文档库 最新最全的文档下载
当前位置:文档库 › 发酵工程期末复习重点

发酵工程期末复习重点

发酵工程期末复习重点
发酵工程期末复习重点

《发酵工程》

第二章发酵工程菌种

1、发酵工程菌:发酵工业的微生物种类很多,可分为两二类,即可培养微生物和未培养微生物。其中,可培养微生物包括四大类:1)细菌:单细胞原核微生物,分布最广、数量最多,工业上常用的有枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等,用于各种酶制剂、有机酸、氨基酸等; 2)放线菌:单细胞原核,因菌落呈放线状而得名,最大的经济价值在于能产生多种抗生素,常用的放线菌主要来自链霉菌属、小单孢菌属和诺卡菌属,如链霉素、红霉素、金霉素;3)酵母菌:一类单细胞,兼性厌氧,出芽生殖真核微生物,啤酒酵母、假丝酵母、类酵母用于生产啤酒、制造面包、生产脂肪酶和可食用、药用和饲料用酵母菌体蛋白; 4)霉菌:发霉的真菌,根霉、毛霉、红曲霉、青霉,它们广泛用于生产酶制剂等。

2、发酵工程菌种的分离筛选:发酵工业对菌种的要求:1)能在廉价原料制成的培养基上生长,目的产物产量高、易回收;2)生长快,发酵周期短;3)培养条件易于控制;4)抗噬菌体和杂菌污染能力强;5)菌种不易变异退化;6)对放大设备的适应性强;7)菌种不是病原菌,不产生任何有害的生物活性物质和毒素。菌种的获得途径:1)从菌种保存机构直接购买(CCCCM中、A TCC美);2)从自然届分离筛选;3)从发酵水平高的批号中重新进行分离筛选。菌种的分离筛选过程:样品的采集(土壤、海洋、空气、极端环境微生物、动植物中,总原则是来源越广泛,获得新菌种的可能性越大)------材料的预处理(热处理、膜过滤、离心法、添加几丁质分离放线菌)--------富集培养(控制营养成分和条件筛选目的菌)------菌种分离(平板划线分离法、涂布分离法)见P18-------菌种的初筛和复筛----菌种鉴定,确定菌种类型。

3、菌种的代谢:1)初级代谢产物:把微生物产生的对自身生长和繁殖必需的物质称为初级代谢产物。2)次级代谢产物:由生物体合成,但对其自身的生长、繁殖和发育并没有影响的一类物质,如抗生素、生物碱、色素、毒素等。代谢控制机制包括酶合成的调节(诱导和阻遏)和酶活性的调节。

4、菌种的选育方法:自然选育(利用菌种的自然突变而进行菌种的筛选)、诱变育种(理论基础是基因突变,诱变和筛选不断重复)、细胞工程育种、杂交育种(将两个基因型不同的菌株接合)、原生质体融合(去除细胞壁后选PEG作为助融剂)、基因工程育种、蛋白质工程育种、组合生物合成育种(利用重组工程酶对一些药物和化合物直接进行衍生化)、反向生物工程育种。

5、以抗生素为例简述筛选菌种的方法和过程:对象确定----采集样本----富集培养(投其所好、取其所抗之原则)-----初筛-----复筛----较优菌株斜面------性能测定-----菌种保藏

6、接种龄:种子罐中培养的菌体从开始移入下一级种子罐或发酵罐时的培养时间;

接种量:移入的种子悬浮液体积和接种后培养液体的体积的比例。

第三章培养基

1、培养基的分类:1)按纯度分:合成培养基、天然培养基;2)按状态分:固体培养基、半固体培养基、液体培养基;3)按用途分:孢子培养基、种子培养基、发酵培养基;

2、选择性培养基:是指根据某种微生物的特殊营养要求或其对某种化学、物理因素的抗性而设计的培养基。其功能是使混合菌样中的劣势菌变成优势菌,从而提高改菌的筛选效率。

3、培养基的成分:

1)碳源:常用的碳源有糖类(葡萄糖、糖蜜、淀粉糊)、油脂(豆油、菜油、鱼油)、有机酸(乳酸、柠檬酸、乙酸)和烃醇(正烷烃)等。

2)氮源:有机氮源(花生饼粉、黄豆饼粉、玉米浆、玉米蛋白粉、蛋白胨、酵母粉、鱼粉)、无机氮源(NH4Cl、硫酸铵、硝酸铵、磷酸铵、氨水)

3)无机盐及微量元素:P、S、Mg、Fe、K、Na、Cu、Zn、Mn、Gu等。

4)水:

5)生长因子(氨基酸、嘌呤、嘧啶、维生素等)、前体、产物促进剂和抑制剂(在次级代谢产物发酵过程中,往往抑制某一代谢途径就会使另一代谢途径活跃)

●生理酸性物质:经微生物生理作用后能形成酸性物质的无机氮源。如硫酸铵;如菌体代谢后能产生碱性物质的则此种无机氮源称为生理碱性物质,如硝酸钠。

●前体:能被微生物直接利用,以构成次级代谢产物结构的一部分,而其本身结构没有大的变化,这种物质称为前体,如玉米浆中的苯乙胺。

4、发酵培养基的配制条件:1)都必须含有合成细胞组成所必需的原料;2)满足一般生化反应的基本条件;3)一定的pH条件等;4)工业生产上选择的培养基俗称发酵培养基,还应包括能够促进微生物合成产物所必需的成分。

第四章灭菌

1、灭菌:用物理或化学的方法杀灭或去除物料或设备中所有生命物质的过程。包括化学灭菌、射线灭菌、干热灭菌、湿热灭菌(原理是高温下微生物细胞的蛋白变性而死亡)和过滤除菌。

2、对数残留定律:湿热灭菌时,微生物死亡速率与残留菌数成正比叫对数残留定律。

-dN/dt=K*N N—残存的活菌数;t—灭菌时间(s);K—灭菌速度常数(1/s)与微生物种类和加热温度有关;dN/dt-活菌数瞬时变化速率,即死亡速率。

●为什么高温灭菌优于其他灭菌方法?

从理论研究和生产实践都证明,在灭菌过程中,同时会发生微生物死亡和培养基破坏这两个过程,微生物死亡速率的提高超过培养基成分破坏速率的增加,要减少营养成分的破坏,可升高温度灭菌。因此,对于同一灭菌效果,选择较高的温度、较短的时间,这样既可达到需要的灭菌程度,同时又可减少营养物质的损失。

3、分批灭菌:是将配制好的培养基放在发酵罐或其他容器中,通入蒸汽将培养基和所有设备一起灭菌的操作过程。包括升温、保温、降温三个阶段。灭菌主要是在保温过程中实现,在升温阶段后期,也有一定的灭菌作用。

4、连续灭菌:将配制好的培养基在通入发酵罐时进行加热、保温、降温的灭菌过程,也称之为连消。其流程为:配料—预热(预热桶作用是定容和预热,目的是使培养基在后续加热过程中能快速地升温到指定的灭菌温度)---加热(用连消泵打入加热器,使培养基与蒸汽混合并迅速达到灭菌温度,加热器有塔式和喷射式两种)----保温(维持灭菌温度一段时间,是杀灭微生物的主要过程,维持罐和管式维持器)----降温(迅速降温)

5、空气除菌:好氧性微生物需要空气,为保证纯种培养,需要空气灭菌。方法有:辐射杀菌(高能阴极射线、X、β、γ射线、紫外线能破坏蛋白质活性而杀菌,紫外线用的最多)化学、蒸汽灭菌、静电除菌(利用静电引力吸附带电粒子)、热杀菌、过滤除菌(介质过滤是采用定期灭菌的介质来阻截流过的空气所含的微生物,常用的介质有棉花、活性炭和玻璃纤维、矿渣、金属丝纤维、合成纤维等。棉花要选用未经脱脂的,这样压紧后仍有弹性,纤维长度要适中,填充率为8.5%-10%。

●空气过滤除菌过程:前置空气过滤器进行粗滤空气机升压一级冷凝器对压缩空气降温二级甚至多级冷凝器降温、除水、除油空气加热器降低湿度空气储罐稳压空气过滤器除菌无菌空气进入发酵罐

●空气过滤除菌包括绝对过滤和深层过滤:1)绝对过滤是介质孔隙小于被拦截的微生物大小,如用聚四氟乙烯或纤维素酯材料制成的微孔滤膜,孔径0.22um。

2)深层过滤是指介质孔隙大于被拦截的微生物大小,但介质有一定的厚度,机理是静电、扩散、惯性及拦截作用。如棉花过滤器、石棉滤板、金属烧结管等。深层过滤效率

是滤层所滤去的微粒与原来微粒的比值,即穿透滤层微粒与原有微粒的比。

● 对数穿透定律:空气通过单位滤层后微粒下降的速度与进入空气微粒的浓度成正比;进入滤层的微粒数与穿透滤层的微粒数之比的对数是滤层厚度的函数。

6、空气的预处理流程:

前置过滤器(可降低过滤器负荷,即多次过滤)---空压机(提供动力,以克服随后各设备的阻力,包括往复式、螺旋杆式、涡轮式)---空气贮罐----冷却器----气液分离器(冷却后的压缩空气,会有来自空压机的润滑油,如果冷却温度低于露点,空气中还会有水,除去空气中的水和油,以保护过滤介质)----冷却器----气液分离器丝----丝网过滤器----加热器----总过滤器----分过滤器

7、空气过滤的机理:1)惯性冲击滞留机理;2)拦截滞留机理;3)布朗扩散作用机理;

4)重力沉降;5)静电吸附

第五章 生物反应动力及过程分析

1、酶:生物酶分为六大类:氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶。

2、代谢产物形成的动力学模型,gaden 根据产物生产速率和细胞生长速率之间的关系,将其分成三种类型:

1)相关模型(伴随生长的产物形成模型):指产物的生成与细胞的生长相关的过程,此时产物通常是基质的分解代谢产物,代谢产物的生成与细胞的生长是同步的。(各高峰几乎同时出现,有平行总量关系,这些发酵的产物有菌体本身)

2)部分相关模型(不完全伴随生长的产物形成模型):反应产物的生成与细胞生长仅有间接关系。在细胞生长期内,基本无产物生成(菌体生长与细胞生成的两个主峰分别出现在两个期,在菌体生长期不合成或很少合成,产物生成期菌体生长率出现微弱回升,有柠檬酸发酵和氨基酸发酵等)

3)非相关模型(不伴随生长的产物形成模型):产物的生成与细胞的生长无直接联系。它的特点是当细胞处于生长阶段时,并无产物积累,而当细胞停止生长后,产物却大量生成。(菌体生长与产物合成形成不相关的两个阶段,第一期长菌,在产物合成期无菌体生长的回升现象,产品有抗生素、维生素、色素等次级代谢产物)

3、Monod 方程:在培养基无抑制剂的情况下,细胞的比生长速率与限制性基质浓度之间的关系 S

K S s +=max μμ

为最大比生长速率(h-1),S 为限制性基质浓度(g /L);Ks 为饱和常数(g/L),其值等于比生长速率为最大比生长速率一半时的限制性基质浓度。 其意义是衡量微生物对基质的亲和力,其越小,微生物对基质的亲和力越大。

会判断

● 几个概念:1、比生产速率μ是菌体繁殖速率与培养基中菌体浓度之比μ=(dx/dt )/x ;单位为1/h ,其中X--菌体浓度单位为g/L 。对数期为常数; 2、基质比消耗速率q s 是指单位时间内单位菌体消耗基质的量(ds/dt )/x ;单位为1/h ,其中S —底物浓度单位为g/L ; 3、产物生产比速率q p 是指单位时间内单位体积发酵液生产产物的量(dp/dt/dv )。 X 为菌体浓度,u 为比生长速率;

4、得率系数:表示消耗单位营养物所生产的细胞或产物数量。其包括生长得率系数和产物得率系数:1)生长得率系数Yx/S 、Yx/O2、Yx/Kcal 分别表示消耗每克营养物、每摩尔氧和每千卡能量所生产的细胞数; 2)产物得率系数Yp/S 、YCO2/S 、YATP/S 、YCO2/O2表示消耗每克营养物(S )或每摩尔氧(O2)生产的产物(P )或ATP 和CO2的克数。

5、分批发酵、补料分批发酵、连续发酵:

1)分批发酵:是一种准封闭式系统,是指一次性投料、接种直到发酵结束,此过程中发酵液始终留在发酵罐内,所有液体的流量为零。

图:

max

说明:1)延迟期:细胞浓度无明显变化;2)对数期:细胞浓度随时间呈指数生长;3)减速期:细胞的生长速率开始减慢;4)静止期:细胞浓度不再增加,为最大值;5)衰亡期:细胞开始死亡,细胞生长速率为负值。

2)补料分批发酵:指在分批发酵过程中补充培养基,而不从发酵体系中排出发酵液,使发酵液体积随着发酵时间逐渐增加。

3)连续发酵:指以一定的速度向发酵罐内添加新鲜培养基,同时以相同速度流出培养液,从而使发酵罐内的液量维持恒定,使微生物细胞能在近似恒定状态下生长的微生物培养方式。稀释速率D:等于培养液在罐中平均停留时间的倒数,在稳定状态下,细胞的比生长速率等于稀释速率。 D=F/V=u

6、单级连续发酵:反应器中的培养基接种后,通常先进行一段时间的分批培养,待细胞浓度达到一定程度后,以恒定的流量F将新鲜培养基送入培养基,同时用泵将反应器中的培养液以同样的流量抽出,于是反应器中的培养液体积V保持不变。

7、多级连续培养:将多个搅拌罐反应器串联起来,前一反应器的出料作为后一反应器的进料,即成为多级连续培养系统。

第六章发酵工业中氧的供需

1、呼吸强度:单位质量干菌体在单位时间内所吸取的氧量,以Qo2表示。

2、摄氧率(好氧速率):指单位体积培养液在单位时间内的耗氧量,以γ表示。

3、氧的传递过程:1)供氧(空气中氧---气膜---气液界面---液膜---液体主流中)

2)耗氧(液体主流---液膜---菌丝丛---细胞膜---细胞内)

4、氧的传递阻力:1)供氧阻力:①氧从气相主体扩散到气—液界面的阻力;②通过气—液界面的阻力;③通过细胞外侧的滞流液膜,达到液相主体的阻力;④液相主体中的传递阻力2)秏氧阻力:⑤通过细胞或细胞团外的滞流液膜,到达细胞团与液体界面的阻力;⑥通过液体与细胞团之间界面的阻力;⑦细胞团在细胞与细胞之间的介质中的扩散阻力;⑧进入细胞的阻力;⑨细胞内反应阻力。

注:供氧方面的主要阻力是气膜和液膜阻力;耗氧方面的阻力主要是细胞团与细胞膜阻力引起!

第七章发酵工程控制

1、发酵工业中溶解氧为什么很容易成为控制因素?

答:溶氧是需氧微生物生长所必须的,对细胞生长和产物合成有较大影响,由于氧在水中的溶解度很低,所以在需氧微生物发酵过程中溶解氧往往最易成限制因素。溶解氧在发酵过程控制中起重要作用:溶解氧判断操作故障或事故引起的异常现象;溶解氧判断中间补料是否恰当;溶解氧判断发酵体系是否污染杂菌;溶氧作为控制代谢方向的指标。

2、最佳pH的选择:选择最适发酵pH的准则是获得最大比生产速率和适当的菌量,一伙的最高产量。一般pH调控有以下几种方法:①配制合适的培养基,调节培养基初始pH 至合适范围并使其也很好的缓冲能力;②培养过程中加入非营养基质的酸碱调节剂,如CaCO3等防止pH过度下降;③培养过程中加入基质性酸碱调节剂,如氨水等;④加生理酸性或碱性盐基质,通过代谢调节pH;⑤将pH控制与代谢调节结合起来,通过补料来控制pH。

3、温度对发酵的影响:在过程优化中应了解温度对生长和生产的影响是不同的,温度对菌的生长和生产的影响的各种因素综合表现的结果。从酶动力学看,温度升高,反应速率加大,生长代谢速度加快,生产期提前,但因酶本身很容易因过热而失去活性,温度越高,酶的失活也越快,表现为菌体易于衰老,发酵周期缩短,影响产物的最终产量。温度除了直接影响过程的各种反应速率外,还通过改变发酵液的物理性质来年影响产物的合成,温度还会影响生物合成的方向,对代谢有调节作用,一般生物的活化能越高,对温度越敏感。

最适温度:是指最适于菌的生长或产物的生成的温度,它是一个相对概念,是在一定发酵条件下测定的结果。不同的菌种、不同培养条件以及不同的生长阶段,最适温度会有所不同。由于最适合菌体生长的温度不一定适合发酵产物的合成,故在实际发酵过程中往往不能在整个发酵周期内仅选一个最适培养温度,而需建立二阶段发酵工艺。

4、泡沫对发酵的影响及控制:一般在含有复合氮源的通气发酵中会产生大量泡沫,引起“逃液”,给发酵带来许多副作用,主要表现在:1)降低了发酵罐的装料系数;2)增加了菌群的非均一性;3)增加了污染杂菌的机会;4)大量气泡,控制不及时,会引起逃液,招致产物的流失;5)消泡剂的加入会影响发酵或给提炼工序带来麻烦。控制泡沫的方法有机械消泡和消泡剂消泡。

5、高密度发酵:指培养液中工程菌的浓度在50g干重/L以上,理论上最高值可达200g干重/L。

6、呼吸商:指生物体在同一时间内,释放二氧化碳与吸收氧气的体积之比或摩尔数之比,即指呼吸作用所释放的CO2和吸收的O2的分子比。

第八章发酵设备

1.通风发酵罐的类型:机械搅拌发酵罐、气升式发酵罐、自吸式发酵罐、伍式发酵罐、文氏管发酵罐

2、搅拌的作用:①液体通风后进入的气泡在搅拌中随着液体旋转使之所走路程延长,使发酵液中保持的空气数量增加,实际上是增加了传质量;②通过搅拌,大气泡被搅拌器打碎,增加比表面积,增加气液接触面积;③搅拌速度越快,搅拌雷诺准数增加,增加了传氧速率。

3、啤酒发酵罐由于操作失误就可能造成罐内真空甚至被吸瘪?

答:因为放料速度和倒灌速度过快,洗涤剂是碱性的,与二氧化碳中和,导致真空。

4、通气式搅拌发酵罐中的平直叶涡轮搅拌器为什么要安一个圆盘呢?

答:因为不安圆盘的话,气泡直接将进入发酵罐中,对发酵不利;安装了圆盘的话,可以将气泡打碎,增加气液接触面积,使全体搅拌更均匀,避免造成浪费。清洗也更方便。

5、挡板的作用:改变液流的方向,由径向流改为轴向流,促使液体激烈翻动,增加溶解氧。消泡器的作用:将泡沫打碎。辐射的作用:使灌顶和罐底轴之间的缝隙加以密封,防止泄漏和污染杂菌。

发酵工程期末考试重点 终极版

●发酵工程:以微生物、动植物细胞为生物作用剂进行工业化生产的工程,包括发酵工艺和发酵设备。 ●主要研究内容:菌种选育与构建、大规模培养基和空气的灭菌、大规模细胞培养过程、细胞生长和产物形成动力学、生物反应器的优化设计和操作、发酵产品的分离纯化过程中的技术问题等。 ●发酵工程原理:指导发酵产品研究与开发,发酵工厂设计与建设以及发酵生产实践的理论。 ●初级代谢:是许多生物都具有的生物化学反应,蛋白质、核酸的合成等,均称为初级代谢。 ●初级代谢产物:指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、多糖等。 ●次级代谢:微生物以初级代谢产物为前提合成的对微生物本身的生命活动没有明确功能的物质的过程。 ●自然选育:不经过人工处理,利用菌种的自然突变而进行菌种筛选的过程。 ●杂交育种:将两个基因型不同的菌株经吻合使遗传物质重新组合,分离和筛选具有新性状的菌株。 ●诱变育种:利用物理、化学等诱变剂处理均匀而分散的微生物细胞群,在促进其突变率显着提高的基础上,采用简便、高效的筛选方法,从中挑选出少数符合目的

的突变株,以供科学实验或生产实践使用。 ●原生质体融合育种:两个亲本的原生质体在高渗条件下混合,由聚乙二醇作为助融剂,使它们互相凝集,发生细胞融合,接着两个亲本基因组由接触到交换,从而实现遗传重组。 ●前体:某些化合物加入发酵培养基中,能直接被微生物在生物合成过程中结合到产物中去,而自身结构并没有明显变化,产物的产量却因前体的加入而有较大的提高。 ●抑制剂:某些化合物可以抑制特定代谢途径的进行,使另一种代谢途径活跃,获得人们所需产物的积累。 如生产甘油加抑制剂亚硫酸钠,它与代谢过程中的乙醛生成加成物。这样使乙醇代谢途径中的乙醛不能成为NADH 2(还原型辅酶I)的受氢体,而使NADH 2在细胞中积累, 从而激活α-磷酸甘油脱氢酶的活性,使磷酸二羟基丙酮取代乙醛作为NADH 2的受氢体而还原为α-磷酸甘油,其水解后即形成甘油。 ●促进剂:指那些既不是营养物质又不是前体,但却能提高产量的添加剂,如加巴比妥盐能使利福霉素单位增加,并能使链霉菌推迟自溶,延长分泌期。 ●灭菌:用化学或物理的方法杀灭或除掉物料及其器皿中所有的生命体。消毒是指杀死病原微生物的过程。 ●分批灭菌:培养基置于发酵罐中加热,达到预定温度后维持一段时间,再冷却到发酵所需温度的灭菌。

《发酵工程原理与技术》课程复习提纲及习题集

《发酵工程原理与技术》课程复习提纲及部分知识点 [复习提纲] 什么是发酵?发酵工程的发展历程? 发酵的定义在合适的条件下利用生物细胞内特定的代谢途径转变外界底物生成人类所需目标产物或菌体的过程 自然发酵时期 1.发酵工程的诞生 2.通气搅拌液体深层发酵的建立 3.大规模连续发酵以及代谢调控发酵技术的建立 4.现代发酵工程时期 发酵工业常用的微生物及其特点。 ①细菌:枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等②放线菌:链霉菌属、小单胞菌属和诺卡均属③酵母菌:啤酒酵母、假丝酵母、类酵母 4.霉菌 菌种的分离及保藏 一稀释涂布和划线分离法二利用平皿中的生化反应进行分离三组织分离法四通过控制营养和培养条件进行分离 一斜面保藏方法二液体石蜡油保藏法三冷冻干燥保藏法四真空干燥法五液氮超低温保藏法六工程菌的保藏 菌种的退化及复壮 菌种退化是指生产菌种或选育过程中筛选出来的较优良菌株,由于进行转移传代或包藏之后,群体中某些生理特征和形态特征逐渐减退或完全丧失的现象退化的原因主要有基因突变连续传代以及不当的培养和保藏条件 菌种的复壮通过人工选择法从中分离筛选出那些具有优良性状的个体使菌种获得纯化服装的方法一纯种分离二淘汰法三宿主体内复壮法 微生物育种的方法有哪些? 自然育种、诱变育种 培养基的主要成分。 水、碳源、氮源、无机盐、生长因子、 碳源及氮源的种类。 碳源种类:1、糖类2、醇类3、有机酸类4、脂肪类5、烃类6、气体 氮源种类:1、无机氮源 2、有机氮源 培养基的设计的基本原则? 一根据生产菌株的营养特性配制培养基二营养成分的配比恰当三渗透压 4ph 值 发酵工业原料的选择原则 一因地制宜就地取材原料产地离工厂要近,便于运输节省费用 二营养物质的组成比较丰富浓度恰当能满足菌种发育和生长繁殖成大量有生理功能菌丝体的需要更重要的是能显示出产物合成的潜力 三原料资源要丰富容易收集

发酵工程复习重点.doc

微生物生物技术重点 第一章 1 发酵的概念 传统概念:指酵母作用于果汁或发芽谷物,进行酒精发酵时产生CO2的现象。 生物学概念:发酵是指微生物在无氧条件下分解代谢有机物质释放能量的过程。(生化)工业生物学家概念:利用微生物在有氧或无氧条件下的生命活动来制备微生物菌体或其代谢产物的过程 现代概念:培养生物细胞(含动植物和微生物)来制取产物的所有过程 2 生物工程(Microbial engineering )是利用微生物的特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系;是将传统发酵与现代DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的现代发酵技术。 发酵工程的发展简史 1、传统的发酵时期——天然发几千年 酒(古埃及龙山文化)啤酒、黄酒、酱油、泡菜等 特点 多数产品为嫌气性发酵 非纯种培养 单凭经验传授技术,使产品质量不稳定 (不了解微生物与发酵的关系) 2、近代发酵工程时期——纯培养技术 1665 英国物理学家Robert Hooke(罗伯特·胡克)细胞壁 1680 荷兰列文·虎克(Antonie vanLeeuwenhoek) 活细胞人类认识到微生物的存在 特点 多数产品为嫌气性发酵 非纯种培养 单凭经验传授技术,使产品质量不稳定 (不了解微生物与发酵的关系) 由天然发酵阶段转向纯培养发酵(第一次转折 过程特点 产品的生产过程较为简单,对生产要求不高,规模不大 3、近代发酵工程时期——深层培养技术 出现于20世纪40年代,以抗生素的生产为标志青霉素的发现与大量需求 表面培养法(surface culture) 效价40U/mL,纯度20%,收率30% 二战期间,青霉素发酵生产成功 青霉素发酵生产的成功,给发酵工业带来两大功绩: 开拓了以青霉素为先锋的庞大抗生素发酵工业 建立深层培养法(submerged fermentation),把通气搅拌技术引入发酵工业。它使得需氧菌的发酵生产从此走上了大规模工业化生产途径。通气搅拌液体深层发酵技术是现代发酵工业最主要的生产方式 机械搅拌通气发酵技术的建立是第二次转折 4、近代发酵工程时期——代谢控制发酵技术 定义:以动态生物化学和微生物遗传学为基础,将微生物进行人工诱变,得到适合于生产某种产品的突变株,再在人工控制的条件下培养,即能选择性地大量生产人们所需要的物

发酵工程完整版考试复习资料

一、名词解释 1传统发酵工程:通过微生物生长的繁殖和代谢活动,产 的生物反应过程。 将DNA重组细胞融合技术、酶工程技 综合对 发酵过程控制、优化及放大 指迄今所采用的微生物培养分离及培养 微生物。(特别是极端微生物) 4富集培养主要方法:是利用不同种类的微生物其生长繁 求不同,如温度、PH、培养基C/N 等,是目的微生物在最适条件下迅速生长繁殖,数量增加, 成为人工环境下 的优势种。方法:⑴控制培养基的营养成 消毒仅仅是杀死生物体或非生物体表 死营养细胞,而不能杀死细菌芽孢和 真菌孢子等,特别适合与发酵车间的环境和发酵设备、器 具的灭菌处理。灭菌杀灭所 有的生命体,因此灭菌特别适 的灭菌处理。 法及其区别:湿热灭菌法:指将物品置 高压饱和蒸汽、过热水喷淋等手段使微生 物菌体中的蛋白质、核酸发生变性而杀灭微生物的方法。 该法灭菌能力强,为热力灭菌中最有效、应用最广泛的灭 菌方法。药品、容器、培养基、无菌衣、胶塞以及其他遇 高温和潮湿不发生变化或损坏的物品,均可采用本法灭 菌。干热灭菌法:指将物品置于干热灭菌柜、隧道灭菌器 等设备中,利用干热空气达到杀灭微生物或消除热原物质 的方法。适用于耐高温但不宜用湿热灭菌法灭菌的物品灭 菌,如玻璃器具、金 属制容器、纤维制品、固体试药、液 用本法灭菌。 即在规定温度下杀死一定比例的微生物所用 8致死温度:杀死微生物的极限温 在致死 微生物所需要对 的致死时间。 制好的培养基放入发酵罐或其他装置中, 基和所用设备一起(实罐灭菌)进 行灭菌 10连续灭菌:将配制好的培养基向发酵罐等培养装置输 热、保温盒冷却等灭菌操作过程。 是指将 冷冻干燥管,沙土管中处于休眠 状 入试管斜面活化后,再经过摇瓶及种子罐 逐级扩大培养而和质量的纯种的过程 纯培养物称为种是指种子的 龄:是指种子始移入下一级 的培养是指移入的种子液体积和 影响呼吸所能允许的最低溶氧浓 13稀释度D:单位时间内连续连续流入发酵罐中的新鲜 的培养总体积的比值。 把导致菌体开始从系统中洗出时的稀 发酵过程中,引起温度变化的原因是由 于 生的净物在生长 繁殖过程中,本身产生的耗氧培养 的 发酵罐都有一定功率的做机械 运动,造成液体之间、液体与设备之间的摩擦,由此产生 。 依靠无菌压缩空气作为液体的提升力, 翻动实现混合和传质传热过程。其 特点是结构简单,无轴封,不易污染,氧传质效率高,能 耗低,安装维修方便。缺点:不适合高粘度或含大量固体 感菌体的生产。 培养基中某些成分的加入有助于 生长因子、前体。产物抑制和促进剂。 微生物生长不可缺少的微量的有机物质,不是 必需。 18前体:指加入到发酵培养基中能直接被微生物在生 物 到产物分子中去,其自身的结构并没有多 大变化,但是产物的产量却因其加入而有较大提高的一类 那些细胞生长非必需的,但加入 量的一些物质,常以添加剂的形式 20 分批发酵(序批式发酵):指一次性投料、接种直到发 留在发酵罐内。 在发酵过程中,连续向发酵罐流加培养基, 培养液。 搅拌器输入搅拌液体的功率,具 用以客服介质阻力所需用的功 率。 23供氧:指空气中的氧气从空气泡里通过气膜、气液 界 液体主指氧气从液体主流通 内。 生产菌种或选育过程中筛选出来的优良 传代和保藏之后,群体中某些生理特 征和形态特征逐渐减退或完全丧失的 现象。 25氨基酸发酵:指合成菌体蛋白质的氨基酸脱离其正 常 是对产品 使污染物 产生量、流失量和治理量达到最小,使资源充分利用。② 末端治理:把环境责任放在保护研究、管理等人员身上, 产生的污染物的 处理上,总是处于一种被动的、消极的地位。③因为工业 生产无法完全避免污染的产生,推行清洁生产的同时还需 要末端治理。 二、选择填空 1染菌概率:在实际生产过程中,要实现每批次发酵都 完 染几乎是不可能的,一般采用“染菌概率” 一般 为10-3 ①细菌②放线菌③酵母菌④霉菌⑤未培养 采集样品→样品预处理→目的菌富 酵性能鉴定→菌 种保藏 层的微生物数量最多,秋季采土样 物理方法、化学方法、诱饵法。 因突变;直接原因:连续 传 菌种保藏方法:①斜面低温保藏法②砂土管保藏法 ③冷 液保藏法⑥液体 石蜡保藏据微生物生理、生化特点,人为地 于不活泼、生长繁殖受抑制的 持菌种存活率②减少变异③保 持 优良性状 7液氮超低温保藏法:原理:在超低温(-130℃)状态下 延续,且不发生 加保护剂(甘油等)制成菌悬液封于安瓿管内 温速度的冻结后,贮藏在-150~-190℃液氮冰箱内;特 点:适合各类微生物①适合各类微生物②保存时间长③需 特殊设备④操作较复杂 8培养基成分: ①碳源(糖类,导致PH下降;油和脂肪, ,导致PH上升)②氮源(有机、无 量元素④水⑤生长调节物质。 ⑴一般首先是通过单因子实验确定培养基成 因子实验确定培养基个组分及其适宜的浓 度;⑵响应面分析法对培养基进行优化①最陡爬坡实验 10检测染菌方法:镜检查法 ②平板划线培养检 法④发酵过程异常现象观察法(溶 CO 2、粘度)。 种子带菌②过滤空气带菌③设备的 培养基霉菌不彻底⑤操作不当⑥噬 干热灭菌法,湿热灭菌法,射线灭菌法, 除菌法,火焰灭菌法 13空气除菌方法:辐射杀菌,加热杀菌,静电除菌,过 乙醇发酵;部分相关型,中间 复杂发酵类型:抗生 15DO值只是发酵与 配合起OUR: CER:CO2 的 产品的质量和经济效 式、固定化、 指在一定的搅拌转速下,在搅拌罐中增 加而漩涡基本消 18发酵罐构件:搅拌器,挡板,空气分布器,换热装置。 罐的基本体积上升,单位发酵液 清洁生产过程,清洁产品和 理,改进生产工艺,废 20工艺技术改革方式:改变原料,改进生产设备,改革 经济效益,环境效益,社会效 ,反应过程,后 23总成本费用=成本+销售费用+管理费用+财务费用 ①气泡与包围着气泡的液体之 间 体分子处于层流状态,氧气以 浓度差方式透过双膜,任何一点的氧浓度 氧分压相等;② 在双膜之间的界面上,氧分压与溶于液体中的氧浓度处于 平衡状态;③氧传递过程处于稳定状态时,传递途径上各 间而变化。 为了提高分离效率,通常富集培养课增加 数量。 是为了获得大量的活力强的种子,以便 中尽可能的缩短延迟期,种子最好 是在对数生长期接种。 27. S0 为底物初始St为发酵时间为t时底物的 残留 小。 、传热及混合效 30发酵罐放大极限为100级 成本的20% ~30% 32酒精发酵原料:淀粉质原料、糖质原料、纤维质原料。 三、简答 1影响微生物耗氧因素:①微生物本身遗传特征的影响 菌龄④发酵条件⑤代谢类 影响③碳氮比对菌体代谢调节的重要性④ PH对不同 3发酵工艺过程:①用作种子扩大培养及发酵生产的各 种 基、发酵罐及其附属设备的灭菌; ③扩大培养有活性的适量纯种,以一定比例形成大量的代 谢产物;④控制最适的发酵条件使微生物生长并形成大量 的代谢产物;⑤将产物提取并精制,以得到合格的产品; 酵过程中所产生的三废物质。(P8图) ①能在廉价原料制成的培养基上生长,且 生 量高、易于回收;②生长较快,发酵周期 短;③培养条件易于控制;④抗噬菌体及杂菌污染的能力 强;⑤菌种不易变异退化,以保证发酵生产和产品质量的 稳定;⑥对放大设备的适应性强;⑦菌种不是病原菌,不 性物质和毒素。 必须提供合成微生物细胞和发酵产 少培养基原料的单耗,即提高 单位营养物质的转化率。③有利于提高产物的浓度, 以提 高单位容积发酵罐的生产能力。④有利于提高产物的合成 速度,缩短发酵周期。⑤尽量减少副产物的形成,便于产 物的分离纯化,并尽可能减少“三废”物质。⑥原料价格 低廉,质量稳定,取材容易。⑦所用原料尽可能减少对发 酵过程中通气搅拌的影响,利于提高氧的利用率,降低能 ①原材料质量:生产过程中经常 其主要原因在于原材料质量 波动;②培养温度:温度对多数微生物的斜面孢子质量有 显著影响;③湿度:斜面孢子培养基的湿度对孢子的数量 和质量都有较大影响。湿度低,孢子生长快;湿度高,孢 子生长慢;④通气与搅拌:在种子罐中培养的种子除保证 供给易于利用的营养物质外,应有足够的通气量,以保证 菌种代谢的正常,提高种子的质量;⑤斜面冷藏时间:斜 面冷藏时间对孢子的生产能力有较大影响,通常冷藏时间 越长,生产能 力降低越多;⑥培养基:一般来说,种子罐 是培养菌体的,培养基的糖分要少而对微生物生长起主导 作用的氮源要多,而且其中无机氮源所占比例要大些;⑦ pH:各种微生物都有自己生长和合成酶的最适pH,为了 达到微生物的打了繁殖和酶合成的目的,培养基必须要保 ①能在廉价原料制成的培养基上生长,且 生 量高、易于回收;②生长较快,发酵周期 短;③培养条件易于控制;④抗噬菌体及杂菌污染的能力 强;⑤菌种不易变异退化,以保证发酵生产和产品质量的 稳定;⑥对放大设备的适应性强;⑦菌种不是病原菌,不 性物质和毒素。 ①分批作业操作简单,周期短,染菌 程产品质量易控制;②不利于测定其 过程动力学,存在底物限制或抑制问题,出现底物分解阻 遏效应以及二次生长现象;③对底物类型及初始浓度敏感 的次级代谢产物如一些抗生素等就不适合采用分批发酵; ④营养层分很快耗竭,无法维持微生物继续生长和生产; ①添加新鲜培养基,克服养分不足所 延长对数期生长期,增加生物量 等;②长时间发酵,菌种易变异,易染菌;③操作不当, 新加入的培养基与原有培养基不易完 全混合。 10补料分批发酵优缺点:①可以解除底物的抑制,产 物 应;③避免在分批发酵中因 一次性投糖过多造成细胞大量生长,耗氧量过多,以致通 风搅拌设备不能匹配的状况;③菌体可被控制在一 续的过度态阶段,可用来作为控制细胞质量的手段 ①无菌要求低;②菌体变异 11分批补料发酵的应用:①消除分解阻遏作用,保障通 浓度培养基的抑制作用并延 配置合适的培养基,调节培养基初始 使其具有很好的缓冲能力;②培养过程 中加入非营养物质的酸碱调节剂;③培养过程中加入基质 性酸碱调节剂;④加入生理酸性或碱性盐基质;⑤将pH 控制与代谢结合起来,通过补料来控制pH。 13搅拌式、气升式结构特征及其应用:①搅拌式: 带有 机 械搅拌的作用是使发酵液充分混合,保持液体中的固性物 料呈悬浮状态,并能打破空气气泡以提高气液间的传氧速 率。较适合对剪切力生长,不适于高粘度或 含大量固体的培依靠无菌压缩空气作为 液体的提升力,下翻动实现混合和传 质传热过程,特点是结构简单、无轴封、不易污染、氧传 质效率高、能耗低、安装维修方便。 14清洁生产与末端治理 的比较:①清洁生产:是对产品 使污染物 量和治理量达到最小,使资源充分利用。② 把环境责任放在保护研究、管理等人员身上, 产生的污染物的 处理上,总是处于一种被动的、消极的地位。③因为工业 生产无法完全避免污染的产生,推行清洁生产的同时还需 15味精清洁生产工艺优点:①取消离子交换工艺,减少 温结晶,节约大量冷冻 耗电;③因为采用闭路循环工艺,除了副产品中夹带少量 目标产物外,没有其他损失,故产品得率高;④实现物料 主体闭路循环,达到经济、环境和社会效应的三统一;⑤ 冷凝水可循环作为工艺用水,实现废水零排放。

发酵工程期末复习题

发酵工程复习题库 一、填空题(常为括号后2-4字) 1. 淀粉水解糖的制备可分为( )酸解法、( )酶解法和酸酶结合法 三种。 2. 糖酵解途径中的三个重要的关键酶是( )己糖激酶、磷酸丙糖激酶、( )丙 酮酸激酶。 3. 甘油的生物合成机制包括在酵母发酵醪中加入( )亚硫酸氢钠 与乙醛起加成反应 和在( )碱性 条件下乙醛起歧化反应。 4. 微生物的吸氧量常用呼吸强度;耗氧速率两种方法来表示,二者的关系是 ( ) 。 5. 发酵热包括( )生物热;搅拌热;蒸发热和( )辐射热等几种热。 6. 发酵过程中调节pH 值的方法主要有添加( )碳酸钙法;氨水流加法和尿素流加 法。 7. 微生物工业上消除泡沫常用的方法有( )化学消泡和( )机械消泡两种。。 8. 一条典型的微生物群体生长曲线可分为( )迟滞期、对数期;( )稳定期; 衰亡期四个生长时期。 9. 常用菌种保藏方法有( )斜面保藏法、( )沙土管保藏法、液体石蜡保藏法; 真空冷冻保藏法等。 10. 培养基应具备微生物生长所需要的五大营养要素是( )碳源、氮源;( )无 机盐;( )生长因子和水。 11. 提高细胞膜的( )谷氨酸通透性,必须从控制磷脂的合成着手或者使细胞膜受损 伤。 12. 根据微生物与氧的关系,发酵可分为( )有(需)氧发酵;( )厌氧发酵两 大类。 13. 工业微生物育种的基本方法包括( )自然选育、诱变育种; 代谢控制育种;( ) 基因重组和定向育种 等。 14. 肠膜明串珠菌进行异型乳酸发酵时,产物为( )乳酸;( )乙醇;CO2。 15. ( )诱导酶指存在底物时才能产生的酶,它是转录水平上调节( )酶浓度的 一种方式。 16. 发酵工业的发展经历了( )自然发酵,纯培养技术的建立,( )通气搅拌的 好气性发酵技术的建立,人工诱变育种( )代谢控制发酵技术的建立,开拓新型 发酵原料时期,与( )基因操作技术相结合的现代发酵工程技术 等六个阶段。 17. 去除代谢终产物主要是通过改变细胞的膜的( )通透性来实现。 18. 获得纯培养的方法有( )稀释法,( )划线法,单细胞挑选法,利用选择培 养基分离法等方法。 19. 生长因子主要包括( )维生素,( )氨基酸,( )碱基,它们对微生物 所起的作用是供给微生物自身不能合成但又是其生长必需的有机物质。 20. 微生物生长和培养方式,可以分为( )分批培养,( )连续培养,补料分批 培养三种类型。 21. 影响种子质量的主要因素包括培养基,( )种龄与( )接种量,温度,pH 值, 通气和搅拌,泡沫,染菌的控制和( )种子罐级数的确定。 22. 空气除菌的方法有加热杀菌法,静电除菌法,( )介质过滤除菌法。 23. 发酵产物的浓缩和纯化过程一般包括发酵液( )预处理,提取,精制。 24. 菌种扩大培养的目的是为每次发酵罐的投料提供( )数量相当的( )代谢旺 盛的种子。 25. 在微生物研究和生长实践中,选用和设计培养基的最基本要求是( ) 目的明确, ( )营养协调,物理化学条件适宜和( )价廉易得。 26. 液体培养基中加入CaCO3的目的通常是为了调节( )pH 值。 27. 实验室常用的有机氮源有( )牛肉膏,蛋白胨等,无机氮源有 硫酸铵,硝酸钠, 等。为节约成本,工厂中常用尿素、( )液氨等作为氮源。 () X c Q r O ?=2

发酵工程复习资料

第一章,绪论 一、填空: 微生物工程可分为发酵和提纯两部分,其中以发酵为主。 化学工程与发酵工程的本质区别在于化学工程利用非生物催化剂,发酵工程利用生物催化剂---酶。 二、判断: 发酵产品是经微生物厌氧生物氧化过程获得的。错 三、课后思考题: 1、发酵的定义:利用微生物的新陈代谢作用,把底物(有机物)转化成中间产物,从而获得某种工业产品。(工业上定义、广义、有氧无氧均可) 2、发酵流程: 3、比拟放大的基本过程:斜面菌种-摇瓶试验(培养基、温度、起始pH值、需氧量、发酵时间)-小型发酵罐-中试-大规模工业生产 4、发酵工程的发展经历了哪几个阶段? 1.)自然发酵时期 2)纯培养技术建立(第一个转折期) 3)通气搅拌的好气性发酵工程技术建立(第二个转折期) 4)人工诱变育种与代谢控制发酵工程技术建立(第三个转折期) 5)发酵动力学、连续化、自动化工程技术的建立(第四个转折期) 6)生物合成和化学合成相结合工程技术建立(第五个转折期) 5、微生物工业发展趋势 1)、几个转变 分解代谢→合成代谢 自然发酵→人工控制的突变型发酵→代谢控制发酵→通过遗传因子的人工支配建立的发酵(如工程菌) 2)、化学合成与生物合成相结合 3)、大型、连续化、自动化发酵 发酵罐的容量可达500t,常用的也达20-30t。 4)、人工诱变育种和代谢控制发酵

微生物潜力进一步挖掘,新菌株、新产品层出不穷。 5)、原料范围不断扩大 石油、植物淀粉、天然气、空气、纤维素、木质素等 6、举例说明微生物工业的范围 酿酒工业(啤酒、葡萄酒、白酒) 食品工业(酱、酱油、食醋、腐乳、面包、酸乳) 有机溶剂发酵工业(酒精、丙酮、丁醇) 抗生素发酵工业(青霉素、链霉素、土霉素等) 有机酸发酵工业(柠檬酸、葡萄糖酸等) 酶制剂发酵工业(淀粉酶、蛋白酶等) 氨基酸发酵工业(谷氨酸、赖氨酸等) 核苷酸类物质发酵工业(肌苷酸、肌苷等) 维生素发酵工业(维生素B12、维生素B2等) 生理活性物质发酵工业(激素、赤霉素等) 名贵医药产品发酵工业(干扰素、白介素等) 微生物菌体蛋白发酵工业(酵母、单细胞蛋白) 微生物环境净化工业(利用微生物处理废水等) 生物能工业(沼气、纤维素等天然原料发酵生产酒精、乙烯等能源物质) 微生物治金工业(微生物探矿、治金、石油脱硫等) 第二章发酵基础知识 1、写出生产以下产品的主要菌种: 啤酒(啤酒酵母)、黄酒(霉菌(根霉、曲霉)、酵母菌、细菌)、味精(谷氨酸棒杆菌、黄色短杆菌)、柠檬酸(黑曲霉)、食醋(霉菌、酵母菌、醋酸菌)、酸奶(乳酸菌(保加利亚乳杆菌、嗜热链球菌、乳酸链球菌)) 2、发酵工艺控制中,主要应监控温度、pH值、溶解氧、 泡沫、氧化还原电位等。 3、概念:单菌发酵: 现代发酵工业中最常见,传统发酵工业中很难实现。 混合菌发酵: 自然发酵和人工接种发酵 液态发酵: 发酵基质呈流动状态,如啤酒发酵、柠檬酸发酵等。 固态发酵: 发酵基质呈不流动状态。如固态酱油发酵、米醋发酵、大曲酒(白酒)发酵等。半固态发酵: 发酵基质呈半流动状态,如黄酒发酵、传统稀醪酱油发酵等。 4、发酵产品主要类型 微生物菌体、代谢产物、酶 5、如何理解:传统工艺,原料决定菌种;现代工艺,菌种决定原料? 传统工艺,原料决定菌种:传统工艺中,发酵原料是一种选择培养基。 传统工艺就是利用这种选择作用,把自然界带入的各种野生菌,在发酵基质上进行选择富集培养,这些微生物生长和代谢的结果可生产出有特殊风味的食品。 现代工艺,菌种决定原料:在使用纯种发酵剂前,我们必须对原料进行灭菌,以防止其他杂菌对发酵的干扰。 6、发酵产品主要有哪些附加值 1)发酵有利于食品保藏食品发酵后,改变了食品的渗透压、酸度、水的活性等,从而抑制了腐败微生物的生长,有利于食品保藏。 2)发酵产品有保健作用有些食品经过微生物发酵后,不仅能产生酸类和醇类等,还能产生某些抗菌素可抑制致病菌和肠内腐败菌。

发酵工程期末考试复习整理

一.名词解释 1.前体:某些化合物被加入培养基后,能够直接在生物合成过程中结合到产物分子中去,而自身的结构并未发生太大变化,却能提高产物的产量,这类小分子物质被称为前体。如在青霉素的发酵生产中,苯乙胺及其衍生物和一些脂肪酸的前体可以被优先结合到青霉素分子中去,它们是青霉素分子的组成部分。并且加入的这类分子不同,除可以提高产量外,还可以形成不同的青霉素。 2.聚合度:衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以n表示;以结构单元数为基准,即聚合物大分子链上所含单个结构单元数目。由于高聚物大多是不同分子量的同系物的混合物,所以高聚物的聚合度是指其平均聚合度。 3.增效反馈调节:又称合作反馈抑制,在分支代谢途径中,当两个分支的末端产物同时存在时,反馈抑制明显强于只有一种末端产物存在时的作用。也就是1+1>2的效果。 4.共同中间体:是指既是生产初级代谢产物的中间体也是生产次级代谢产物的中间体。 5.分批发酵:又称分批培养,即在一个密闭系统内一次性投入有限数量的营养物进行培养的方法。在以后微生物的整个生长繁殖过程中,除加氧气、消泡剂及控制pH值外,不再加入任何其他物质,因此这是一种非恒态的培养方法。 6.倒种法:种子罐数量较少,当菌种不够对多个发酵罐接种使用时,一个发酵罐加入全部菌种培养后,一罐分两罐,再补加培养基进行发酵。 7.临界氧浓度:是指不影响微生物呼吸的最低溶氧浓度,和菌种的种类、大小、生长状态等有关。 8.半合成抗生素:一部是微生物合成,另一部分是用化学方法或生物方法进行修饰而成的衍生物。 9.化学耗氧量:又称化学需氧量,简称COD。是指在一定条件下,水体中存在的能被一定的氧化剂(如高锰酸钾和重铬酸钾)所氧化还原性物质的量,通常用mg/L来表示。COD是表示水体有机污染的一项重要指标,能够反应水体的污染程度。化学耗氧量越大,说明水体受有机物的污染越严重。 10.抗生素的效价单位:指每毫升或每毫克中所含某种抗生素的有效成分的多少,其有三种表示方法:一是稀释单位,是将抗生素配成溶液,逐步进行稀释,以抑制某一标准菌株生长发育的最高稀释度(即最小剂量)作为效价单位;二是重量单位,是以抗生素的有效成分(即生理活性部分)的重量作为抗生素的效价单位,即1微克作为一个效价单位;三是特殊单位,某些抗生如青霉素G钠盐1毫克定为1667单位,另外,为了生产科研的方便而规定的,链霉素、土霉素等其效价基准都是以1毫克作1000单位计算。 11.抗菌谱:是指某种抗生素所能抑制或杀灭病原体的范围及其所需要的剂量称之为该种抗生素的抗菌谱。 12.发酵热:引起发酵过程中温度变化的原因是在发酵过程中所产生的热量,叫做发酵热。发酵热=生物热+搅拌热-蒸发热-显热-辐射热 13.生物热:是指微生物在生长繁殖过程中本身所产生的大量的热,主要来源是培养基中的碳水化合物、脂肪和蛋白质被微生物分解成二氧化碳、水和其他物质时释放出来的。

最新发酵工程复习资料重点

发酵工程复习资料重 点

发酵工程(Fermentation Engineering)的定义 应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会服务的一门科学。 淀粉质原料进行蒸煮的目的是使植物组织和细胞膜彻底破裂,淀粉成为溶解状态进行液化;同时对进料进行灭菌;排除原料中的一些不良成分及气味。 为了实现这些目的,蒸煮设备必须达到下列要求: (1)能使淀粉细胞完全破裂,淀粉溶解成均匀的糊状物; (2)尽量减少淀粉和糖分的损耗,避免产生其它不必要的有害的化学变 化; (3)节省蒸汽,减少热损失; (4)设备能承受较高的压力,具有耐磨性,能使物料在锅内充分翻动,受 热均匀; (5)结构简单,操作方便,投资少。 连续蒸煮有低温长时间的罐式连续蒸煮,中温的柱式连续蒸煮和高温短时间的管式连续蒸煮 后熟器 在连续蒸煮中,后熟器是利用经加热器或蒸煮锅(罐)加热后的料液余热,在一定压力和温度下维持一定时间的继续蒸煮,因此,后熟器又称维持器。对后熟器的要求是,料液在后熟器中的整个截面上均匀地由下向上推动,力求做到先进先出。

真空冷却指的是醪液在一定的真空度下(即醪液进入负压状态)醪液本身产生大量蒸气(二次蒸气),并被抽出,这样便消耗了醪液大量的热量,因而醪液很快冷到与真空度相应的温度,这种醪液冷却法就称为真空冷却 糖化设备主要是糖化罐,其容积按1m3的糖化醪需要的1.3m3容积来计算。其旋转方向与冷却水在蛇管中水流的方向相反 ?连续糖化罐的作用是连续地把糊化醪与水稀释,并与液体曲或麸曲乳混 合,在一定温度下维持一定时间,保持流动状态,以利于酶的活动。二级真空冷却的连续糖化法。对蒸煮醪的前冷却和后冷却均采用真空冷却的糖化工艺,叫二级真空冷却糖化法 发酵罐的定义:是为一个特定生物化学过程的操作提供良好而满意的环境的容器。 ?1.按微生物生长代谢需要分类: ?好气:抗生素、酶制剂、酵母、氨基酸,维生素等产品是在好气发酵罐 中进行的;需要强烈的通风搅拌,目的是提高氧在发酵液中的传质系 数; ?厌气:丙酮丁醇、酒精、啤酒、乳酸等采用厌气发酵罐。不需要通气。 ? 2. 按照发酵罐设备特点分类: ?机械搅拌通风发酵罐:包括循环式,如伍式发酵罐,文氏管发酵罐,以 及非循环式的通风式发酵罐和自吸式发酵罐等。

发酵工程考试整理

1发酵:把利用微生物在有氧或无氧条件下的生命活动来制备微生物菌体或其代谢产物的过程统称为发酵。 2发酵工程:应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学 酶活性调节:是指一定数量的酶,通过其分子构象或分子结构的改变来调节其催化反应的速率。3为什么要采用高浓度微生物的培养?微生物液体发酵大都采用分批培养,这 种培养方式的缺点 是:发酵液中最终细 胞浓度不高。如果通 过改进工艺技术,使 发酵液中微生物细 胞增殖到很高的浓 度,那么,高浓度的 细胞将会产生高浓 度的发酵产物,这样 就可以大大提高发 酵设备的利用率,降 低生产成本。基于这 种目的,人们开始研 究微生物高细胞浓 度的培养技术。采用 高细胞浓度培养技 术,发酵液中菌体浓 度比分批式培养可 高10倍以上 高浓度细胞培养的 方法:1流加培养2 高细胞浓度连续培 养3菌体循环利用等 4四大工程:发酵工 程 ( Fermentation )2 酶工程 (蛋白质工 程) 3基因工程 4细 胞工程 5菌种:用于发酵过 程作为活细胞催化 剂的微生物,包括细 菌、放线菌、酵母菌 和霉菌四大类。 6具有生产价值的发 酵类型有五种:①微 生物菌体发酵;②微 生物酶发酵;③微生 物代谢产物发酵;④ 微生物的转化发酵; ⑤生物工程细胞的 发酵 7初级代谢产物:在

菌体对数生长期所产生的产物,是菌体生长繁殖所必需的。8液体深层发酵优点:①液体悬浮状态是很多微生物的最适生长环境。②在液体中,菌体及营养物、产物(包括热量)易于扩散,使发酵可在均质或拟均质条件下进行,便于控制,易于扩大生产规模。③液体输送方便,易于机械化操作。④厂房面积小、生产效率高,易进行自动化控制,产品质量稳定。⑤产品易于提取、精制等。因而液体深层发酵在发酵工业中被广泛应用。 9自然选育在生产过 程中,不经过人工处 理,利用菌种的自发 突变而进行菌种筛 选的过程 10诱变育种:就是人 为地利用物理或化 学等因素,使诱变对 象细胞内的遗传物 质发生变化,引起突 变,并通过筛选获得 符合要求的变异菌 株的一种育种方法。 11表型迟延现象:突 变基因的出现并不 等于突变表型的出 现,表性的改变落后 于基因型改变的现 象成为表型延迟现 象。 12原料:从工艺角度 来看,凡是能被生物 细胞利用并转化成 所需的代谢产物或 菌体的物料,都可作 为发酵工业生产的 原料。 13培养基灭菌的定 义:是指从培养基中 杀灭有生活能力的 细菌营养体及其孢 子,或从中将其除 去。工业规模的液体 培养基灭菌,杀灭杂 菌比除去杂菌更为 常用。 14灭菌与消毒的区 别:灭菌:用物理或 化学方法杀死或除 去环境中所有微生 物,包括营养细胞、 细菌芽孢和孢子。 消毒:用物理或化学

微生物工程期末考试试题

一、选择题(多项或单项) 1.发酵工程得前提条件就是指具有( A )与( E C)条件 A、具有合适得生产菌种 B、具备控制微生物生长代谢得工艺 C.菌种筛选技术D、产物分离工艺E.发酵设备 2.在好氧发酵过程中,影响供氧传递得主要阻力就是( C ) A.氧膜阻力 B.气液界面阻力 C.液膜阻力 D.液流阻力 3.微生物发酵工程发酵产物得类型主要包括: ( ABC ) A、产物就是微生物菌体本身 B、产品就是微生物初级代谢产物 C、产品就是微生物次级代谢产物 D、产品就是微生物代谢得转化产物 E、产品就是微生物产生得色素 4.引起发酵液中pH下降得因素有:( BCDE ) A、碳源不足 B、碳、氮比例不当 C、消泡剂加得过多 D、生理酸 性物质得存在E、碳源较多 5.发酵培养基中营养基质无机盐与微量元素得主要作用包括: (ABCD ) A、构成菌体原生质得成分 B、作为酶得组分或维持酶活性 C、调节细胞渗透压 D、缓冲pH值 E、参与产物得生物合成6.在冷冻真空干燥保藏技术中,加入5%二甲亚砜与10%甘油得作用就是(B ) A 营养物 B 保护剂 C 隔绝空气 D 干燥 7.发酵就是利用微生物生产有用代谢产物得一种生产方式,通常说得乳酸发酵属于( A ) A、厌氧发酵B.氨基酸发酵C.液体发酵D.需氧发酵 8.通过影响微生物膜得稳定性,从而影响营养物质吸收得因素就是( B ) A、温度 B、pH C、氧含量D.前三者得共同作用 9.在发酵工艺控制中,主要就是控制反映发酵过程中代谢变化得工艺控制参数,其中物理参数包括:( ABCD ) A、温度 B、罐压 C、搅拌转速与搅拌功率 D、空气流量 E、菌体接种量10.发酵过程中较常测定得参数有:( AD ) A、温度 B、罐压 C、空气流量 D、pH E、溶氧 二、填空题

发酵工程原理期末复习

发酵工程原理期末复习 一 1、微生物的无氧呼吸称发酵 2、现代发酵工程:是将现代DNA重组及细胞融合技术、酶工程技术、组学及代谢网络调控技术、过程工程优化技术等新技术与传统发酵工程融合,大大提高传统发酵技术水平,拓展传统发酵应用领域和产品范围的一种现代工业生物技术体系。强调现代生物技术、控制技术和装备技术在发酵工业领域的集成应用。 3、发酵工程在生物技术中的地位:发酵工程是生物技术的基础,是生物技术产业的核心。 4、广义发酵工程对生物学和工程学的要求: 上游技术:优良种株的选育和保藏(包括菌种筛选、改造,菌种代谢路径改造等), 中游技术:发酵过程控制,主要包括发酵条件的调控,无菌环境的控制,过程分 析和控制等 下游技术: 分离和纯化产品。包括固液分离技术、细胞破壁技术、产物纯化 技术,以及产品检验和包装技术等 5、日常发酵产品:酒、酒精、醋、啤酒、干酪、酸乳等 6、以高产量、高转化率和高效率及低成本为目标的发酵过程优化技术: 高产量:微生物生理、遗传、营养及环境因素 高转化率:微生物代谢途径和过程条件 高效率:微生物反应动力学和系统优化 低成本:技术综合及产业化技术集成 7.发酵工程技术:分子层次,生物催化→催化剂发现/改造 细胞层次,细胞工厂→代谢工程 过程层次,过程优化→单元放大/耦合/集成/优化 8.发酵工业的范围:①微生物菌体 ②酶制剂 ③代谢产物 ④生物转化 ⑤微生物特殊机能的利用 利用微生物消除环境污染 利用微生物发酵保持生态平衡 微生物湿法冶金 利用基因工程菌株开拓发酵工程新领域 9、新的菌体发酵产品: 茯苓菌→茯苓 担子真菌→灵芝、香菇类 虫草头孢菌 密环菌 二、1.发酵工业对菌种的要求:1)能在价廉原料制备的培养基上迅速生长并生成所需代谢产物,且产量高2).培养条件易于控制, 3)生长迅速,发酵周期短, 4)满足代谢控制的要求 5)抗噬菌体和杂菌的能力强 6)遗传性状稳定,菌种不易变异退化 7)在发酵过程中产生的泡沫少,这对装料系数,提高单罐产量,降低成本有重要意义

发酵工程知识点

第一章发酵工程概述 一、发酵工程:是利用微生物特定的形状和功能,通过现代化工程技术生产有用物质或直接应用与工业化生产的技术体系,是将传统发酵与现代的DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的发酵技术。 二、发酵工程简史: 1590 荷兰人詹生制作了显微镜 1665 英国人胡克制作的显微镜观察到了霉菌近代发酵工程建立初期 1864 巴斯德灭菌法 1856 psateur 酵母导致酒精发酵 19世纪末 Koch 纯种分离和培养技术 三、发酵工程技术的特点 (1)主体微生物的特点 ①微生物种类繁多,繁殖速度快、代谢能力强,容易通过人工诱变获得有益的突变株; ②微生物酶的种类很多,能催化各种生化反应 ③微生物能够利用有机物、无机物等各种营养源 ④可以用简易的设备来生产多种多样的产品 ⑤不受气候、季节等自然条件的限制等优点 (2)发酵工程技术的特点 ①发酵工程以生命体的自动调节方式进行,数十个反应能够在发酵设备中一次完成 ②反应通常在常温下进行,条件温和,耗能少,设备简单

③原料通常以糖蜜,淀粉等碳水化合物为主 ④容易生产复杂的高分子化合物 ⑤发酵过程中需要防止杂菌污染 (3)发酵工程反应过程的特点 ①在温和条件下进行的 ②原料来源广泛,通常以糖、淀粉等碳水化合物为主 ③反映以生命体的自动调节形式进行(同(2)①) ④发酵分子通常为小分子产品,但也很容易生产出复杂的高分子化合物 四、发酵工程的一般特征 ①与化学工程相比,发酵工程中微生物反应具有以下特点: 作为生物化学反应,通常在常温常压下进行,没有爆炸之类的危险,不必考虑防爆问题,还有可能使一种设备具有多种用途 ②原料通常以糖蜜、淀粉等碳水化合物为主,加入少量的各种有机或无机氮源,只要不含毒,一般无精制的必要,微生物本身就有选择的摄取所需物质 ③反应以生命体的自动调节方式进行因此数十个反应过程能够像单一反应一样,在称为发酵罐的设备内很容易进行 ④能够容易的生产复杂的高分子化合物,是发酵工业最有特色的领域 ⑤由于生命体特有的反应机制,能高度选择性的进行复杂化合物在特定部位的氧化还原官能团导入等反应 ⑥生产发酵产物的生物物质菌体本身也是发酵产物,富含维生素、蛋白质、酶等有用物质,因此除特殊情况外,发酵液等一般对生物体无害。 ⑦发酵生产在操作上最需要注意的是防止杂菌污染。进行设备的冲洗、灭菌,空气过滤

发酵工程复习题

复习A 1. 发酵过程中异常现象(发酵液转稀、发酵液过浓、耗糖缓慢、pH不正常)处理措施? (1)发酵液转稀:适时补入适当碳源或氮源促使繁殖新菌体; (2)发酵液过浓:补入10%无菌水,使菌液浓度下降、粘度下降,改善发酵条件; (3)耗糖缓慢:补入适量合适的氮源、磷盐,提高发酵温度、风量; 2. Monod(莫诺)方程表明了什么和什么的重要关系?简介Monod(莫诺)方程? 比生长速率和生长基质浓度的关系。 内涵:当温度、pH恒定时,u随特定的S变化。 3. 补料分批发酵技术的特点, 与分批发酵,连续发酵的区别? 特点:(1)由于机制的缓慢补入,既满足了微生物生长和产物合成的持续需要,又避免了由于基质过量引起的各种调控效应,从而能使产率获得很大提高; (2)补料技术本身提高:少次多量→少量多次→流加→微机控制流加; 区别:(1)区别于分批发酵技术:由于补加物料,补料分批发酵系统不再是封闭系统; (2)区别于连续发酵技术:补料分批系统并不是连续地向外放出发酵液,罐内的培养液体积(V)不再是个常数,而是随时间(t)和物料流速(F)而变化的变量(变体积操作)。 4. 通风发酵设备中的机械搅拌发酵罐必须满足的基本条件? (1)发酵罐应具有适宜径高比; (2)能承受一定压力; (3)发酵罐的搅拌通风装置能使气液充分混合; (4)具有足够的冷却面积; (5)罐内应尽量减少死角; (6)搅拌器的轴封应严密。 5. 发酵液pH对发酵的影响包括哪些方面? (1)影响酶活力; (2)影响细胞膜所带电荷的状态,改变膜的渗透性,影响对营养的吸收利用; 6. 比底物消耗速率方程? Qs=Qsmax·S/Ks+S 7. 补料分批发酵的适用范围? (1)高菌体浓度培养系统; (2)存在高浓度底物抑制的系统,通过添加底物降低抑制; (3)存在crabtree效应的系统; (4)受异化代谢物阻遏的系统; (5)利用营养突变体的系统; (6)希望延长反应时间或补充损失水分的系统。 8. 优良的发酵装置应具有的基本特征包括哪些内容? (1)避免将需蒸汽灭菌的部件与其它部件连接,因为即使阀门关闭,细菌也可在阀门内生长; (2)尽量减少法兰连接,因为设备震动和热膨胀会引起连接处的移位,导致染菌,应全部焊接结构,消除积蓄耐灭菌物质; (3)防止死角、裂缝等一类情况,以避免固体物质在此堆积,形成使杂菌获得热抗性的环境‘ (4)发酵系统的某些部分应能单独灭菌; (5)与反应器相同的任何连接应采用蒸汽加以密封,取样口在不取样时也要一直通蒸汽; 9. 控制发酵过程pH的方法? (1)培养基中适当添加生理酸性盐或生理碱性盐; (2)培养基中适当添加缓冲剂; (3)自动检控;

发酵工程原理知识点总结

1、发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程。 2、发酵工程:利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系,它是生物工程和生物技术学科的重要组成部分,又叫微生物工程 3、发酵工程技术的发展史: ①1900年以前——自然发酵阶段 ②1900—1940——纯培养技术的建立(第一个转折点) ③1940—1950——通气搅拌纯培养发酵技术的建立(第二个转折点) ④1950—1960——代谢控制发酵技术的建立(第三个转折点) ⑤1960—1970——开发发酵原料时期(石油发酵时期) ⑥1970年以后——进入基因工程菌发酵时期以及细胞大规模培养技术的全面发展 4、工业发酵的类型: ①按微生物对氧的不同需求:厌氧发酵、需氧发酵、兼性厌氧发酵 ②按培养基的物理性状:固体发酵、液体发酵 ③按发酵工艺流程:分批发酵、补料发酵、连续发酵5、发酵生产的流程:(重要) ①用作种子扩大培养及发酵生产的各 种培养基的制备 ②培养基、发酵罐及其附属设备的灭菌 ③扩大培养有活性的适量纯种,以一 定比例将菌种接入发酵罐中 ④控制最适的发酵条件使微生物生长并 形成大料的代谢产物 ⑤将产物提取并精制,以得到合格的产 品 ⑥回收或处理发酵过程中所产生的三废 物质 6、常用的工业微生物: ①细菌:枯草芽孢杆菌、醋酸杆菌、 棒状杆菌、短杆菌等 ②放线菌:链霉菌属、小单胞菌属和 诺卡均属 ③酵母菌:啤酒酵母、假丝酵母、类 酵母 7、未培养微生物:指迄今所采用的微生 物纯培养分离及培养方法还未获得纯培 养的微生物 8、rRNA序列分析:通过比较各类原核生 物的16S和真核生物的18S的基因序列, 从序列差异计算它们之间的进化距离,从 而绘制进化树。 选用16S和18S的原因是:它们为原 核和真核所特有,其功能同源且较为古 老,既含有保守序列又含有可变序列,分 子大小适合操作,它的序列变化与进化距 离相适应。 9、菌种选育改良的具体目标: ①提高目标产物的产量 ②提高目标产物的纯度 ③改良菌种性状,改善发酵过程 ④改变生物合成途径,以获得高产的 新产品 10、发酵工业菌种改良方法: ①常规育种:诱变和筛选,最常用。 关键是用物理、化学或生物的方法修改目 的微生物的基因组,产生突变。 ②细胞工程育种:杂交育种和原生质 体融合育种 ③代谢工程育种:组成型突变株的选 育、抗分解调节突变株的选育、营养缺陷 型在代谢调节育种中的应用、抗反馈调节 突变株的选育、细胞膜透性突变株的选育 ④基因工程育种:原核表达系统、真 核表达系统 ⑤蛋白质工程育种:定点突变技术、 定向进化技术 ⑥代谢工程育种:改变代谢途径、扩 展代谢途径 ⑦组成生物合成育种:通过合成化合 物库进行高效率的筛选 ⑧反向生物工程育种:希望表型的确

相关文档
相关文档 最新文档