文档库 最新最全的文档下载
当前位置:文档库 › 醋酸的电导率随浓度的变化

醋酸的电导率随浓度的变化

醋酸的电导率随浓度的变化
醋酸的电导率随浓度的变化

醋酸的电导率随浓K度C的变化

氯化钾的电导率K随浓度C的变化

醋酸

氢氧化钠密度浓度对照表

NaOH密度,质量分数与摩尔浓度对应(一) 密度g/m3 质量分数%摩尔浓度mol/L密度g/m3质量分数,%摩尔浓度mol/L 1.005 0.602 0.151 1.095 8.74 2.391 1.01 1.045` 0.264 1.1 9.19 2.527 1.015 1.49 0.378 1.105 9.645 2.664 1.02 1.94 0.494 1.11 10.1 2.802 1.025 2.39 0.611 1.115 10.555 2.942 1.03 2.84 0.731 1.12 11.01 3.082 1.035 3.29 0.851 1.125 11.46 3.224 1.04 3.745 0.971 1.13 11.92 3.367 1.045 4.2 1.097 1.135 1 2.37 3.51 1.05 4.655 1.222 1.14 1 2.83 3.655 1.055 5.11 1.347 1.145 13.28 3.801 1.06 5.56 1.474 1.15 13.73 3.947 1.065 6.02 1.602 1.155 14.18 4.095 1.07 6.47 1.731 1.16 14.64 4.244 1.075 6.93 1.862 1.165 15.09 4.395 1.08 7.38 1.992 1.17 15.54 4.545 1.085 7.83 2.123 1.175 15.99 4.697 1.09 8.28 2.257 1.18 16.44 4.85 NaOH密度,质量分数与摩尔浓度对应(二) 密度g/m3 质量分数%摩尔浓度mol/L 密度g/m3 质量分数%摩尔浓度mol/L 1.185 16.89 5.004 1.37 34.03 11.65 1.19 17.345 5.16 1.375 34.52 11.86 1.195 17.8 5.317 1.38 35.01 1 2.08 1.2 18.255 5.476 1.385 35.5 1 2.29 1.275 25.1 8 1.39 36 1 2.51 1.28 25.56 8.178 1.395 36.495 1 2.73 1.285 26.02 8.357 1.4 36.99 1 2.95 1.29 26.488.0539 1.405 37.49 13.17 1.295 26.94 8.722 1.41 37.99 13.3 1.3 27.41 8.906 1.415 38.49 13.61 1.305 27.87 9.092 1.42 38.99 13.84 1.31 28.33 9.278 1.425 39.495 14.07 1.315 28.8 9.466 1.43 40 14.3 NaOH密度,质量分数与摩尔浓度对应(三)

TH101--热导率介绍

?home ?? ?产品介绍 ?? ?导热系数测量 ?? ?导热系数测量系统 ?? ?THISYS ?关于公司 o业务范围客户案例应用领域 o工业及消防气象学与土壤材料科学放射物理学太阳能采集器建筑物理学热 管路勘查产品介绍 o热通量测量辐射测量导热系数测量其他顾问热能科学 o温度传感器热通量测量导热系数测量传热测量资源最新进展 ?联系方式 ?热通量测量 ?辐射测量 ?导热系数测量 ?其他 ?顾问 T H I S Y S用于测量薄片样品的热导率的仪器 THI01性能指标: 测试方法薄片样本分析法 温度范围-30 到+120 °C ) (取决于样品) 取决于参考样本, 当H. λ约为 4 10-3m2K/W 精度 (λ ref 时,一般为 +/- 6% @ 20 °C ) +/- 2% @ 20 °C 重复性 (λ ref 总的测量时间3000 s (典型值) 电源需求(可开关) 15 V, 0.8 Watt (典型值) 加热器 (电阻, 直径) 50 Ω, 80mm 对样品的要求H 最大为 6 mm

MCU01的性能指标:

图2 THI01 几何图: 散热块(7, 9). 样品材料 (8), 充气腔 (17), 加热器(4). 加热器产生的热量首先在样品的表面流动,然后再流向散热块(14) 图 3.使用THISYS分析填充塑料的几个样本分析。图形代表的是加热开始时的信号,信号的幅度大小与热导率λ乘以厚度H的积成反比例。 THISYS是一个精确的,快速的,简单的热导率传感器,主要用在测量高热导率材料中,样本的厚度比较薄。比较典型的材料就是单片金属、合金,以及高电导率塑料和各种填充材料。对于金属材料,比较理想的厚度为0.1mm或者更薄;对于塑料材料,典型的厚度为6mm,复合材料的厚度应在两者之间。THISYS由一个薄片采样仪器(THI01)和一个测量控制单元(MCU)组成。测量的本质是在加热过程中,测定出通过样本的一个温度梯度,主要的位置是在样本平面上。采用了一个高精度热电堆传感器设计,即THI01,该传感器可以应对非常薄的样本材料(小于0.01——6mm),而且通常情况下热导率在200 W/mK范围内。通过这种方法,就可以避免接触热阻的问题。当传统的ASTM D5470方法无法测量时,这种测量方法是一个非常好的替代方法。使用一个大的气候腔,可以用通常的温度步距来测量比较宽的温度范围,THISYS完全由PC控制,对于低热导率材料的测量,我们可以提供另一种型号的传感器T HA SYS。 下载有关产品说明手册 简介 测量厚度比较薄,热导率相对比较高的材料是一个传统的问题。通常情况下使用的方法是ASTM D 5470 - 01 (Standard Test Method for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials) 这种方法对接触热阻非常敏感,而且不适用于高热导率材料,THISYS为这个问题提供了一个解决方案。

实验三-霍尔效应法测量半导体的载流子浓度、-电导率和迁移

实验三-霍尔效应法测量半导体的载流子浓度、-电导率和迁移

实验三霍尔效应法测量半导体的载流子浓度、 电导率和迁移率 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS 和 VH-IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 二、实验原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a)所示的N 型半导体试样,若在X 方向的电极D、E 上通以电流Is,在Z 方向加磁场B,试样中载流子(电子)将受洛仑兹力: 其中e 为载流子(电子)电量,V为载流

子在电流方向上的平均定向漂移速率,B 为磁感应强度。 无论载流子是正电荷还是负电荷,Fg 的方向均沿Y 方向,在此力的作用下,载流子发生便移,则在Y 方向即试样A、A′电极两侧就开始聚积异号电荷而在试样A、A′两侧产生一个电位差VH,形成相应的附加电场E—霍尔电场,相应的电压VH 称为霍尔电压,电极A、A′称为霍尔电极。电场的指向取决于试样的导电类型。N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有 显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与Fg 方向相反的横向电场力:

其中EH 为霍尔电场强度。 FE 随电荷积累增多而增大,当达到稳恒状态时,两个力平衡,即载流子所受的横向电场力e EH 与洛仑兹力eVB相等,样品两侧电荷的积累就达到平衡,故有 设试样的宽度为b,厚度为d,载流子浓度为n,则电流强度V Is 与的关系为 由(3)、(4)两式可得 即霍尔电压VH(A、A′电极之间的电压)与IsB 乘积成正比与试样厚度d成反比。比例系数称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。根据霍尔效应制作的元件称为霍尔元件。由式(5)可见,只要测出VH (伏)以及知道Is(安)、B(高斯)和d(厘米)可按下式计算RH。

金属电导率与温度的关系

金属电导率与温度的关系 电导率测试仪主要用于检测铜、铝等非磁性有色金属的导电率、电导率、电阻率、导热效果、散热效果、热处理状态、纯度等等... 自动补偿功能电导率测量结果自动矫正为20℃数值,正常工作环境温度0℃到+50℃,相对湿度0到95%。 电导率与温度具有很大关系。金属的电导率随着温度的增高而降低。半导体的电导率随着温度的增高而增高,在一段温度值域内,电导率可以被近似为与温度成正比。为了要比较物质在不同温度状况的电导率,必须设定一个共同的参考温度。电导率与温度的相关性,时常可以表达为:电导率对上温度线图的斜率。 附录1:常用材料电导率值及温度系数参考表 金属 电导率(20℃) 温度系数(参数) (20℃) %IACS MS/m 软铜 ≥100≥580.0038硬铜 ≥97≥56.260.0038软铝 ≥61≥35.40.0040硬铝 ≥59.5≥34.510.0040金 ≥70.7≥410.0034银 ≥108≥62.50.0038黄铜 ≥25≥14.50.0020铝青铜 ≥9≥5.20.0005钛 ≥3.6≥2.08 铅 ≥7.8≥4.50.0039锟 ≥15≥8.70.0042锌 ≥30≥17.40.0037镍 ≥22≥12.80.0060镁 ≥38≥220.0040平均值 0.0026

附录2:西格玛电导率测试仪技术参数资料 产品型号 项目 西格玛 2008 西格玛 2008 B、C 工作频率60 KHz正弦波 60 KHz和500 KHz 电导率测量范围0.8 %IACS到110 %IACS 或0.46 MS/m到64 MS/m 或电阻率0.01560到0.02170 Ω·mm2/m 分辨率0.01 %IACS(小于51 %IACS时); 0.1 %IACS(51 %IACS到110 %IACS范围) 测量精度±0.5%(温度在20℃);±1%(温度在0℃~40℃) 提离效应探头补偿0.5 mm 温度测量0℃到+50℃(精度达0.5℃) 自动补偿功能电导率测量结果自动矫正为20℃数值 正常工作环境温度0℃到+50℃,相对湿度0到95% 显示大屏幕液晶,有背光 屏幕同时显示多项重要参数 供电3节AA充电电池(Ni-MH)或3节 1.5伏AA碱性电池可充电电池连续工作时间超过16小时(无背光状态) 探头A型机配直径¢14 mm工作频率60 KHz探头一支.B、C型机配直径¢14 mm工作频率60 KHz和直径¢8mm工作频率500KHZ 读数存储器可保存500个测量数据文件 PC机通讯方式RS 232串口 主机重量0.5KG(含电池) 主机尺寸220 mm×95 mm×55 mm 仪器外壳高抗冲击、防水淋工程塑料外壳 包装及防护高抗冲击、防水淋的铝合金手提箱,内装有仪器、探头、通讯电缆、操作手册、电导率标块、充电器 、仪器支架 附件电导率标准试块随机3片,可提供更多标准试块供用户选购

霍尔系数和电导率测量

实验5 霍尔系数和电导率测量 1. 实验目的 ⑴ 通过实验加深对半导体霍尔效应的理解; ⑵ 掌握霍尔系数和电导率的测量方法,了解测试仪器的基本原理和工作方法。 2. 实验容 测量样品从室温至高温本征区的霍尔系数和电阻率。要求: ⑴ 判断样品的导电类型; ⑵ 求室温杂质浓度,霍尔迁移率; ⑶ 查阅迁移率或霍尔因子数据,逼近求解载流子浓度和迁移率; ⑷ 用本征区()T R H 数据,由(21)式编程计算样品材料的禁带宽度; ⑸ 本征导电时,()Lp Ln qn μμσ+≈。μ与23-T 成正比,所以()kT E T C g 2exp 23''-=-σ,那么由()T T 1~ln 23σ或由T 1~ln σ实验曲线的斜率求出禁带宽度E g 。 ⑹ 对实验结果进行全面分析、讨论。 3. 实验原理 ⑴ 霍尔效应 如图1所示的矩形半导体,在X 方向通过一密度为j x 的电流,在Z 方向加一均匀磁场(磁感应强度为B ),由于磁场对运动电荷(速度为x v )有一个洛伦兹力,在Y 方向将引起

电荷的积累,在稳定情况下,将形成平衡洛伦兹力的横向电场Y E 。这就是大家熟知的霍尔效应。其霍尔系数定义为 ()1Z X Y H B J E R ?= 由0=-B qv qE x Y ,可以导出H R 与载流子浓度的关系式,它们是 P 型 ()21 qp R H = N 型 ()31 qn R H - = 如果计及载流子速度的统计分布,关系式变为 P 型 ()41qp R p H H ???? ??=μμ N 型 ()51qn R n H H ???? ??-=μμ 同时考虑两种载流子时有 ()() ()622nb p q nb p R H H +-?=μμ 式中,q 是电子电荷,p n b μμ=,p n μμ,分别是电子和空穴的迁移率,H μ是霍尔迁移率。()p n H ,μμ称为霍尔因子,其值与能带结构和散射机构有关。例如非简并半导体,长声学波散射时,18.183==πμμH ;电离杂质散射时,93.1=μμH ;对于高简并半导体和强磁场条件时,[]11=μμH 。 对于主要只有一种载流子的n 型或p 型半导体,电导率可以表示为n qn μσ=或p qp μσ=,这样由(4)或(5)式有 ()7ρμσμ?==H H H R ()8ρ μH H R = 由上述关系式可见,霍尔系数和电阻率的联合测量能给出载流子浓度和霍尔迁移率,而且结合迁移率对掺杂浓度、温度的数据或霍尔因子掺杂浓度、温度的数据,可以逼近求得载流子浓度和载流子迁移率。 载流子浓度是温度的函数。室温饱和区杂质全部电离,D s N n =,A s N p =,其值可由

盐水波美度换算表

盐水波美度换算表 波美度= 144.3-(144.3/比重); 比重=144.3/(144.3-波美度) 考虑温度的影响,进行如下的修正:15.6℃为基准温度,每升高1℃,波美度会降低0.052。 B'e 15℃比重食盐%盐水100㏄中之gm数 0.0 1.0000 0.00 0.00 1.0 1.0069 0.95 0.96 2.0 1.0140 1.95 1.96 3.0 1.0212 2.93 2.99 4.0 1.0285 3.93 4.04 5.0 1.0358 4.94 5.13 6.0 1.0434 5.96 6.23 7.0 1.0509 6.98 7.34 8.0 1.0587 8.02 8.49 9.0 1.0665 9.08 9.68 10.0 1.0745 10.15 10.91 11.0 1.0825 11.20 12.13 12.0 1.0907 12.28 13.40 13.0 1.0990 13.36 14.68 14.0 1.1074 14.47 16.02 15.0 1.1160 15.59 17.40 16.0 1.1256 16.67 18.77 17.0 1.1335 17.78 20.15 18.0 1.1425 18.92 21.62 18.5 1.1471 19.40 22.25 19.0 1.1516 20.97 23.11 19.1 1.1525 20.29 23.40 19.2 1.1534 20.29 23.40 19.3 1.1544 20.40 23.55 19.4 1.1553 20.51 23.70 19.5 1.1562 20.63 23.85 19.6 1.1571 20.74 24.00 19.7 1.1580 20.85 24.14 19.8 1.1590 20.96 24.29 19.9 1.1599 21.07 24.44 20.0 1.1608 21.18 24.59 20.1 1.1610 21.29 24.70 20.2 1.1627 21.41 24.89 20.3 1.1636 21.52 25.04 20.4 1.1646 21.64 25.22

食盐水波美度与百分比浓度换算表

食盐水波美度与百分比浓度换算表 B'e 15℃比重食盐% 100㏄中食盐克数(比重与百分比浓度之积) 0.0 1.0000 0.00 0.00 1.0 1.0069 0.95 0.96 2.0 1.0140 1.95 1.96 3.0 1.0212 2.93 2.99 4.0 1.0285 3.93 4.04 5.0 1.0358 4.94 5.13 6.0 1.0434 5.96 6.23 7.0 1.0509 6.98 7.34 8.0 1.0587 8.02 8.49 9.0 1.0665 9.08 9.68 10.0 1.0745 10.15 10.91 11.0 1.0825 11.20 12.13 12.0 1.0907 12.28 13.40 13.0 1.0990 13.36 14.68 14.0 1.1074 14.47 16.02 15.0 1.1160 15.59 17.40 16.0 1.1256 16.67 18.77 17.0 1.1335 17.78 20.15 18.0 1.1425 18.92 21.62 18.5 1.1471 19.40 22.25 19.0 1.1516 20.97 23.11 19.1 1.1525 20.29 23.40 19.2 1.1534 20.29 23.40 19.3 1.1544 20.40 23.55 19.4 1.1553 20.51 23.70 19.5 1.1562 20.63 23.85 19.6 1.1571 20.74 24.00 19.7 1.1580 20.85 24.14 19.8 1.1590 20.96 24.29 19.9 1.1599 21.07 24.44 20.0 1.1608 21.18 24.59 20.1 1.1610 21.29 24.70 20.2 1.1627 21.41 24.89 20.3 1.1636 21.52 25.04 20.4 1.1646 21.64 25.22 20.5 1.1655 21.75 25.35 21.0 1.1702 22.32 26.12 21.5 1.1750 22.91 26.92 22.0 1.1793 23.49 27.70 22.5 1.1847 24.08 28.53 23.0 1.1896 24.67 29.35

材料物理性能

材料物理性能 第一章、材料的热学性能 一、基本概念 1.热容:物体温度升高1K 所需要增加的能量。(热容是分子热运动的能量随温度变化的一个物理量)T Q c ??= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。[ 与 物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ??=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。用Cm 表示。 4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容: 5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供 给 物体的能量,除满足内能的增加,还必须补充对外做功的损耗。 6.热膨胀:物质的体积或长度随温度的升高而增大的现象。 7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。t l l l ?=?α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。t V V t t V ??= 1α 9.热导率(导热系数)λ:在 单位温度梯度下,单位时间内通过单位截面积的热量。(标志 材 料热传导能力,适用于稳态各点温度不随时间变化。)q=-λ△T/△X 。 10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。α=λ/ρc 。α表示温度变化的速率(材料内部温度趋于一致的能力。α越大的材料各处的温度差越小。适用于非稳态不稳定的热传导过程。本质仍是材料传热能力。)。 二、基本理论

1.德拜理论及热容和温度变化关系。 答:⑴爱因斯坦没有考虑低频振动对热容的贡献。 ⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数; ②固体可看做连续介质,能传播弹性振动波; ③固体中传播的弹性波分为纵波和横波两类; ④假定弹性波的振动能级量子化,振动能量只能是最小能量单位hν的整数倍。 ⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。 ②当T《θD时,Cv,m∝3T。 ③当T→0时,Cv,m→0,与实验大体相符。 ⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用; ②晶体不是连续介质,德拜理论在低温下也不符; ③金属类的晶体,没有考虑自由电子的贡献。 2.热容的物理本质。 答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。 【⑴反映晶体受热后激发出的晶格波和温度的关系; ⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同; ⑶温度升高,晶格的振幅增大,该频率的声子数目也增大; ⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。材料物理的解释】 3.热膨胀的物理本质。 答:由于原子之间存在着相互作用力,吸引力与斥力。力大小和原子之间的距离有关(是非线性关系,引力、斥力的变化是非对称的),两原子相互作用是不对称变化,当温度上升,势能增高,由于势能曲线的不对称性必然导致振动中心右移。即原子间距增大。 ⑴T↑原子间的平均距离↑r>r0吸引合力变化较慢 ⑵T↑晶体中热缺陷密度↑r<r0排斥合力变化较快 【材料质点间的平均距离随温度的升高而增大(微观),宏观表现为体积、线长的增大】 4.固体材料的导热机制。 答:⑴固体的导热包括:电子导热、声子导热和光子导热。 ①纯金属:电子导热是主要机制; ②合金:声子导热的作用增强; ③半金属或半导体:声子导热、电子导热; ④绝缘体:几乎只有声子导热一种形式,只有在极高温度下才可能有光子导热存在。 ⑵气体:分子间碰撞,可忽略彼此之间的相互作用力。 固体:质点间有很强的相互作用。 5.焓和热容与加热温度的关系。P11。图1.8 ⑴①有潜热,热容趋于无穷大;⑵①无潜热,热容有突变

测盐水和小石块的密度

实验器材:量筒(或量杯)、石块(或烧锅炉的焦炭)、细线、盐水、天平和砝码、烧杯(或玻璃杯)、清水 1.测金属块的密度 实验步骤 (1).将天平放在水平桌面上,调节天平平衡. (2).测出金属块的质量,并把测量值填入表格中. (3).向量筒中注入一定量的清水,并把测得的水的体积值填入表格中. (4).将石块用细线拴好,没入水中,测出石块和水的总体积,并把测量值填入表格中.(5).计算出石块的体积,填入表格. (6).计算出金属块密度,填入表格. 表格设计 石块的质量 石块放入前水的体积石块和水的总体积石块的体积石块的密度 m(g) 请同学们写出测定盐水密度的实验步骤,并设计记录实验数据的表格. 学生基本写完后,请同学说出实验步骤以及表格设计的内容,教师随时把正确内容写在黑板上,并进行必要的补充、修正。 2.测定盐水的密度 实验步骤 (1)把天平放在水平台面上,调节天平平衡,(这里向同学说明一下,测金属块的密度完成后,只要天平没动,可以不再调节,但如果作为一个独立实验必须有这一步) (2)在烧杯中盛盐水,称出它们的质量,并将测量值填入表格中. (3)把烧杯中的盐水倒入量筒中一部分,测出它的体积,并将测量值填入表格. (4)称出烧杯和杯中剩余盐水的质量,将测量值填入表格. (5)计算出量筒内盐水的质量,记入表格.

(6)求出盐水密度记入表格表格设计 烧杯和盐水的质量 (g)烧杯和杯内剩余 盐水的质量 量筒中盐水质量量筒中盐水的体积盐水的密度 一、教学分析与说明 1.关于实验原理 实验前可与学生讨论如何利用密度公式来测定物质的密度,需要测出哪些量?用什么办法和仪器来测量?启发学生思考,激发兴趣,搞清实验原理和实验方法. 2.在使用量筒时应注意的问题 (1)了解量筒(或量杯)的用途.量筒是实验室里用来测物体体积的仪器. (2)知道量筒的构造,学会判定量筒的最小分度和量程,认识“ml”表示“毫升”,读数时要估读到最小刻度的下一位. (3)量筒一定要放置在水平面上,然后再将液体倒入量筒中. (4)观察量筒里液面到达的刻度时,视线要跟液面相平,若液面呈凹形,观察时要以凹形的底部为准;若液面呈凸形,观察时要以凸形的顶部为准. (5)用量筒(杯)测固体体积的方法叫排液法. 在练习用量筒(或量杯)测液体体积时,两次的测量应让同组的两个同学各测一次.如果分组仪器全部是量筒,应给教师准备一个量杯,让学生看到实物.观察量筒时,可就观察问题提问练习.在视线和凹面相平时,教师应做一个示范动作.滴管是学生第一次使用,也应讲清楚如何使用,尤其是要从量筒中取出液体时应怎样做,让学生思考一下,最好找学生示范一下.测出的水的体积不要倒回烧杯中,做下一个实验时用. 3.关于实验的操作 (1)在测固体的体积时,要让学生弄明白需要记录哪些数据.并把所测得的有关数据填入数据表中,再求出石块的体积和密度. 测固体密度最好用烧锅炉的焦炭,选一些大小形状均合适的(体积最好在20~40cm3之间),事先要蘸上腊,以防吸水.如果用石块,一定要求学生用细线栓牢,否则极易砸坏量筒.要讲清用排液法测体积的做法和这种方法的适用条件.第一,这种物质不能溶于这种液体,若

实验三-霍尔效应法测量半导体的载流子浓度、-电导率和迁移

实验三霍尔效应法测量半导体的载流子浓度、 电导率和迁移率 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的 VH-IS 和 VH-IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 二、实验原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a)所示的 N 型半导体试样,若在 X 方向的电极 D、E 上通以电流 Is,在 Z 方向加磁场 B,试样中载流子(电子)将受洛仑兹力: 其中 e 为载流子(电子)电量, V为载流子在电流方向上的平均定向漂移速率,B 为磁感应强度。 无论载流子是正电荷还是负电荷,Fg 的方向均沿 Y 方向,在此力的作用下,载流子发生便移,则在 Y 方向即试样 A、A′电极两侧就开始聚积异号电荷而在试样 A、A′两侧产生一个电位差 VH,形成相应的附加电场 E—霍尔电场,相应的电压 VH 称为霍尔电压,电极 A、A′称为霍尔电极。电场的指向取决于试样的导电类型。N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。对 N 型试样,霍尔电场逆 Y 方向,P 型试样则沿Y 方向,有 显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与 Fg 方向相反的横向电场力: 其中 EH 为霍尔电场强度。

FE 随电荷积累增多而增大,当达到稳恒状态时,两个力平衡,即载流子所受的横向电场力 e EH 与洛仑兹力eVB 相等,样品两侧电荷的积累就达到平衡,故有 设试样的宽度为 b ,厚度为 d ,载流子浓度为 n ,则电流强度V Is 与的 关系为 由(3)、(4)两式可得 即霍尔电压 VH (A 、A ′电极之间的电压)与 IsB 乘积成正比与试样厚度 d 成反比。比例系数称为霍尔系数,它是反映材料 霍尔效应强弱的重要参数。根据霍尔 效应制作的元件称为霍尔元件。由式(5)可见,只要测出 VH (伏)以及知道 Is (安)、B (高斯)和 d (厘米)可按下式计算 RH 。 上式中的108 是由于磁感应强度 B 用电磁单位(高斯)而其它各量均采用 C 、G 、S 实用单位而引入。 注:磁感应强度 B 的大小与励磁电流 IM 的关系由制造厂家给定并标明在实验仪上。 霍尔元件就是利用上述霍尔效应制成的电磁转换元件,对于成品的霍尔元件,其 RH 和 d 已知,因此在实际应用中式(5)常以如下形式出现: V V =V V V V V (7) V V = V V V = 1 VVV 称为霍尔元件灵敏度(其值由制造厂家给出),其中比例系数它表示该器件在单位工作电流和单位磁感应强度下输出的霍尔电压。Is 称为控制电流。(7)式中的单位取 Is 为 mA 、B 为 KGS 、VH 为 mV ,则 KH 的单位为 mV/(mA·KGS)。 KH 越大,霍尔电压 VH 越大,霍尔效应越明显。从应用上讲,KH 愈大愈好。 KH 与载流子浓度 n 成反比,半导体的载流子浓度远比金属的载流子浓度小,因此用半导体材料制成的霍尔元件,霍尔效应明显,灵敏度较高,这也是一般霍尔元件不用金属导体而用半导体制成的原因。另外,KH 还与 d 成反比,因此霍尔元件一般都很薄。本实验所用的霍尔元件就是用 N 型半导体硅单晶切薄片制成的。 由于霍尔效应的建立所需时间很短(约 10-12—10-14s ),因此使用霍尔元件时 用直流电或交流电均可。只是使用交流电时,所得的霍尔电压也是交变的,此时,式(7)中的 Is 和 VH 应理解为有效值。 根据 RH 可进一步确定以下参数 1.由 RH 的符号(或霍尔电压的正、负)判断试样的导电类型 A ¢ 判断的方法是按图(1)所示的 Is 和 B 的方向,若测得的 VH =VAA '<0,(即点 A 的电位低于点 A ′的电位)则 RH 为负,样品属 N 型,反之则为 P 型。 2.由 RH 求载流子浓度 n 由比例系数 V V =1 VV 得V V =1 |V V |V 。

半导体器件物理4章半导体中的载流子输运现象

第四章 半导体中载流子的输运现象 在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。载流子的漂移运动和扩散运动都会在半导体内形成电流。此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。因此,研究半导体中载流子的输运现象非常必要。 4.1漂移电流密度 如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。电场力的作用下使载流子产生的运动称为“漂移运动”。载流子电荷的净漂移会产生“漂移电流”。 如果电荷密度为ρ的正方体以速度d υ运动,则它形成的电流 密度为 ()4.1d r f d J ρυ =

其中ρ的单位为3 C cm - ,drf J 的单位是2 Acm -或2 /C cm s 。 若体电荷是带正电荷的空穴,则电荷密度ep ρ=,e 为电荷电 量19 1.610 (e C -=?库仑) ,p 为载流子空穴浓度,单位为3 cm -。则空穴 的漂移电流密度/p drf J 可以写成: ()()/ 4.2p drf dp J ep υ= dp υ表示空穴的漂移速度。空穴的漂移速度跟那些因素有关呢? 在电场力的作用下,描述空穴的运动方程为 ()* 4.3p F m a eE == e 代表电荷电量,a 代表在电场力F 作用下空穴的加速度,* p m 代 表空穴的有效质量。如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。在电场的作用下,晶体中的空穴获得加速度,速度增加。当载流子同晶体中的原子相碰撞后,载流子会损失大部分或全部能量,使粒子的速度减慢。然后粒子又会获得能量并重新被加速,直到下一次受到碰撞或散射,这一过程不断重复。因此,在整个过程粒子将会有一个平均漂移速度。在弱电场的情况下,平均漂移速度与电场强度成正比(言外之意,在强电场的情况下,平均漂移速度与电场强度不会成正比)。 ()4.4dp p E υμ= 其中p μ是空穴迁移率,载流子迁移率是一个重要的参数,它描述了粒子在电场作用下的运动情况,迁移率的单位为2 /cm V s 。将

电 导 率

TDS用来衡量水中所有离子的总含量, 通常以ppm表示 在纯水制造业,电导率也可用来间接表征TDS. 溶液的电导率等于溶液中各种离子电导率之和,比如:纯食盐溶液: Cond.=Cond(pure water) + Cond(NaCl) 或者Cond.= 0.055 + Cond(NaCl) 电导率和TDS的关系并不呈线性,但在有限的浓度区段内,可用采用线性公式表示: 例如. 100uS/cm x 0.5 (as NaCl) = 50 ppm TDS(uS:微西门子) 从上面两个公式可以知道:纯水的电导率为:0.055uS (18.18兆欧) 食盐的TDS-电导率换算系数为0.5. 所以:经验公式是:将以微西门子为单位的电导率折半约等于TDS(ppm) 有时TDS 也用其它盐类表示,如CaO3(系数则为0.66) TDS与电导率的换算系数可以在0.4-1.0之间调节,以对应不同种类的电解质溶液。 电导率 电导率是物质传送电流的能力,与电阻值相对,单位Siemens/cm (S/cm),该单位的10-6以μS/cm表示,10-3时以mS/cm表示。 电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)--电阻(R)的倒数,由导体本身决定的。 电导率的基本单位是西门子(S),原来被称为欧姆。因为电导池的几何形状影响电导率值,标准的测量中用单位电导率S/cm来表示,以补偿各种电极尺寸造成的差别。单位电导率(C)简单的说是所测电导率(G)与电导池常数(L/A)的乘积.这里的L为两块极板之间的液柱长度,A为极板的面积。 水的硬度 水的硬度是指水中钙、镁离子的浓度,硬度单位是ppm,1ppm代表水中碳酸钙含量1毫克/升(mg/L)。 水质硬度单位换算 硬度单位 ppm 德国硬度法国硬度英国硬度 1ppm = 1.000ppm 0.0560 0.1 0.0702 1德国硬度= 17.847ppm 1 1.7847 1.2521 1法国硬度= 10.000ppm 0.5603 1 0.7015 1英国硬度= 14.286ppm 0.7987 1.4285 1 电导率与水的硬度 水溶液的电导率直接和溶解固体量浓度成正比,而且固体量浓度越高,电导率越大。电导率和溶解固体量浓度的关系近似表示为:1.4μS/cm=1ppm或2μS/cm=1ppm(每百万单位CaCO3)。利用电导率仪或总固体溶解量计可以间接得到水的总硬度值,

Al热导率研究现状

国外V anina Recoules[18]利用量子分子动力学结合Kubo-Greenwood 式计算电子热导率,并计算了高温下铝的电子热导率和电导率,由此得到洛伦兹常量L,结果表明与金属的理想值很接近,从而也证实了维德曼-弗朗兹定律。 利用电阻较容易测量的特点,Adam L,Woodcraft[20]等人利用维德曼-弗朗兹定律转换可以得到室温下热导率,并且改编了计算纯铝热导率的方程,使之可以应用到铝合金热导率的计算上来,在低温下获得了极好的准确率。R. Brandt 和G. Neuer[21]利用实验方法测量了熔化金属的电阻,并对热导率计算进行了相关研究,在熔化温度附近一定范围内通过得到热阻再获得金属的热导率。 目前预测铝合金热导率采用最多的方法就是利用维德曼-弗朗兹定律,首先测定材料的电阻,然后利用维德曼-弗朗兹定律获得材料的热导率。 任何材料都是由原子核与电子组成,分子动力学方法着重处理原子核的运动状态,而第一性原理方法则侧重于处理电子在原子核及其他电子组成的势场中的运动,最终利用统计力学相关方法得到体系的宏观量。分子动力学方法[22]模拟,简单地来说,其实就是利用计算机方法来表示统计力学,即给定一个初始条件并设定收敛阈值,在达到收敛时对相关物理量取统计平均从而获得宏观量。首先,建立一个由N 个粒子组成的模型体系;然后解这个体系的牛顿经典运动方程;达到平衡后,利用统计力学方法计算相关微观物理量;然后,对模拟结果进行分析,得到材料宏观量的信息[23]。要想进行分子动力学运算,首先需要选择系综建立模型,然后就是时间步长的选择,接下来最重要的就是原子间的势能选取,最后利用合适的算法进行相关计算。 合金属于固溶体,一般有许多优于纯金属的性能,这里主要在金属研究的基础上计算了合金热力学的性质。在热梯度影响下,费米面附近的电子对热传导的能力有很大影响,这些可以由能带及其态密度图看到。此外,采用密度泛函理论计算了合金的线性响应函数和晶格动力学矩阵,并得到相应的声子谱。最后,计算了考虑了电子-声子耦合相互作用的热导率。

液碱密度和浓度对照表

液碱密度和浓度对照表密度浓度% 1 0.159 1.005 0.602 1.01 1.04 1.02 1.94 1.03 2.84 1.04 3.74 1.05 4.65 1.06 5.56 1.07 6.47 1.08 7.38 1.09 8.28 1.1 9.19 1.11 10.1 1.12 11.01 1.13 11.92 1.14 1 2.83 1.15 13.73 1.16 14.64 1.17 15.54 1.18 16.44 1.19 17.34 1.2 18.25 1.21 19.16 1.22 20.07 1.23 20.98 1.24 21.9 1.25 2 2.82 1.26 23.73 1.27 24.64 1.28 25.56 1.29 26.48 1.3 27.41 1.31 28.33 1.32 29.26

1.33 30.2 1.34 31.14 1.35 3 2.1 1.36 3 3.06 1.37 3 4.03 1.38 3 5.01 1.39 36 1.4 3 6.99 1.41 3 7.99 1.42 3 8.99 1.43 40 1.44 41.03 1.45 42.07 1.46 43.12 1.47 44.17 1.48 45.22 1.49 46.27 1.5 47.33 1.51 48.38 1.52 4 9.44 1.53 50.5

液碱温度密度对照表 温度分别是0℃10℃15℃18℃20℃30℃40℃50℃60℃70℃80℃90℃100℃时在不同比例下的密度分别如下 1% 1.01240 1.01150 1.01065 1.01003 1.00950 1.00690 1.00330 0.99900 0.99410 0.98840 0.98240 0.97600 0.96930 5% 1.05980 1.05710 1.05554 1.05454 1.05380 1.05010 1.04580 1.04120 1.03590 1.03020 1.02430 1.01790 1.01150 10% 1.11710 1.11320 1.11107 1.10977 1.10890 1.10430 1.09950 1.09420 1.08890 1.08310 1.07710 1.07080 1.06430 12% 1.13990 1.13550 1.13327 1.13188 1.13090 1.12610 1.12100 1.11570 1.11010 1.10430 1.09830 1.09200 1.08550 14% 1.16240 1.15780 1.15545 1.15400 1.15300 1.14800 1.14280 1.13730 1.13160 1.12570 1.11950 1.11320 1.10660 16% 1.18490 1.18010 1.17761 1.17610 1.17510 1.16990 1.16450 1.15880 1.15310 1.14710 1.14080 1.13430 1.12770 18% 1.20730 1.20230 1.19973 1.19810 1.19720 1.19180 1.18630 1.18050 1.17460 1.16850 1.16210 1.15560 1.14890 20% 1.22960 1.22440 1.22183 1.22022 1.21910 1.21360 1.20790 1.20200 1.19600 1.18980 1.18330 1.17680 1.17000 22% 1.25190 1.24650 1.24386 1.24220 1.24110 1.23540 1.22960 1.22360 1.21740 1.21110 1.20460 1.19800 1.19120 24% 1.27410 1.26860 1.26582 1.26412 1.26290 1.25710 1.25120 1.24510 1.23880 1.23240 1.22590 1.21920 1.21240 26% 1.29630 1.29060 1.28770 1.28600 1.28480 1.27890 1.27280 1.26660 1.26030

水和盐水比重标准测试方法(中文版)

水和盐水比重标准测试方法 1.适用范围 这些方法包含了如下不含可分离油的水和盐水的比重的测定: 节次 测试方法A—比重瓶法 7至11 测试方法B—天平法 12至16 测试方法C—锥形瓶法 17至20 测试方法D—液体比重计法 21至25 1.2 方法A和B适用于清水或含适量特殊物质的水。方法B更适合做海水样品或盐水, 法B比具有相同适用范围的法D具有更高的灵敏度。方法C适用于分析含泥浆或淤 泥的水。 1.3 使用者有责任确保该方法用于未经测试基质的水的有效性。 1.4 该方法在22℃测试了数值介于1.0252至1.2299范围的比重(表1-4);所有的数 据在15.6℃(60 o F )经过了校正。 1.5该标准不旨在阐述所有的安全问题, 只是在和使用方法有联系时稍有提及。使用者有 责任在使用前确定相关的安全与健康措施并确定常规的使用范围。 2.参考文献 2.1 ASTM标准 D1066试样蒸汽操作2 D1129 关于水的术语2 D1193 试剂水的规范2 D3370 封闭管道中试样水的操作2 E1 ASTM 温度计的规范 3.专业术语 3.1定义: 3.1.1盐水——含有浓度约大于30000mg/L的可溶物质的水。 3.1.2有关该方法中使用的术语的定义,见术语D1129。 4.用途及重要性

4.1比重是和密度和粘度相关的液体的一个重要的性质。和一个标准液通常是水相比较, 比重可以确定一种液体在一定温度下的性质。这可以使使用者确定测试液比标准液轻还是重。 5.试剂 5.1水的纯度——若没有指明,所涉及的水均是符合类型II,D1193规范的试剂水。6.取样 6.1按操作D3370和D1066收集试样。 6.2考虑到缺少取污泥试样的标准检测方法,没有提及取该类物质的方法。 测试方法A—比重瓶法 7.试验方法概要 7.1 将试样引入比重瓶,在期望的温度下稳定,称量。通过该重量值和先前确定的在同 样的温度下、将该比重瓶充满试剂水的重量值计算比重。 8.仪器的准备 8.1 水浴——恒温水浴保持温度在15.6±1℃(60±1.8 o F)。若根据当地情况必须用其 它的温度,应该做相应的调整。 8.2 比重瓶——圆柱形或圆锥形的经过仔细研磨的玻璃器皿,可精确配置24/12标准锥 形玻璃瓶塞,瓶塞中心垂直轴方向有一直径约1.0至2.0毫米的小孔。瓶盖的上表 面应该是平滑的,下表面是一凹面,可以让所有的空气通过小孔排出。凹面的高度 从中心算应大约有5毫米。盖好塞子的比重瓶应有约24至30毫升的容积,重量不 超过40克。图1展示了合适的比重瓶。 8.3温度计——ASTM重力温度计具有-20至+102℃或-5至+215o F的量程,分别符合 规范E1中所述的温度计12C或12F。 9.操作步骤 9.1 连同塞子,在分析天平上,称量一洁净、干燥、经过校准的比重瓶,记录该重量读 数至0.1毫克,记做P。 9.2 取下塞子,向比重瓶中注入最近煮沸后冷却至室温的试剂水,至距瓶口数毫米处。 去除气泡。向保持温度在15.6±1℃(60±1.8 o F)的恒温水浴中浸入未盖塞子的比重瓶至瓶颈处。将比重瓶放置在水浴中一段时间直至建立温度平衡,一般20分钟就

相关文档