2∠BAD . ∴∠GAE =∠EAF . 在△AEG 和△AEF 中, {AG =AF ∠GAE =∠EAF AE =AE , ∴△AEG ≌△AEF (SAS ). ∴EG =EF ,

2019年初中数学突破中考压轴题几何模型之正方形的半角模型教案(有答案)

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 知识结构 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM . 而 ), ∴AG=BM=2 ). 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积? 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1 (10)2 BF x =+. 由222 PB PF BF =+. 可得:2 2 21 10(10)4 x x =++. 故6x =. 216256ABCD S ==. 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么? 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可. 理由:连结AE 、AF . 由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用, ∴△ABE ≌△AME . ∴BE=ME . 同理可得,△ADF ≌△AMF . ∴DF=MF . ∴EF=ME+MF=BE+DF . 例4.如下图E 、F 分别在正方形ABCD 的边BC 、CD 上,且45EAF ? ∠=,试说明EF BE DF =+。 【解析】:将△ADF 旋转到△ABC ,则△ADF ≌△ABG ∴AF=AG ,∠ADF=∠BAG ,DF=BG ∵∠EAF=45°且四边形是正方形,

半角模型专题专练复习进程

半角模型专题专练

半角模型例题 已知,正方形ABCD 中,∠EAF 两边分别交线段BC 、DC 于点E 、F ,且∠EAF ﹦45° 结论1:BE ﹢DF ﹦EF 结论2:S △ABE ﹢S △ADF ﹦S △AEF 结论3:AH ﹦AD 结论4:△CEF 的周长﹦2倍的正方形边长﹦2AB 结论5:当BE ﹦DF 时,△CEF 的面积最小 结论6:BM 2﹢DN 2﹦MN 2 结论7:三角形相似,可由三角形相似的传递性得到 结论8:EA 、FA 是△CEF 的外角平分线 结论9:四点共圆 结论10:△ANE 和△AMF 是等腰直角三角形(可通过共圆得到) 结论11:MN ﹦√2 2EF (可由相似得到) 结论12:S △AEF ﹦2S △AMN (可由相似的性质得到) 结论5的证明: 设正方形ABCD 的边长为1 则S △AEF ﹦1﹣S 1﹣S 2﹣S 3 ﹦1﹣12x ﹣12y ﹣1 2(1﹣x)(1﹣y) ﹦1 2﹣1 2xy 所以当x ﹦y 时,△AEF 的面积最小 结论6的证明: 将△ADN 顺时针旋转90°使AD 与AB 重合 ∴DN ﹦BN ′ 易证△AMN ≌△AMN ′ ∴MN ﹦MN ′ 在Rt △BMN ′中,由勾股定理可得: BM 2﹢BN ′2﹦MN ′2 即BM 2﹢DN 2﹦MN 2 结论7的所有相似三角形:

△AMN ∽△DFN △AMN ∽△BME △AMN ∽△BAN △AMN ∽△DMA △AMN ∽△AFE 结论8的证明: 因为△AMN ∽△AFE ∴∠3=∠2 因为△AMN ∽△BAN ∴∠3=∠4 ∴∠2=∠4 因为AB ∥CD ∴∠1=∠4 ∴∠1=∠2 结论9的证明: 因为∠EAN ﹦∠EBN =45° ∴A 、B 、E 、N 四点共圆(辅圆定理:共边同侧等顶角) 同理可证C 、E 、N 、F 四点共圆 A 、M 、F 、D 四点共圆 C 、E 、M 、F 四点共圆 **必会结论-------- 图形研究正方形半角模型 已知:正方形ABCD ,E 、F 分别在边BC 、CD 上,且?=∠45EAF ,AE 、AF 分别交BD 于H 、G ,连EF . 一、全等关系 (1)求证:①EF BE DF =+;②DG 2﹢BH 2﹦HG 2;③AE 平分BEF ∠,AF 平分DFE ∠. 二、相似关系 (2)求证:①DG CE 2=;②BH CF 2=;③HG EF 2=. (3)求证:④DH BG AB ?=2;⑤HG BG AG ?=2;⑥21=?CF DF CE BE . 三、垂直关系 (4)求证:①EG AG ⊥;②FH AH ⊥;③BE AB HCF =∠tan . (5)、和差关系 求证:①BE DG BG 2=-;②DH DF AD 2=+; ③||2||DG BH DF BE -=-.

八上培优半角模型精修订

八上培优半角模型 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

八上培优5 半角模型方法:截长补短 图形中,往往出现90°套45°的情况,或者120°套60°的情况。还有2α套α的情况。求证的结论一般是线段的和与差。解决的方法是:截长补短构造全等三角形。旋转移位造全等,翻折分割构全等。截长法,补短法。 勤学早和新观察均有专题。勤学早在第49页,新观察在第34页,新观察培优也有涉及,在第27页2两个例题,29页有习题。这些题大同小异,只是图形略有变化而已。证明过程一般要证明两次全等。 下面是新观察第34页1~4题 1.如图,四边形ABCD中,∠A=∠C=90゜,∠D=60゜,AB=BC,E、F,分别在AD、CD 上,且∠EBF=60゜.求证:EF=AE+CF. 2.如图2,在上题中,若E、F分别在AD、DC的延长线上,其余条件不变,求证: AE=EF+CF. 3.如图,∠A=∠B=90°, CA=CB=4, ∠ACB=120°,∠ECF=60°,AE=3, BF=2, 求五边形ABCDE的面积.

A C B F E A C B F E D 4.如图1.在四边形ABCD中.AB=AD,∠B+∠D=180゜,E、F分别是边BC、CD上的点,且∠BAD=2∠EAF. (1)求证:EF=BE+DF; (2)在(1)问中,若将△AEF绕点A逆时针旋转,当点E、F分别运动到BC、CD延长线上时,如图2所示,试探究EF、BE、DF之间的数量关 系. 3.如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

专题05倍半角模型巩固练习(提优)含答案及解析-冲刺中考数学几何专项复习

倍半角模型巩固练习(提优) 1.如图,在正方形ABCD中,点E、F分别在BC、AB上,且∠FDE=45o,连接DE、DF、EF,试探究EF、AF、CE之间的数量关系. 2.如图,在△ABC中,AB=AC,∠BAC=90o,点D在CB的延长线上,连接AD,EA ⊥AD,∠ACE=∠ABD. (1)求证:AD=AE; (2)点F为CD的中点,AF的延长线交BE于点G,求∠AGE的度数. 3.如图,在平行四边形ABCD中,AE⊥BC于点E,CE=CD,点F为CE的中点,点G

为CD上的一点,连接DF、EG、AG,∠1=∠2. (1)若CF=2,AE=3,求BE的长; (2)求证:∠CEG=∠AGE. 4.如图,在正方形ABCD中,E为AD边上的中点,过点A作AF⊥BE交CD边于点F,M是AD边上一点,且BM=DM+CD. (1)求证:点F是CD边上的中点; (2)求证:∠MBC=2∠ABE. 5. 如图,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF, 垂足为点M,BE=3,,求MF的长.

6. 如图,在△ABC中,∠ACB=90o,D是AB边上的一点,M是CD的中点,若∠AMD =∠BMD.求证:∠CDA=2∠ACD. 倍半角模型巩固练习(提优) 1.如图,在正方形ABCD中,点E、F分别在BC、AB上,且∠FDE=45o,连接DE、DF、EF,试探究EF、AF、CE之间的数量关系. 【解答】EF=AF+CE,证明见解析 【解析】如图,将△DCE绕着点D顺时针旋转90o得到△DGA.

∵∠EDC+∠ADF+∠FDE=90o,∠FDE=45o,∴∠EDC+∠ADF=45o, 又∵旋转,∴DE=DG,∠GDA=∠EDC,∴∠GDA+∠ADF=∠GDF=∠FDE=45o, 在△DGF与△DEF中,DF=DF,∠GDF=∠EDF,DG=DE,∴△DGF≌△DEF,∴EF=GF=GA+AF, ∵旋转,∴GA=CE,∴EF=AF+CE. 2.如图,在△ABC中,AB=AC,∠BAC=90o,点D在CB的延长线上,连接AD,EA ⊥AD,∠ACE=∠ABD. (1)求证:AD=AE; (2)点F为CD的中点,AF的延长线交BE于点G,求∠AGE的度数. 【解答】(1)见解析;(2)∠AGE=90o 【解析】(1)证明:∵EA⊥AD,∴∠DAE=∠90o,∴∠DAB+∠BAE=90o, ∵∠BAC=90o,∴∠CAE+∠BAE=90o,∴∠DAB=∠CAE, ∵∠ACE=∠ABD,AB=AC,∴△ADB≌△ACE,∴AD=AE; (2)如图,延长AG至点H,使得FH=FA.

半角模型专题--优选专练.doc

半角模型例题 已知,正方形 ABCD中,∠ EAF两边分别交线段 BC、 DC于点 E、F,且∠ EAF﹦ 45°结论 1:BE﹢ DF﹦EF 结论 2:S△ABE﹢ S△ADF﹦S△AEF 结论 3:AH﹦ AD 结论 4:△ CEF的周长﹦ 2 倍的正方形边长﹦ 2AB 结论 5:当 BE﹦DF时,△ CEF的面积最小 22 2 结论 6:BM﹢DN﹦MN 结论 7:三角形相似,可由三角形相似的传递性得到 结论 8:EA、 FA是△ CEF的外角平分线 结论 9:四点共圆 结论 10:△ ANE和△ AMF是等腰直角三角形(可通过共圆得到) 结论 11: MN﹦EF(可由相似得到) 结论 12: S△ AEF﹦2S△ AMN(可由相似的性质得到) 结论 5 的证明: 设正方形 ABCD的边长为 1 则S△AEF﹦1﹣S1﹣S2﹣ S3 ﹦1﹣ x﹣ y﹣ (1 ﹣x)(1 ﹣y) ﹦﹣ xy 所以当 x﹦y 时,△ AEF的面积最小 结论 6 的证明: 将△ ADN顺时针旋转 90°使 AD与 AB重合 ′ ∴DN﹦ BN ′ 易证△ AMN≌△ AMN ′ ∴MN﹦ MN ′ 在 Rt△BMN中,由勾股定理可得: 2′ 2′2 BM﹢BN ﹦MN 22 2 即 BM﹢DN﹦MN 结论 7 的所有相似三角形: △ AMN∽△ DFN△AMN∽△ BME△AMN∽△ BAN△ AMN∽△ DMA△AMN∽△ AFE

结论 8 的证明: 因为△ AMN∽△ AFE ∴∠ 3=∠ 2 因为△ AMN∽△ BAN ∴∠ 3=∠ 4 ∴∠ 2=∠ 4 因为 AB∥CD ∴∠ 1=∠ 4 ∴∠ 1=∠ 2 结论 9 的证明: 因为∠ EAN﹦∠ EBN= 45° ∴A、B、E、N 四点共圆(辅圆定 理:共边同侧等顶角) 同理可证 C、E、N、F 四点共圆 A、M、 F、 D 四点共圆 C、E、 M、 F 四点共圆 **必会结论 --------图形研究正方形半角模型 已知:正方形 ABCD ,E、F分别在边 BC 、 CD 上,且 EAF 45 ,AE、AF分别交BD于H、 G ,连EF. 一、全等关系 ()求证:① 2 2 2 平分,平分 DF BE EF ;②DG﹢ BH﹦ HG;③AE BEF AF DFE . 1 二、相似关系 (2)求证:①CE 2DG ;② CF 2 BH ;③ EF 2HG . (3)求证:④AB2 BG DH ;⑤ AG 2 BG HG ;⑥BE DF 1 . CE CF 2 三、垂直关系 (4)求证:①AG EG ;②AH FH ;③tan HCF AB . (5) 、和差关系 BE 求证:① BG DG 2BE ;② AD DF 2DH ; ③ | BE DF | 2 | BH DG | .

人教版八年级下册第18章平行四边形——弦图模型和半角模型专题(Word版,无答案)

一 ) 弦图模型 基本图形】已知正方形 ABCD,过 B,D 两点分别向过点 C 的直线作垂线 , 垂足分别为点 E,F, 则△ BCE ≌△ CDF h, 正方形 ABCD 的四 个顶点分 (1) 当 a=45 °时, 求△EAD 的面积 (2) 当 a=30 °时, 求△EAD 的面积 (3) 当0°

变式训练 】如图,分别以 ABC 的AC 和BC 为一边,在ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 4.如图,直角梯形ABCD 中,AD/BC,∠ADC=90°,是AD 的垂直平分线,交AD 于点M,以腰AB 为边作正方形ABFE,EP⊥l 于点P. 求证:2EP+AD=2CD 二)半角模型 半角模型【用旋转和对称(翻折)的方法解决问题】基本结论:在正方形ABCD中,若M、N 分别在边BC、CD上移动,且满足MN=BM+ DN,则有以下基本结论(需记忆):① . ∠MAN4=5°;② . C CMN 2AB;③ . AM、AN分别平分 ∠BMN和∠DNM. 同样,在正方形ABCD中,若已知∠MAN4=5°,则会有:① . MN=B+MD N; ②C CMN 2AB;③.AM、AN分别平分∠BMN 和∠DNM④; 若继续作AH⊥MN于点H, 则有AH=AB. F

2018年初中数学突破中考压轴题几何模型之正方形的半角模型教案

正方形角含半角模型提升 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,?垂足为M ,AM AB =,则有EF BE DF =+,为什么 例4. 如图,在正方形ABCD 的BC 、CD 边上取E 、F 两点,使45EAF ∠=o ,AG EF ⊥于G . 求证:AG AB = 例5.(1) 如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点 O ,90AOF ?∠=. 求证:BE CF =. (2) 如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点 O ,90FOH ?∠=,4EF =.求GH 的长. 【双基训练】 1. 如图6,点A 在线段BG 上,四边形ABCD 与DEFG 都是正方形,?其边长分别为3cm 和5cm ,则CDE ?的面积为________2cm . (6) (7) 2.你可以依次剪6张正方形纸片,拼成如图7所示图形.?如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,?那么正方形⑤的面积为________. 3.如图9,已知正方形ABCD 的面积为35平方厘米,E 、F 分别为边AB 、BC 上的点.AF 、CE 相交于G ,并且ABF ?的面积为14平方厘米,BCE ?的面积为5平方厘米,?那么四边形BEGF 的面积是________. 4. 如图,A 、B 、C 三点在同一条直线上,2AB BC =。分别以 AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN , EC 。 求证:FN EC =。 5.如图 ,ABCD 是正方形.G 是BC 上的一点,DE AG ⊥于 E ,BF AG ⊥于 F . (1)求证:ABF DAE △≌△; (2)求证:DE EF FB =+. 【纵向应用】 6. 在正方形ABCD 中,12∠=∠.求证:BE OF 2 1 = 7. 在正方形ABCD 中,12∠=∠.AE DF ⊥,求证:CE OG 2 1= 8. 如图13,点E 为正方形ABCD 对角线BD 上一点, EF BC ⊥, EG CD ⊥ 求证:AE FG ⊥ 9.已知:点E 、F 分别正方形ABCD 中AB 和BC 的中点,连接AF 和DE 相交于点G , 图2 D G A E B C F 13 A D E F C G B

中考数学压轴题专项汇编专题角含半角模型

专题15 角含半角模型 破题策略 1. 等腰直角三角形角含半角 如图,在△ABC 中,AB =AC ,∠BAC =90°,点D ,E 在BC 上且∠DAE =45° (1) △BAE ∽△ADE ∽△CDA (2)BD 2+CE 2=DE 2 . 45° E A B C D 证明(1)易得∠ADC =∠B +∠BAD =∠EAB , 所以△BAE ∽△ADE ∽△CD A . (2)方法一(旋转法):如图1,将△ABD 绕点A 逆时针旋转90°得到△ACF ,连结EF . 45° F E A B C D 则∠EAF =∠EAD =45°,AF =AD , 所以△ADE ∽△FAE ( SAS ). 所以DE = EF . 而CF =BD ,∠FCE =∠FCA +∠ACE =90°, 所以BD 2+ CE 2=CF 2+CE 2=EF 2=DE 2 . 方法二(翻折法):如图2,作点B 关于AD 的对称点F ,连结AF ,DF ,EF . 45° E A B C D 因为∠BAD +∠EAC =∠DAF +∠EAF , 又因为∠BAD =∠DAF , 则∠FAE =∠CAE ,AF =AB =AC , 所以△FAE ∽△CAE (SAS ). 所以EF = E C .

而DF =BD , ∠DFE =∠AFD + ∠AFE =90°, 所以BD 2+ EC 2= FD 2+ EF 2= DE 2 . 【拓展】①如图,在△ ABC 中,AB =AC ,∠BAC =90°,点D 在BC 上,点E 在BC 的 延长线上,且∠DAE =45°,则BD 2+CE 2=DE 2 . E D 可以通过旋转、翻折的方法来证明,如图: E A D F E A D ②将等腰直角三角形变成任意的等腰三角形:如图,在△ABC 中,AB =AC ,点D ,E 在 BC 上,且∠DAE =1 2 ∠BAC ,则以BD ,DE ,EC 为三边长的三角形有一个内角度数为180° -∠BA C . B 可以通过旋转、翻折的方法将BD ,DE ,EC 转移到一个三角形中,如图: B C E B D

初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案

初中数学突破中考压轴题几何模型之正方形的 半角模型教案有答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。 例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD 重合,得折痕DG,使2 AD=,求AG. 【解析】:作GM⊥BD,垂足为M. 由题意可知∠ADG=GDM, 则△ADG≌△MDG. ∴DM=DA=2. AC=GM 又易知:GM=BM. 而BM=BD-DM=22-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P为正方形ABCD内一点,10 ==,并且P点到CD边的距离也 PA PB 等于10,求正方形ABCD的面积? 【解析】:过P作EF AB ⊥于F交DC于E.

半角模型专题专练

半角模型例题 已知,正方形ABCD 中,∠EAF 两边分别交线段 BC 、DC 于点 E 、 F ,且∠EAF﹦45 结论 1:BE ﹢DF ﹦EF 结论 2:S △ABE ﹢S △ADF ﹦ S △AEF 结论 3:AH ﹦AD 结论4:△CEF 的周长﹦2倍的正方形边长﹦2AB 结论5:当 BE ﹦DF 时,△CEF 的面积最小 结论 6:BM 2﹢DN 2﹦MN 2 结论 7:三角形相似,可由三角形相似的传递性得到 结论8: EA 、FA 是△CEF 的外角平分线 结论 9:四点共圆 结论10:△ANE 和△AMF 是等腰直角三角形 (可通过共圆得到) 结论 11:MN ﹦√2EF (可由相似得到) 结论 12:S△AEF﹦2S△AMN(可由相似的性质得到) 结论5 的证 明: 设正方形 ABCD 的边长为 1 则 S △ AEF ﹦ 1 ﹣ S 1 ﹣ S 2 ﹣ S 3 ﹦ 1 ﹣ x ﹣ y ﹣ (1 ﹣ x)(1 ﹣ y) 11 结论6 的证明: 将△ADN 顺时针旋转 90°使 AD 与 AB 重合 ∴DN﹦BN ′ 易证△AMN≌△AMN ′ ∴MN﹦MN ′ 在 Rt △ BMN ′ 中,由勾股定理可得: BM 2﹢BN ′2﹦MN ′2 即 BM 2 ﹢ DN 2 ﹦ MN 2 所以当 x ﹦y 时,△AEF 的面积最小 结论7 的所有相似三角形: △AMN∽△DFN △AMN∽△BME △AMN∽△BAN △AMN∽△DMA △AMN∽△AFE

结论8 的证明: 因为△AMN∽△AFE ∴∠3=∠2 因为△AMN∽△BAN ∴∠3=∠4 ∴∠2=∠4 因为AB∥CD ∴∠1=∠4 ∴∠1=∠2 结论9 的证明: 因为∠EAN﹦∠EBN=45° ∴A、 B、E、N 四点共圆(辅圆定理: 共边同侧等顶角)同理可证 C、 E、N、F 四点共圆 A、M、 F、D 四 点共圆 C、E、M、F 四点共圆 **必会结论 ---- 图形研究正方形半角 模型已知:正方形ABCD,E、F分别在边BC、CD上,且EAF = 45,AE、AF分别交BD于H、G,连EF. 一、全等关系 (1)求证:① DF + BE = EF;②DG2﹢BH2﹦HG2;③ AE平分BEF,AF平分DFE . 二、相似关系 (2)求证:①CE = 2DG;②CF = 2BH;③ EF = 2HG. (3)求证:④ AB2=BG DH;⑤AG2= BG HG;⑥ BE DF = 1. CE CF 2 三、垂直关系 (4)求证:① AG⊥EG;② AH⊥FH;③ tan HCF = AB. BE (5)、和差关系 求证:① BG - DG = 2BE;② AD + DF = 2DH;

半角模型题

半角模型 例1(如图,点P 是以O 为圆心, AB 为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P 重合, 当此三角板绕点P 旋转时,它的斜边和直角边所在的直线与直径AB 分别相交于C 、D 两点.设线段AD 的长为x ,线段BC 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是 A B CD 例2.已知在ABC △中, 90= ∠ACB ,26==CB CA ,AB CD ⊥于D ,点E 在直线 CD 上,CD DE 2 1 = ,点F 在线段AB 上,M 是 DB 的中点,直线AE 与直线CF 交于N 点. (1)如图1,若点E 在线段CD 上,请分别写出线段AE 和CM 之间的位置关系和数量关系:___________ ,___________; (2)在(1)的条件下,当点F 在线段AD 上,且2AF FD =时,求证: 45=∠CNE ; (3)当点E 在线段CD 的延长线上时,在线段AB 上是否存在点F ,使得 45=∠CNE .若存在,请直接写出AF 的长度;若不存在,请说明理由. D C B A N M F E D C B A

24. (本小题满分8分) (1)AE ⊥CM ,AE =CM (2)如图,过点A 作AG ⊥AB ,且AG =BM,,连接CG 、FG ,延长AE 交CM 于H . ∵ 90=∠ACB ,26==CB CA , ∴∠CAB =∠CBA =45°, 12. ∴∠GAC =∠MBC =45°. ∵AB CD ⊥, ∴CD=AD=BD =1 62 AB =. ∵M 是DB 的中点, ∴3BM DM ==. ∴3AG =. ∵2AF FD =, ∴4 2.AF DF ==, ∴+2+3=5.FM FD DM == ∵AG ⊥AF , ∴FG = ∴.FG FM = 在△CAG 和△CBM 中, CA CB CAG CBM AG BM =?? ∠=∠??=? ,, , ∴△CAG ≌△CBM . ∴CG =CM ,ACG BCM ∠=∠. ∴++90MCG ACM ACG ACM BCM ∠=∠∠=∠∠= .在△FCG 和△FCM 中, CG CM FG FM CF CF =?? =??=? ,, , ∴△FCG ≌△FCM . ∴FCG FCM ∠=∠. ∴45FCH ∠= . 由(1)知AE ⊥CM , ∴90CHN ∠= ∴ 45=∠CNE . (3)存在. AF =8.

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型 主题半角模型 教学内容 教学目标 1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。 2.掌握正方形的性质定理1和性质定理2。 3.正确运用正方形的性质解题。 4.通过四边形的从属关系渗透集合思想。 5.通过理解四种四边形内在联系,培养学生辩证观点。 知识结构 正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形, 所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。 正方形性质定理1:正方形的四个角都是直角,四条边相等。 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。 小结: (1)正方形与矩形,菱形,平行四边形的关系如上图 (2)正方形的性质: ①正方形对边平行。 ②正方形四边相等。 ③正方形四个角都是直角。 ④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

典型例题精讲 例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG . 【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM . 而BM=BD-DM=2 2-2=2(2-1), ∴AG=BM=2(2-1). 例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积 【解析】:过P 作EF AB ⊥于F 交DC 于E . 设PF x =,则10EF x =+,1 (10)2 BF x =+. 由2 22PB PF BF =+. 可得:2 221 10 (10)4 x x =++. 故6x =. 2 16256ABCD S ==. 例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥, ?垂足为M ,AM AB =,则有EF BE DF =+,为什么 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可. 理由:连结AE 、AF . 由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用, ∴△ABE ≌△AME . ∴BE=ME . 同理可得,△ADF ≌△AMF . ∴DF=MF . ∴EF=ME+MF=BE+DF .

【中考数学必备专题】中考模型解题系列之大角夹半角模型(含答案)

【中考数学必备专题】中考模型解题系列之大角 夹半角模型 一、解答题(共1道,每道100分) 1.(2010重庆改编)等边的两边AB、AC所在直线上分别有两点M、N,D为 外一点,且,,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系.(I)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是_____________;此时___________; (II)如图2,点M、N在边AB、AC上,且当DM DN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明; (III)如图3,当M、N分别在边AB、CA的延长线上时,若AN=,则Q=_________(用、L表示).

答案:(1)如图, BM、NC、MN之间的数量关系BM+NC=MN.此时.(2)猜想:结论仍然成立.证明:如图,延长AC至E,使CE=BM,连接DE. ∵BD=CD,且∠BDC=120°,∴∠DBC=∠DCB=30°. 又△ABC是等边三角形,∴∠MBD=∠NCD=90°. 在△MBD与△ECD中:BM=CE、∠MBD=∠ECD、BD=DC ∴△MBD≌△ECD(SAS). ∴DM=DE,∠BDM=∠CDE. ∴∠EDN=∠BDC-∠MDN=60°. 在△MDN与△EDN中:DM=DE、∠MDN=∠EDN、DN=DN ∴△MDN≌△EDN(SAS). ∴MN=NE=NC+BM.

△AMN的周长Q=AM+AN+MN =AM+AN+(NC+BM) =(AM+BM)+(AN+NC) =AB+AC =2AB. 而等边△ABC的周长L=3AB. ∴. (3)如图, 当M、N分别在AB、CA的延长线上时,若AN=x,则Q=2x+(用x、L表示). 解题思路:(1)观察特征:①大角夹半角:∠BDC=120°,∠MDN=60°;②大角等线段交于一点; 思路一:易证三角形MDN为等边三角形,可得MN=2BM=2NC 思路二:1.旋转(顺时针旋转△BMD120°,使得BD与DC重合) 2.此时可证△NDM≌△NDE 即MN=NC+CE=NC+BM 从而可得Q=AB+AC;因此Q:L=2:3. (2)观察特征:①大角夹半角:∠BDC=120°,∠MDN=60°;②大角等线段交于一点;

相关文档
相关文档 最新文档