文档库 最新最全的文档下载
当前位置:文档库 › 周期基本函数

周期基本函数

周期基本函数
周期基本函数

1.设函数f(x)=|x+1|+|x﹣a|的图象关于直线x=1对称,则a的值为_________.

2.定义在R上的偶函数f(x),满足f(2+x)=f(2﹣x),且当x∈[0,2]时,f(x)=,则f(2008)=_________.3.函数y=f(x)是R上的偶函数,且在(﹣∞,0]上是增函数,若f(a)≤f(2),则实数a的取值范围是_________.4.定义在R上的函数y=f(x)满足:f(﹣x)=﹣f(x),f(1+x)=f(1﹣x),当x∈[﹣1,1]时,f(x)=x3,则f(2007)的值是_________.

5.函数y=f(x)为偶函数,则函数y=f(x+1)的一条对称轴是_________.

6.定义在R上的函数f(x)满足:f(x)=f (4﹣x)且f (2﹣x)+f (x﹣2)=0,则f (2008)的值是_________.7.函数的图象关于点_________对称.8.设函数f(x)=f(6﹣x)则对称轴为_________.

9.函数,则图象关于_________对称.

10.函数的图象的对称中心为点_____,当x∈(2,6)时的值域是________.11.函数f(x)=2x3﹣x的图象关于_________对称.12.函数的图象关于点_________对称.13.已知f(x)是R上奇函数,f(x)=f(2﹣x),且当0≤x≤1时,f(x)=x,则=_________.14.若函数,则f(x)的对称中心是_________.

15.函数图象的对称中心为(3,﹣1)则a=_________.

16.已知偶函数f(x)=(n∈Z)在(0,+∞)上是增函数,则n=_________.

17.已知函数f(x)是(﹣∞,+∞)上的偶函数,g(x)是(﹣∞,+∞)上的奇函数,g(x)=f(x﹣1),g(3)=2013,则f(2014)的值为_________.

18.若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)﹣f(4)=_________.

19.奇函数f(x)在(﹣∞,0)内是减函数,f(﹣2)=0,则满足xf(x﹣1)<0的x值的范围是_________.20.已知函数f(x)是定义在R上的偶函数,若f(x)在[0,+∞)是增加的,求满足f(3x+1)>f(﹣5)的x的取值范围.

21.已知定义在R上的奇函数f(x)在(0,+∞)上是增函数,且f(ax+1)≤f(x﹣2)对任意都成立,

则实数a的取值范围是_________.

22.已知定义域为R的偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x﹣1)<f(﹣1)的x取值范围是_________.23.函数f(x)=(|x|﹣1)(x+a)为奇函数,则f(x)的减区间为_________.

24.已知奇函数f(x)在区间[0,+∞)上单调递减,则满足f(2x﹣1)+f(x+3)<0的x的取值范围是_________.25.已知函数f(x)是定义在R 上的奇函数,且当x≥0 时,f(x)=x2+4x.若f(2﹣a2)>f(a),则实数a 的取值范围是_________.

26.设奇函数f(x)在(0,+∞)上是增函数,若f(﹣2)=0,则不等式xf(x)<0的解集是_________.27.若函数f(x)=(k﹣2)x2+(k﹣1)x+3是偶函数,则f(x)的递减区间是_________.

28.y=f(x)在(0,2)上是增函数,y=f(x+2)是偶函数,则的大小关系是_________.29.设f(x)是定义在(﹣1,1)上的偶函数在(0,1)上增,若f(a﹣2)﹣f(4﹣a2)<0,则a的取值范围为

_________.

30.定义在R上的偶函数f(x)在(0,+∞)上是增函数.若f(a)≥f(2),则实数a的取值范围是_________.1.方程4x﹣2x+1﹣3=0的解是_________.2.方程4x﹣2x+1=0的解为_________.

3.方程的解是_________.

4.已知函数f(x)=,若f(a)=1,则实数a的值是_________.

5.已知x+x﹣1=3,则=_________.6.计算:x10÷x5=_________.

7.已知实数x满足x+x﹣1=3,则=_________.8.计算:=_________.9.(文).已知x,y∈R,(x2﹣2|x|+1)+(y2﹣2|y|+1)=0,则x3﹣y2=_________.

10.化简:=_________.11.已知a>0,化简=_________.

12.计算=_________.13.满足方程3|x|﹣1=9的x的值为_________.

14.化简结果为_________.

15.计算=_________.

16.若26+29+2n为一个平方数,则正整数n=_________.17.=_________.18.(2010?温州一模)已知y=f(x)是奇函数,当x>0时,f(x)=4x则f(﹣)=_________.

19.化简的结果是_________.

20.化简=_________.21.=_________.

22.化简:①=_______②=_______③=_____④=_________.23.化简(a>0,b>0)的结果是_________.

24.=_________.

25.指数的性质与运算法则

(1)a m?a n=_________(2)=_________(3)(a m)n=_________

(4)(ab)n=_________(5)=_________.

26.(a>0)的值是_________.27.已知2x+2﹣x=5,则4x+4﹣x的值是_________.

28.若2x=8y+1,且9y=3x﹣9,则x+y的值是_________.29.若x>0,则(2+)(2﹣)﹣4=_________.30.解方程.

一.填空题(共24小题)

1.若全集U=R,函数y=3x的值域为集合A,则C U A=_________.

2.若全集U=R,函数y=3x﹣1的值域为集合A,则C U A=_________.

3.函数y=(2m﹣1)x是指数函数,则m的取值是_________.4.方程9x+3x﹣2=0的解是_________.5.如果函数y=a x的图象过点,那么a的值为_________.6.函数y=2x﹣1的值域为_________.7.若函数的最大值是n,且f(x)是偶函数,则m+n的值等于_________.

8.函数f(x)=21﹣|x|的值域为_________.9.函数f(x)=的值域为_________.

10.函数y=3x﹣9|x|(x∈R)的值域是_________.11.函数的定义域是_________.

12.函数的值域是_________.13.函数的值域是_________.

14.函数y=的值域为_________.15.若指数函数y=a x的图象经点(1,3),则a=_________.16.函数的值域是_________.

17.函数y=(﹣3≤x≤1)的值域是______.18.函数的值域是_________.

19.函数f(x)=2﹣|x|的值域是_________.20.函数y=(x∈R)的值域是_________.

21.若函数定义域为R,则a的取值范围是_________.

22.函数的值域_________.

23.函数y=的定义域为_________,值域为_________.

24.函数的值域为_________.

25.解方程4x﹣2x+2﹣12=0.26.解方程4x+|1﹣2x|=11.27.解方程:

28.解方程.29.解方程.30.解方程.

1.已知函数f(x)=a x(a>0,a≠1)过点(2,4),则a=_________.

2.若0<a<1,b<﹣1,则函数f(x)=a x+b的图象不经过第_________象限.

3.若a>1,﹣1<b<0,则函数f(x)=a x+b的图象不经过第_________象限.

4.(文)已知点P在函数y=2e x的图象上,当P到直线y=2x的距离最短时,点P的坐标为_________.

5.若函数f(x)=2﹣|x﹣1|﹣m的图象与x轴有交点,则实数m的取值范围是_________.

6.函数y=2?3x+t的图象不经过第二象限,则t的取值范围是_________.

7.若a>1,则函数y=|a x﹣2|与y=3a的图象交点个数是_________

8.函数y=a x﹣2+1(a>0且a≠1)的图象恒过定点_________.

9.当a>0且a≠1时,函数f (x)=a x﹣2﹣3必过定点_________.

10.设a>0,且a≠1,则函数y=a x+1的图象必过的定点坐标是_________.

11.函数y=a2﹣x+1(a>0,a≠1)的图象恒过定点P,则点P的坐标为_________.

12.函数y=a x﹣1+1(a>0且a≠1),无论a取何值,函数图象恒过一个定点,则定点坐标为_________.

13.函数f(x)=a x﹣1+2(a>0,a≠1)的图象恒过定点_________.

14.指数函数f(x)的图象经过(2,4),则f(3)=_________.

15.已知函数f(x)=a x+1+3(a>0,a≠1)恒过定点P,那么点P的坐标为_________.

16.若函数的图象恒过定点_________.

17.已知函数f(x)=a x+2+1(a>0,且a≠1)的图象恒过定点(其坐标与a无关),则定点坐标为_________.18.若函数f(x)=(a2﹣4a+4)x+2a﹣6的图象经过第二、三、四象限,则a的取值范围是_________.

19.当x>0时,函数f(x)=(a2﹣1)x的值总大于1,则实数a的取值范围是_________.20.函数y=a x的图象过点(2,4),则f(x)=_________.

21.函数y=3﹣x与_________的图象关于y轴对称.

22.函数y=﹣2﹣x的图象一定过_________象限.23.已知()x>1,则x的取值范围为_________.

24.不等式的解集为____.25.函数y=2x在[0,1]上的最大值与最小值之和为_________.26.函数f(x)=2|x|的最小值为_________;图象的对称轴方程为_________.

27.点(2,1)与(1,2)在函数f(x)=2ax+b的图象上,求f(x)的解析式.28.已知函数在[2,+∞)上是增函数,求a的取值范围.

29.已知函数f(x)=2ax+b在[1,2]上的最小值为1,最大值为2,求f(x)的解析式.30.若,求x的取值范围.

几种特殊性质的函数的周期

几种特殊性质的函数的周期: ①y=f(x)对x ∈R 时,f(x +a)=f(x -a) 或f(x -2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a 的周期函数; ②y=f(x)对x ∈R 时,f(x+a)=-f(x)(或f(x+a)= ) (1x f -,则y=f(x)是周期为2a 的周期函数; ③若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2b a -的周期函数; ④y=f(x)的图象关于直线x=a,x=b(a ≠b)对称,则函数 y=f(x)是周期为2b a -的周期函数;如:正弦函数 sin y x = ⑤若y=f(x)是偶函数,其图像又关于直线x=a 对称,则 f(x)是周期为2︱a ︱的周期函数; ⑦正(余)弦型函数定义域为R ,周期为T ,那么,对于任意R m ∈,区间[)T m m +,内有且只有两个量21,x x ,满足()()21x f x f =。正切型函数则只有一个。 ⑧0)()(=+=a x f x f , 或)0)(() (1)(≠= +x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠, 例1.若函数)(x f 在R 上是奇函数,且在()01, -上是增函数,且)()2(x f x f -=+,则 ①)(x f 关于 对称; ②)(x f 的周期为 ; ③)(x f 在(1,2)是 函数(增、减); ④)时,,(若10∈ x )(x f =x 2,则=)(log 18 21f 。 例2.设)(x f 是定义在),(+∞-∞上,以2为周期的周期函数,且)(x f 为偶函数,在区间 [2,3]上 )(x f =4)3(22+--x ,则时,]2,0[∈x )(x f = 。 4.函数(图象)的对称性 1)证明一个函数图象自身的对称问题及证明两个函数图象的对称关系问题

例析抽象函数周期的求法

例析抽象函数周期的求法

————————————————————————————————作者:————————————————————————————————日期:

例析抽象函数周期的求法 抽象函数周期问题是近年来高考及各地模拟试题中高频出现的问题,其周期求法能有效考查学生的逻辑思维能力和代数推理能力,对培养学生思维品质大有帮助。下面举例说明求周期的常用方法及技巧。 一、仅含抽象关系式的周期函数 例1 若存在常数m>0,使函数f(x)满足,则 的一个正周期是____________。 解:设,则,依题意有 ,由周期函数的定义,是的一个周期 所以期 例2已知函数满足,求证:函数为周期函数。 证明:因为对有 (2)代入(1)得 这样 所以为周期函数,且为它的一个周期。

例3 设函数的定义域关于原点对称,且对定义域内任意,有 ,且存在常数,使。试证:是周期函数,且有一个周期为4a。 证明:设,则 所以y=f(x)为周期函数,且有一个周期为4a。 说明:从以上几例可见,适当的赋值和变量代换,是探求抽象函数周期的关键。下面再给一个探求周期来计算函数值的例子。 例4 设是定义在R上的函数,且对任意,都有 ,又,求的值。 解:

又 所以 可知是以2为一个周期的周期函数 所以 二、图象中有两条对称轴的抽象函数 例5 若函数的图象关于两条直线和都对称,试证:是周期函数,且是它的一个周期。 证明:因为的图象关于直线和(a<B)都对称< span> 所以且 这样 所以是周期函数,且是它的一个周期。 例6 设是定义在R上的偶函数,且它的图象关于x=2对称,已知 时,,求时,的表达式。 解:由题设知:有两条对称轴和 所以为周期函数,且为它的一个周期 又当时, 所以 三、图象关于两点成中心对称的抽象函数 例7设函数的图象关于相异两点A(a,0),B(b,0)都对称,则是一个周期为的周期函数。 证明:由题设有,这样

函数周期性公式大总结

竭诚为您提供优质文档/双击可除函数周期性公式大总结 篇一:函数周期性结论总结 函数周期性结论总结 ①f(x+a)=-f(x)T=2a ②f(x+a)=±1T=2af(x) ③f(x+a)=f(x+b)T=|a-b|证明:令x=x-b得 f(x-b+a)=f(x-b+b)f(x-b+a)=f(x)根据公式 f(x)=f(x+T)=f(x+nT)得T=-b+a即a-b ④f(x)为偶函数,且关于直线x=a对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为偶函数,所以f(-x)=f(x)因为关于x=a对称 所以f(a+x)=f(a-x)(对称性质)设x=x+a所以 f(x+2a)=f(x)所以周期T=2a)⑤f(x)为奇函数,且关于直线x=a对称,T=4a 证明:f(x+2a)=f(-x)=-f(x)根据①可知T=2·2a=4a 证明:由于图像关于直线x=a对称、所以f(a+x)=f(a-x)令x=x+a得:f(x+2a)=f(-x)又f(x)=-f(-x)故f(x)=-f(x+2a)

代换x=x+2a得: f(x+2a)=-f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a)有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a)换元:令x-a=t那么x=a+t f(t+3a)=-f(t)根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x)假设 a>b(当然假设a<b也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 ⑧f(x)的图像关于(a,0)(b,0)对称,T=2a-2b(a> b)f(x+2a-2b)=f[a+(x+a-2b)]关于直线x=a对称 =f[a-(x+a-2b)]关于直线x=b对称=f(2b-x)=f(x) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x)f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)]

高中数学破题致胜微方法(求函数解析式):12.利用周期性求函数解析式 Word版含解析

利用周期性求函数解析式 周期性是函数的一种性质,当我们通过题目的已知条件,能够判断函数是周期函数时,再相关性质,求函数的解析式,就能简单一些了。今天我们就根据实际例子,看看如何利用周期性,求函数的解析式。 先看例题 例:设f (x )是定义在区间(,)-∞+∞上,且以2为周期的函数,对k Z ∈,用k I 表示区间(21,21)k k -+,已知当0x I ∈时,2 ()f x x =,求f (x )在k I 上的解析式 解:由已知,当k =0时,0(1,1)I =- 我们利用区间转移的方法,如果k x I ∈ 即0(21,21)2x k k x k I ∈-+?-∈ 121x k ?-<-< 则有:2 (2)(2)f x k x k -=- 又因为该函数以2为周期,所以有(2)(),f x k f x -= 所以函数在k I 上的解析式为:2()(2)f x x k =- 一般规律: 区间转移: 将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间。 进而求出,该区间上的函数解析式 再看一个例题加深印象 练:设f (x )是定义在R 上的奇函数,且其图象关于直线x =1对称,当[]2,0x ∈-时,()22.f x x x +=

当[]2,4x ∈时,求f (x )的解析式 首先通过题目条件,证明函数为周期函数 因为函数关于x =1对称,且函数为奇函数 所以有()(2)()f x f x f x +=-=- 又因为(2)()f x f x +=- 所以:()()(4)(2)[]f x f x f x f x +=-+=--= 所以函数为周期函数,且周期T =4 因为函数在[]2,0x ∈-上的解析式已知,所以 由[]2,4,4[2,0],x x ∈-∈- 可得:()22(4)2(4)(4)68.f x f x x x x x ----==+=+ 总结: 1.根据题目条件,判断、证明函数为周期函数. 2.将未知区间上的自变量加(或减)周期的整数倍后,转化到已知区间. 3.根据题目条件,以及函数性质,确定所求区间上的解析式 练习: 1.设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间2,3]上时,f (x )=-2(x -3)2+4,求当x ∈1,2]时f (x )的解析式.若矩形ABCD 的两个顶点A 、B 在x 轴上,C 、D 在y =f (x )(0≤x ≤2)的图象上,求这个矩形面积的最大值. 2.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在0,1]上是一次函数,在1,4]上是二次函数,且在x =2时,函数取得最小值,最小值为-5. (1)证明:f (1)+f (4)=0; (2)试求y =f (x ),x ∈1,4]的解析式; (3)试求y =f (x )在4,9]上的解析式. 答案:

函数周期公式

函数周期公式 Document number:PBGCG-0857-BTDO-0089-PTT1998

主要知识: 1.周期函数:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数: 函数()y f x =满足对定义域内任一实数x (其中a 为常数), (1)()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; (2)()()f x a f x +=-,则()f x 是以2T a =为周期的周期函数; (3)()() 1f x a f x +=±,则()f x 是以2T a =为周期的周期函数; (4)()()f x a f x b +=-,则()f x 是以T a b =+为周期的周期函数; 以上(1)-(4)比较常见,其余几种题目中出现频率不如前四种高,并且经常以数形结合的方式求解。 (5)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =. (6)函数()y f x =()x ∈R 的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数; (7)函数()y f x =()x ∈R 的图象关于两点(),0A a 、(),0B b ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数; (8)函数()y f x =()x ∈R 的图象关于(),0A a 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数; (9)有些题目中可能用到构造,类似于常数列。

函数的周期性练习题兼答案(供参考)

函数周期性分类解析 一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f (x )叫做周期函数,T 叫做这个函数的一个周期。 二.重要结论 1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; 2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。 3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数 4、 y=f(x)满足f(x+a)=() x f 1 (a>0),则f(x)为周期函数且2a 是它的一个周期。 5、若函数y=f(x)满足f(x+a)= ()x f 1- (a>0),则f(x)为周期函数且2a 是它的一个周期。 6、1()()1() f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. 7、1()()1() f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数. 8、 若函数y=f(x)满足f(x+a)= )(1)(1x f x f -+(x ∈R ,a>0),则f(x)为周期函数且4a 是它的一个周期。 9、 若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a ) 是它的一个周期。 10、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则 函数()f x 是以()2b a -为周期的周期函数; 11、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函 数()f x 是以()4b a -为周期的周期函数; 12、 若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它 的一个周期。 13、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。 14、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。

概周期函数的定义及其性质[开题报告]

毕业论文开题报告 数学与应用数学 概周期函数的定义及其性质 一、选题的背景、意义 函数在日常生活中扮演越来越重要的角色,而概周期函数正成为函数的一个重要组成部分.概周期函数是在20世纪20年代由丹麦著名数学家H.Bohr首先提出的,它为了解决周期函数对加法运算不封闭而创造的一类新函数.在二、三十年代有了进一步发展,包括概周期函数的调和分析理论以及1933年由S.Bochner所建立的Bannch空间向量值概周期函数的理论.往后的发展更密切的联系着常微分方程、稳定性理论和动力系统,其应用范围不仅限于常微分方程和古典动力系统,也涉及泛函数微分方程、Banach空间微分方程以及一类广泛的偏微分方程. 关于概周期函数,我们可以从两个不同角度去看待:一方面,概周期函数是一类具有独特结构性质的连续函数,是周期函的推广;另一方面,概周期函数可以看成是一致收敛的三角多项式序列的限.从而,概周期函数理论的建立,为我们开辟了一个道路,使我们能够究一类更广泛的三角级数,甚至指数级数.即使在现实生活中,概周期函数也是比周期函数更容易见到的一类函例如,天体力学,机械振动,生态学系统,经济领域以及工程技术中出振荡现象的许许多多的实际问题往往都可以转化为求解常微分方程、泛函分方程、差分方程以及偏微分方程等数学模型的周期解,其中有些问题诸如天体运转,生态环境,以及市场供需规律等)考查概周期解比考查周解更具有现实意义.在概周期函数的基础上,通过增加扰动项得到了渐进周期函数、弱概周期函数和伪概周期函数.同时,若将概周期型函数的函值从复数值推广到向量值,则得到向量值概周期型函数.微分方程是从实际问题中抽象出来的数学模型,它描述了系统变化率与状态之间的关系,研究方程解的性态是微分方程理论中一个重要而又基本问题,系统解的稳定性分析是这个理论体系很重要的方面,由于概周期函是周期函数的一个推广,是具有某种近似周期性的有界连续函数,使得概期系统的解的稳定性分析也受到了越来越多的学者的关注,它在常微分方稳定性理论和动力系统中有着重要的应用.

定积分中奇偶函数和周期函数处理方法

定积分计算中周期函数和奇偶函数的处理方法 一、基本方法 (一)、奇偶函数和周期函数的性质 在定积分计算中,根据定积分的性质和被积函数的奇偶性,及其周期性,我们有如下结论 1、若()x f 是奇函数(即()()x f x f --=),那么对于任意 的常数a ,在闭区间 ][a a ,-上,()0=?-a a dx x f 。 2、若()x f 是偶函数(即()()x f x f -=),那么对于任意的常数a ,在闭区间][a a ,-上()()??-=a a a dx x f dx x f 0 2。 3、若()x f 为奇函数时,()x f 在][a a ,-的全体原函数均为偶函数;当()x f 为偶函数时,()x f 只有唯一原函数为奇函数即()?x dt t f 0. 事实上:设()()C dt t f x d x f x +=??0 ,其中C 为任意常数。 当()x f 为奇函数时,()?x dt t f 0 为偶函数,任意常数C 也是偶函数?()x f 的全体 原函数()C dt t f x +?0 为偶函数; 当()x f 为偶函数时, ()?x dt t f 0 为奇函数,任意常数0≠C 时为偶函数? ()C dt t f x +?0 既为非奇函数又为非偶函数,?()x f 的原函数只有唯一的一个原函 数即()?x dt t f 0是奇函数。 4、若()x f 是以T 为周期的函数(即()()x f x T f =+),且在闭区间][T ,0上连续可积,那么()()()? ?? +-==T a a T T T dx x f dx x f dx x f 0 22 。 5、若()x f 是以T 为周期的函数(即()()x f x T f =+),那么()?x dt t f 0 以T 为周期 的充要条件是 ()00 =?T dt t f

例析抽象函数周期的求法

例析抽象函数周期的求法 抽象函数周期问题是近年来高考及各地模拟试题中高频出现的问题,其周期求法能有效考查学生的逻辑思维能力和代数推理能力,对培养学生思维品质大有帮助。下面举例说明求周期的常用方法及技巧。 一、仅含抽象关系式的周期函数 例1 若存在常数m>0,使函数f(x)满足,则的一个正周期是____________。 解:设,则,依题意有 ,由周期函数的定义,是的一个周期 所以期 例2 已知函数满足,求证:函数 为周期函数。 证明:因为对有 (2)代入(1)得 这样 所以为周期函数,且为它的一个周期。

例3 设函数的定义域关于原点对称,且对定义域内任意,有 ,且存在常数,使。试证:是周期函数,且有一个周期为4a。 证明:设,则 所以y=f(x)为周期函数,且有一个周期为4a。 说明:从以上几例可见,适当的赋值和变量代换,是探求抽象函数周期的关键。下面再给一个探求周期来计算函数值的例子。 例4 设是定义在R上的函数,且对任意,都有 ,又,求的值。 解:

又 所以 可知是以2为一个周期的周期函数 所以 二、图象中有两条对称轴的抽象函数 例5 若函数的图象关于两条直线和都对称,试证:是周期函数,且是它的一个周期。 证明:因为的图象关于直线和(a 所以且 这样 所以是周期函数,且是它的一个周期。 例6 设是定义在R上的偶函数,且它的图象关于x=2对称,已知时, ,求时,的表达式。 解:由题设知:有两条对称轴和 所以为周期函数,且为它的一个周期 又当时, 所以 三、图象关于两点成中心对称的抽象函数 例7 设函数的图象关于相异两点A(a,0),B(b,0)都对称,则是一个周期为的周期函数。 证明:由题设有,这样

(完整版)专题函数的周期性

专题函数的周期性 一知识点精讲 1 .周期函数的定义:对于f (x)定义域内的每一个x ,都存在非零常数T ,使得f(x T) f (x)恒成立,则称函数f (x)具有周期性,T叫做f (x)的一个周期,则kT (k Z,k 0 )也是f (x)的周期,所有周期中的最小正数叫 f (x)的最小正周期.周期函数的定义域一定是无限集 2性质 ①若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期; 3?几种特殊的具有周期性的抽象函数: 函数y f x满足对定义域内任一实数x (其中a0为常数) (1) f x f:X a,则y f x的周期T a . (2) f x a f x,贝U f x的周期T2a . (3) f x a的周期T2a . ,贝U T x f x (4) f x a f x a,贝U f x的周期T2a . (5) f(x a)1 f (x),则f x 1 f(x)的周期 T2a . (6) f(x a) 1 f(x),则f 1 f (x) x的周期T4a数. (7) f(x a) 1 f (x),则f x 1 f(x) 的周期T4a . (8)函数y f (x)满足f (a x) f (a x)(a 0), 若f (x)为奇函数,则其周期为 T 4a,若f (x)为偶函数,则其周期为T 2a . (9)函数y f (x) x R的图象关于直线x a和x b a b都对称,则函数f (x)是 以2 b a为周期的周期函数. (10) 函数y f (x) x R的图象关于两点A a, y o > B b, y o a b都对称,则函数 f (x)是2 b a为周期的周期函数. (11) 函数y f (x) x R的图象关于A a, y0和直线x b a b都对称,则函数 f (x)是以4 b a为周期的周期函数. (12) f(x a) f(x) f (x-a),则f (x)的周期T 6a. 二典例解析 1. 设f(x)是(—a , +s)上的奇函数,f(x+2)= —f(x),当0W x w 1 时,f(x)=x ,则f(7.5)=( ) A.0.5 B. —0.5 C.1.5 D. —1.5 2. 若y=f(2x)的图像关于直线x a和x b(b a)对称,则f(x)的一个周期为( ) ②若周期函数f(x)的周期为T,则f( x)(0)是周期函数,且周期为 2 2

函数的基本性质(二)函数的周期性

函数的基本性质(二) 基础知识: 函数的周期性 如果函数y =f(x)对于定义域内任意的x ,存在一个不等于0的常数T ,使得 f(x +T)=f(x) 恒成立,则称函数f(x)是周期函数,T 是它的一个周期. 一般情况下,如果T 是函数f(x)的周期,则kT(k∈N +)也是f(x)的周期. 关于函数的周期性,请参考陕西师范大学《高中数学竞赛辅导》(刘诗雄主编) 例题: 1. 已知函数f(x)对任意实数x,都有f(x +m)=-f(x),求证:2m 是f(x)的一个周期. 证明:因为f(x +m)=-f(x) 所以,f(x +2m)=f[(x +m)+m] =-f(x +m) =f(x) 所以f(x)是以2m 为周期的周期函数. 2. 已知函数f(x)对任意实数x,都有f(x +m)=f(x -m),求证:2m 是f(x)的一个周期. 证明:因为f(x +m)=f(x -m) 令x -m =t ,则x +m =t +2m 于是f(t +2m)=f(t)对于t ∈R 恒成立, 所以f(x)是以2m 为周期的周期函数. 3. 已知函数f(x)对任意实数x,都有f(x +m)= ) x (f 1)x (f 1+-,求证:2m 是f(x)的一个周期. 证明:由已知f(x +2m)=f[(x +m)+m] )x (f 1)x (f 11)x (f 1)x (f 11) m x (f 1) m x (f 1+-++--=+++-= =f(x) 所以f(x)是以2m 为周期的周期函数. 4. 已知函数f(x)对任意实数x,都有f(x +m)=-) x (f 1)x (f 1+-,求证:4m 是f(x)的一个周期.

函数周期常用求法

三角函数周期的常用求法 一、 公式法 对于函数B x A y ++=)sin(?ω或B x A y ++=)cos(?ω的周期公式是||2ωπ=T , 对于函数B x A y ++=)tan(?ω或B x y ++=)cot(?ω的周期公式是| |ωπ=T . 例1 函数)2 3sin( x y -=π的最小正周期是 ( ) A.π B.2π C.-4π D.4π 解:由公式,得ππ42 12=-=T ,故选D. 评注:对于函数)sin(?ω+=x A y 或)cos(?ω+=x A y 可直接利用公式ω π2=T 求得;对于)tan(?ω+=x A y 或)cot(?ω+=x A y 可直接利用公式ωπ= T 求得。 二、图像法 例2 求下列函数的最小正周期 ① x y sin = ②x y sin 解:分别作出两个函数的图像知 图 二、 定法 解:∵ 2 cos()2sin(ππk x k x +++=x x cos sin + (Z k ∈) ∴ 2πk 是函数x x y cos sin +=的周期.显然2πk 中最小者是2 π 下面证明2π是最小正周期

假设2π不是x x y cos sin +=的最小正周期,则存在<+T T ② ∴ ①与②矛盾, ∴ 假设不成立,∴2π是x x y cos sin +=最小正周期. 评注:这种方法依据周期函数的定义,从式子)()(x f T x f =+出发,设法找出周期T 中的最小正数(须用反证法证明). 四、转化法 1、把三角函数表达式化为一角一函数的形式,再利用公式求周期 例4求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y ∴ ππ==2 2T . 变式 求函数x x y 66cos sin +=的最小正周期 解:∵ y =)cos sin 3cos sin 3()cos (sin 4224322x x x x x x +-+ =)4cos 1(831)cos (sin )cos (sin 31222x x x x x -- =+- =x 4cos 8 385+ ∴ 函数x x y 66cos sin +=的最小正周期是2 42ππ==T 评注:就是先根据三角公式已知式转化为一个脚的一个三角函数的形式,再利用公式去求.这是最常见的求周期题型,也是高考考察的热点. 2、遇到绝对值时,可利用公式 2||a a =, 化去绝对值符号再求周期 例5求函数 |cos |x y =的周期 解:∵ 22cos 1cos |cos |2x x x y +== = ∴ ππ==2 2T . 例6求函数|cos ||sin |x x y +=的周期

如何求三角函数的最小正周期

如何用初等方法求三角函数的最小正周期 在三角函数中,求最小正周期是一个重要内容,有关求三角函数最小正周期的问题,供大家参考。 一 公式法 函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω π2;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω y=Af(ωx+φ)(A ≠0,ω>0)一类三角函数的最小正周期(这里“f ”表示正弦、余弦、正切或余切函数)。 例1 求下列函数的最小正周期: (1) f(x)=2sin (53πx +1)。 (2) f(x)=1-31cos(4x 3π-)。 (3) f(x)=51tan(31x 3 π-). f(x)=)6 2cot(21π--x 解:用T 表示各函数的最小正周期,则: (1)T=5 32ππ =310 T=42π=2 π T=3 1 π=3π f(x )的最小正周期和y 1=1-2cot(2x -6π)的最小正周期相同,为T=2 π 二 定义法 根据周期函数和最小正周期的定义,确定所给函数的最小正周期。 例2 求函数f(x)=2sin (21x -6 π)的最小正周期。 解:把2 1x -6 π看成是一个新的变量z,那么2sinz 的最小正周期是2π。由于z +2π=21x-6π=(21x +4π)-6π。所以当自变量x 增加到x +4π且必须增加到x +4π时,函数值重复出现。 ∴函数y=2sin(21x-6 π)的最小正周期是4π。 例3 求函数f(x)=|sinx|-|cosx|的最小正周期。

解:根据周期函数的定义,易知2π、π都是这个的周期,下面证明π是这个函数的最小正周期。 设0<T <π是这个函数的周期,则|sin(x +T )|-|cos(x +T )|=|sinx|-|cosx| ① 对于任意x ∈R 都成立,特别的,当x=0时也应成立。 ∴ |sinT|-|cosT|=|sin0|-|cos0|=-1。 但当0<T <π时,0<|sinT|≤1,0<|cosT|<1,故有-1<|sinT|-|cosT|≤1, 矛盾,所以满足①且小于π的正数T 不存在。故函数f(x)=|sinx|-|cosx|的最小正周期是π。 三、最小公倍数法 求几个正弦、余弦和正切函数的最小正周期,可以先求出各个三角函数的最小正周期,然后再求期最小公倍数T,即为和函数的最小正周期。 例4 求下列函数的最小正周期: (1)f(x)=sin3x+cos5x (2)f(x)=cos 34 x -sin 2 1x. (3)f(x)=sin 53x +tan 7 3x. 解:(1)∵sin3x 的最小正周期为T 1=π32,cos5x 的最小正周期为T 2=π52。而π32和π5 2的最小公倍数是2π. ∴f(x)的最小正周期为T=2π. (2) ∵cos 34x 的最小正周期为T 1=π23,-sin 2 1x 的最小正周期为T 2=4π。而π2 3和4π的最小公倍数是12π。 ∴f(x)=cos 34 x -sin 2 1x 的最小正周期为T=12π. (3)∵sin 53x 的最小正周期为T 1=π310,tan 73x 的最小正周期为T 2=π37。而π310和π3 7的最小公倍数是70π。 ∴f(x)=sin 53x +tan 7 3x 的最小正周期为T=70π. 说明:几个分数的最小公倍数,我们约定为各分数的分子的最小公倍数为分子,各分母的最大公约数为分母的分数。 四 图象法 作出函数的图象,从图象上直观地得出所求的最小正周期。 例5 求下函数的最小正周期。 (1)y=|sin(3x +3 π)|

函数的性质4周期性.

函数的周期性 张磊 一函数周期性的定义 1 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称y=f(x)为周期函数,T为一个周期. 2 周期的一个性质 若T是y=f(x)的周期,则kT(k∈Z,k≠0)也是它的周期. 二周期函数的常见结论 1 f(x+a)=?f(x)? f(x)是周期函数,周期T=2a 证明:用x+a替换f(x+a)=?f(x)中的x可得f(x+2a)=?f(x+a) ,又因为f(x+a)=?f(x),所以f(x+2a)= f(x).即f(x)是周期函数,周期T=2a 2 f(x+a)=± (b为常数)? f(x)是周期函数,周期T=2a 证明:仿照上述方法. (略) 3 周期性与对称性的关系(注意,奇偶性是特殊的对称性) 由双对称性可推导出函数的周期性.(联系三角函数对称性与周期性的关系,很自然的推导出函数的周期性) 例⑴若函数f(x)既关于x=a对称,又关于x=b对称,则函数f(x)是周期函数,其周期T=2. 证:依题∴ ,用x?2b替代x可得) ,∴函数f(x)是周期函数,其周期T=2. 读者仿照该例自己下面结论 ⑵若函数f(x)既关于x=a对称,又关于点(b ,0)对称,则函数f(x)是周期函数,其周期T=4. ⑶若函数f(x)既关于点(a ,0)对称,又关于点(b ,0)对称,则函数f(x)是周期函数,其周期T=2. ⑷若函数f(x)偶函数,且关于x=a对称, 则函数f(x)是周期函数,其周期T=2a ⑸若函数f(x)奇函数,且关于x=a对称, 则函数f(x)是周期函数,其周期T=4a 说明:⑷是⑴的特殊情况.因为偶函数关于y轴对称,即关于x=0对称,所以函数f(x)既关于x=a对称,又关于x=0对称,则函数f(x)是周期函数,其周期T=2 ⑸是⑵的特殊情况.因为奇函数关于原点对称,即关于(0 ,0)对称,所以函数f(x)既关于x=a对称,又关于点(0 ,0)对称,则函数f(x)是周期函数,其周期T=4.

函数的周期性及其应用解题方法

函数的周期性及其应用解题方法 方法提炼 抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形: (1)若函数满足f(x+T)=f(x),由函数周期性的定义可知T是函数的一个周期; (2)若满足f(x+a)=-f(x),则f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以2a是函数的一个周期; ! (3)若满足f(x+a)=1/f(x),则f(x+2a)=f[(x+a)+a]=1/f(x+a)=f(x),所以2a是函数的一个周期; (4)若函数满足f(x+a)=-1/f(x),同理可得2a是函数的一个周期; (5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x); ②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象. 没有等价变形而致误 ' 【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2). (1)求f(1)的值; (2)判断f(x)的奇偶性,并证明; (3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围. 错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0. > (2)f(x)为偶函数,证明如下: 令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0. 令x1=-1,x2=x,有f(-x)=f(-1)+f(x), ∴f(-x)=f(x).∴f(x)为偶函数. (3)f(4×4)=f(4)+f(4)=2, 》 f(16×4)=f(16)+f(4)=3, 由f(3x+1)+f(2x-6)≤3, 得f[(3x+1)(2x-6)]≤f(64). 又∵f(x)在(0,+∞)上是增函数, ∴(3x+1)(2x-6)≤64. 《 ∴-7/3≤x≤5. 分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1, 有f(1×1)=f(1)+f(1),解得f(1)=0. (2)f(x)为偶函数,证明如下:

求函数f(x)周期的几种常见方法解读

求函数f(x)周期的几种常见方法 函数的周期性是函数的一个重要性质.对一般函数f(x)的周期,不少中学生往往不知从何入手去求.为了加深对函数f(x)周期概念的理解,本文以实例来说明求函数f(x)周期的几种常见方法,供读者参考. 1 定义法 根据周期函数的定义以及题设中f(x)本身的性质推导出函数的周期的方法称为定义法. (1)

∴f(x)为周期函数,且2a是它的一个周期. 注:如果题设函数方程中只有一边含有不为零的常数a,另一边与a无关,这时周期T应取决于a,假设T能被a整除,就分别试算f(x+2a),f(x+3a),f(x+4a),…,当出现f(x+T)=f(x)(T≠0)的形式时,就可知T是f(x)的周期. 周期函数,若是,求出它的周期;若不是,说明理由. (1) ∴f(x+2a)=f[(x+a)+a] (2)

∴f(x)为周期函数,3a是它的周期. 2 特殊值法 当题设条件中有f(m)=n(m,n为常数)时,常常以此条件为突破口,采用特殊值法解即可奏效. f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由. ∴f(x)为周期函数,2π是它的一个周期. 3 变量代换法 例4设函数f(x)在R上有定义,且对于任意x都有f(x+1995)=f(x+1994)+f(x+1996),试判断f(x)是否周期函数.若是,求出它的一个周期;若不是,说明理由. 解在f(x+1995)=f(x+1994)+f(x+1996) (x∈R)中,以x代x +1995,得 f(x)=f(x-1)+f(x+1); (1) 在(1)中以x+1代x,得

f(x+1)=f(x)+f(x+2). (2) (1)+(2),得f(x-1)+f(x+2)=0, ∴f(x-1)=-f(x+2). (3) 在(3)中以x+1代x,得 f(x)=-f(x+3); (4) 在(4)中以x+3代x,得 f(x+3)=-f(x+6). (5) 将(5)代入(4),得f(x+6)=f(x). ∴f(x)为周期函数,6是它的一个周期. 4 递推法 f(x)是不是周期函数.若是,求出它的一个周期;若不是,说明理由.

周期函数性质

定义 通俗定义 周期函数 对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。 严格定义 设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质; (1)对有(X±T); (2)对有f(X+T)=f(X) 则称f(X)是数集M上的周期函数,常数T称为f(X)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(X)的最小正周期。 由定义可得:周期函数f(X)的周期T是与X无关的非零常数,且周期函数不一定有最小正周期。 编辑本段周期函数性质 (1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。 (2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。 (3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。 (4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。 (5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则(Q是有理数集) (6)若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。

(7)周期函数f(X)的定义域M必定是双方无界的集合。 编辑本段周期函数的判定 定理1 若f(X)是在集M上以T*为最小正周期的周期函数则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。[1] 证: ∵T*是f(X)的周期,∴对有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C, ∴K f(X)+C也是M上以T*为周期的周期函数。 假设T* 不是Kf(X)+C的最小正周期,则必存在T’( 0<T’<T*)是K f(X)+C的周期,则对, 有K f(X+T’)+C=K f(X) +C K[f(X+T’)- f(X)]=0,∵K≠0,∴f(X+T’)- f(X)=0,∴f(X+T’)= f(X), ∴T’是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C的最小正周期。 同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 定理2 若f(X)是集M上以T*为最小正周期的周期函数,则f(aX+n)是集{X/aX+ n }上的以T*/ 为最小正周期的周期函数,(其中a、b为常数)。 证: 先证是f(ax+b)的周期 ∵T*是f(X)的周期,∴ ,有X±T*∈M,∴a(X )+b=ax+b ±T*∈M,且f[a(X+ T )+b]=f(ax+b±T*)=f(ax+b)∴ 是f(ax+b)的周期。 再证是f(ax+b)的最小正周期 假设存在T’(0<T’<)是f(ax+b)的周期, 则f(a(x+T’)+b)=f(ax+b),即f(ax+b+aT’)=f(ax+b),因当X取遍{X/X∈M,ax+b∈M}的各数时,ax+b就取遍M所有的各数,∴aT’是f(X)的周期,但<=T*这与T*是f(X)的最小正周期矛盾。 定理3

求三角函数的周期6种方法总结多个例子详细解答

如何求三角函数的周期 三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法. 1、定义法 例1. 求下列函数的周期 x y 2sin )1(= , 3 2tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π. (2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 3 2tan )(32tan x T x =+成立,同时考虑到正切 函数x y tan =的周期是π. 解:∵ )2 3 (32tan )32tan(32tan ππ+=+=x x x , 即

3 2tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π2 3. 例2. 求函数 (m ≠0)的最小正周期。 解:因为 所以函数(m ≠0)的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4.求函数y =|sin x |+|cos x |的最小正周期. 解:∵)(x f =|sin x |+|cos x | =|-sin x |+|cos x | =|cos(x +2π)|+|sin(x +2π)|

函数周期性的五类经典题型.doc

周期性 类型一:判断周期函数 1.求下列函数是否为周期函数 (1),满足 (2),满足 (3),满足 (4),满足 答案: (1)令∴∴ ∴T=2周期函数 (2) ∴T=4周期函数 (3)∴T=4 (4) ∴T=8 类型二:求值 1.已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x +2)=f(x),且当x∈[0,2)时f(x)=log2(x+1),则f(-2 013)+f(2 014)的值为() A.-1 B.-2 C.2 D.1 解析:选A因为f(x)是奇函数,且周期为2,所以f(-2 013)+f(2 014)=-f(2 013)+f(2 014)=-f(1)+f(0).又当x∈[0,2)时,f(x)=log2(x+1),所以f(-2 013)+f(2 014)=-1+0=-1. 2.若偶函数y=f(x)为R上的周期为6的周期函数,且满足f(x)=(x+1)(x-a)(-3≤x≤3),则f(-6)等于________.(对定义域的运用) 解析:∵y=f(x)为偶函数,且f(x)=(x+1)(x-a)(-3≤x≤3), ∴f(x)=x2+(1-a)x-a,1-a=0. ∴a=1.

f (x )=(x +1)(x -1)(-3≤x ≤3). f (-6)=f (-6+6)=f (0)=-1. 答案:-1 3.定义在R 上的函数f (x )满足f (x )=? ???? 3x - 1, x ≤0, f (x -1)-f (x -2), x >0,则f (2 016)=________. 解析:x >0时,f (x )=f (x -1)-f (x -2),f (x +1)=f (x )-f (x -1),相加得f (x +1)=-f (x -2),即f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),进而f (2 016)=f (336×6)=f (0)=3-1 =1 3 . 答案:13 4.已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >1 2时,f ????x +12=f ????x -12,则f (6)=______. (转化) 答案 2 解析 当x >1 2时,f ????x +12=f ????x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1,且-1≤x ≤1,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1)=2. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +1 5, 则f (log 220)=________. (利用周期和奇函数改变范围) 押题依据 利用函数的周期性、奇偶性求函数值是高考的传统题型,较好地考查学生思维的灵活性. 答案 -1 解析 由f (x -2)=f (x +2)?f (x )=f (x +4), 因为4

相关文档