文档库 最新最全的文档下载
当前位置:文档库 › 微生物相关笔记

微生物相关笔记

微生物相关笔记
微生物相关笔记

(1)革兰氏染色

1、用碱性染料结晶紫对菌液涂片进行初染

2用碘溶液进行媒染,其作用是提高染料和细胞间的相互作用从而使二者结合得更固。

3、用乙醇或丙酮冲洗进行脱色。在经历脱色后仍将结晶紫保留在细胞内的为革兰氏阳性细菌,而革兰氏阴性细菌的结晶紫被洗掉,细胞呈无色。

4、用一种与结晶紫具有不同颜色的碱性染料对涂片进行复染。例如沙黄,它使原来无色的革兰氏阴性细菌最后呈现桃红到红色,而革兰氏阳性细菌继续保持深紫色

糖被的主要成分:多糖、多肽或蛋白质,尤以多糖居多。

糖被的功能:①保护作用:其上大量极性基团可保护菌体免受干旱损伤或防止噬菌体的吸附和裂解;一些动物致病菌的荚膜还可保护它们免受宿主白细胞的吞噬,例如肺炎克雷伯氏菌( Klebsiella pneumoniae)的荚膜既可使其粘附于人体呼吸道并定植,又可防止白细胞的吞噬;

②贮藏碳源和能源养料,以备营养缺乏时重新利用;③作为透性屏障或(和)离子交换系统,可保护细菌免受重金属离子的毒害;④表面附着作用,例如引起龋齿的唾液链球菌(Streptococcus salivarius)会分泌一种己糖基转移酶,使蔗糖转变成果聚糖,从而使细菌牢牢粘附于牙齿表面,可腐蚀牙表珐琅质层并引起龋齿;⑤细菌间的信息识别作用;⑥堆积代谢废物。

细胞壁概念:是细胞最外的一层厚实、坚韧的外被,主要成分为肽聚糖,具有固定外形和保护细胞等多种功能。

细胞壁功能:①固定细胞外形和提高机械强度,保护细胞免受外力的损伤;②为细胞生长、分裂和鞭毛运动所必需;③阻拦酶蛋白或抗生素等有害物质进入细胞;④赋予细菌特定的抗原性和致病性(如内毒素),并与细菌对抗生素和噬菌体的敏感性密切相关。

磷壁酸的主要生理作用:①因带负电荷,故可与环境中的Mg2+等阳离子结合,提高这些离子的浓度,以保证细胞膜上一些合成酶维持高活性的需要;②对一些革兰氏阳性致病菌(如A 族链球菌)而言,可借此(主要为膜磷壁酸)与其宿主粘连;③赋予革兰氏阳性菌以特异的表面抗原;④是某些噬菌体特异性吸附受体。

1、芽孢特点(1)芽孢是休眠构造而不是繁殖构造

(2)芽孢抗逆性极强

(3)芽孢休眠能力极强

7、研究芽孢的意义1、分类鉴定2、保存菌种3、分离菌种4、生物杀虫5、灭菌标准

细菌的培养特征主要指细菌在固体、半固体和液体培养基中生长后所表现出的群体形态特征,不同的细菌有其固有的培养特征。

菌落(colony):是指在固体培养基上,由一个细菌或孢子生长、繁殖形成的肉眼可见的群体。

菌落特征: 湿润,较光滑,较透明,较粘稠,易挑起,质地均匀,菌落正反面及边缘与中央部位的颜色一致。

生物学意义:微生物分类鉴定的指征之一。

熟记以下基本细菌学名:

Bac. Thuringiensis苏云金芽孢杆菌

Clostridium acetobutylicum丙酮丁醇梭菌

Streptococcus pneumoniae肺炎链球菌

Mycobacterium tuberculosis结核分枝杆菌

Pseudomonas aeruginosa铜绿假单胞菌

Salmonella typhimurium鼠伤寒沙门氏菌

Staphylococcus aureus金黄色葡萄球菌

Lactobacillus lactis乳酸杆菌

放线菌是一类有分枝状的菌丝体(mycelium) 和以孢子进行繁殖的丝状细菌。

2、为什么属于原核生物?

①放线菌的菌丝体为单细胞,菌丝直径比真菌细,与细菌接近;

②无核膜、核仁和线粒体等,核糖体为70S,属原核生物;

③细胞壁含胞壁酸,二氨基庚二酸,不含几丁质,纤维素,革兰氏染色阳性;

④对环境pH值的要求是近中性或微偏碱,这与细菌相近而不同于真菌(一般偏酸性);

⑤凡能抑制细菌的抗生素也能抑制放线菌,而抑制真菌的抗生素对放线菌无抑制作用;

⑥对溶菌酶敏感。

①基内菌丝:又称营养菌丝或初级菌丝体,匍匐生长在培养基内或培养基表面。其主要功能为吸收营养物质和排泄代谢废物,一般无横隔膜(诺卡氏菌属除外)。直径0.2—1.2μm,但长度差别很大,短的小于100μm,长的可达600μm以上。无色或产生水溶性或脂溶性色素而呈现黄、绿、橙、红、紫、蓝、褐和黑等各种颜色。

②气生菌丝:又称二级菌丝体,基内菌丝发育到—定阶段后,向空间长出的菌丝体。一般颜色较深,比基内菌丝粗(直径为1-1.4μm)。气生菌丝长度差别悬殊,直形或弯曲,有分枝。

③孢子丝:又称繁殖菌丝或产孢丝,当气生菌丝生长发育到一定阶段,气生菌丝上分化出可形成孢子的菌丝。孢子丝的形状及在气生菌丝上排列的方式随种而异;有的直形,有的波浪形或螺旋形。螺旋的数目、疏密程度、旋转方向等都是种的特征

④孢子:放线菌的孢子形状有球形、椭圆形、杆形和柱形等。同一孢子丝上分化出的孢子的形状、大小有时也不一致。所以,不能将其作为区分菌种的唯一依据。电镜下可见孢子表面结构的差异,有的表面光滑、有的带小疣、刺或毛发状物。孢子常具有色素,呈灰、白、黄、橙、红、蓝和绿等颜色,其颜色在一定培养基与培养条件下比较稳定。孢子表面结构和颜色是放线菌菌种鉴定的主要依据之一。

放线菌与细菌的比较

同为单细胞,菌丝比真菌细,其直径与细菌接近;

同属原核生物。无核膜、核仁和线粒体等。核糖体70S等;

胞壁含磷壁酸,二氨基庚二酸,不含几丁质,纤维素;G+;

对环境的要求与细菌相近;

对溶菌酶敏感;

对抗生素的反应向细菌。

放线菌的菌落形态

质地: 致密、干燥、多皱、小而不蔓延、不挑起,表面有放射状沟纹。

形状:随菌种不同可有两类:

(1)产生大量分枝状菌丝的菌种(2)不产生大量菌丝的菌种

支原体细胞很小,细胞多形,易变,呈球状或长短不一的丝状及分枝状

结构特点1)胞膜含甾醇

2)无细胞壁,对抑制壁合成抗生素不敏感

3)“油煎蛋”菌落

4)基因组小,0.6~1.1Mb

5)二分裂和出芽繁殖

立克次氏体1)G-,寄生(有壁,不能独立生活,细胞较大0.3-2 μm)

2)对热敏感,56 ℃以上30min即可杀死,对四环素,青霉素等抗生素敏感

3)二分裂繁殖,宿主一般为节肢动物,可从伤口侵入人体

4)基因组很小,1.1Mb

5)致病性:在宿主血流中大量增殖,并产内毒素

有的蓝细菌是污染湖泊中发生“赤潮”及“水华”的原凶

古生菌是一群具有独特的基因结构或系统发育生物大分子序列的单细胞原核生物,多生活在地球上极端的生境或生命出现初期的自然环境中,营自养和异养生活;具有特殊的生理功能,如在超高温、高酸碱度、高盐及无氧状态下生活;具有独特的细胞结构,如细胞壁骨架为蛋白质或假胞壁酸,细胞膜含甘油醚键;以及代谢中的酶作用方式既不同于细菌又不同于真核生物。

特征细菌古菌

细胞壁有胞壁酸无胞壁酸

脂类酯键连接醚键连接

没有可能有

甲烷生成过

RNA多聚酶一个几个

起始tRNA 甲酰甲硫氨酸甲硫氨酸

核糖体链霉素和氯霉素敏感白喉毒素抗性链霉素和氯霉素抗性白喉毒素敏感

具有核膜包被的真正细胞核、能进行有丝分裂、细胞质中有线粒体的微小生物,称为真核微生物。

真核微生物主要包括:真菌中的酵母菌和丝状真菌、藻类及原生动物。因此,真核微生物实际上不是一个单系类群,而是包含了属于不同生物界的几个类群。这其中,真菌是种类较多、价值比较重要的一个类群

真菌的主要特征:①具有真正细胞核;②没有叶绿素,不能进行光合作用;③营养体一般为发达的丝状、分枝结构,也有单细胞;④能进行有性和无性繁殖,产生孢子;⑤细胞壁含几丁质(甲壳质);⑥营养方式为吸收式异养;⑦陆生性较强。

1、细胞壁酵母菌:甘露聚糖和葡聚糖

低等真菌:主纤维素;高等真菌:几丁质

酵母菌特征:

1. 个体一般以单细胞状态存在;

2. 多数营出芽生殖,有的裂殖;

3. 能发酵糖类产能;

4. 细胞壁常含有甘露聚糖;

5. 喜在含糖量较高、酸度较大的水生环境中生长

1、酵母菌结构组分的利用:

甘露聚糖(mannan)、葡聚糖、麦角甾醇、核糖核酸、富硒酵母、核苷、谷胱甘肽、细胞色素C、酵母蛋白

2、产生的代谢产物及酶的利用

啤酒酿造白酒面包等

有的酵母菌如酿酒酵母中含有固醇类(甾醇)、VitD的前体----麦角固醇

酵母菌的生活史

1、单倍体和二倍体共存

特点1)无性:出芽生殖(N、2N体营养细胞)

2)有性:4个子囊孢子

代表:酿酒酵母(Saccharomyces cerevisiae)

2、单倍体(N)时间长,2倍体不能生存

特点1)营养细胞N体,2N不能独立生活

2)无性繁殖:裂殖

3)有性:8个子囊孢子

3、营养体2N体形式存在

特点1)营养体2N,2)无性:芽殖

3)有性:4个子囊孢子(N)

酵母菌菌落色单调:乳白或矿烛色,易挑取,边缘整齐或粗糙,酒香味

毛霉与根霉比较①两者皆有假根,但根霉属有匍匐枝,毛霉属无。②根霉属有囊托,毛霉属无。③两者皆具囊轴,但根霉属无囊领,毛霉属有。④毛霉属孢子囊梗单株从菌丝上发生,分枝或不分枝。

曲霉应用①是制酱、酿酒、制醋的主要菌种。

②是生产酶制剂(蛋白酶、淀粉酶、果胶酶)的菌种。

③生产有机酸(如柠檬酸、葡萄糖酸等)

④农业上用作生产糖化饲料的菌种

青霉分布:广泛分布于土壤、空气、粮食和水果上,可引起病害或霉腐变质

形态特征:与曲霉类似,但青霉无足细胞,分生孢子梗从基内菌丝或气生菌丝上生出,有横隔,顶端生有扫帚状的分生孢子头。分生孢子多呈蓝绿色。扫帚枝有单轮、双轮和多轮,对称或不对称。

应用:是生产抗生素的重要菌种,如产黄青霉和点青霉都能生产青霉素。生产有机酸,如葡萄糖酸、柠檬酸

危害:霉变、疾病

Aspergillus flavus(黄曲霉)

Asp.niger(黑曲霉)

Pencillinm chrysogenum(产黄青霉)

真菌对于工农业生产、医疗实践、环境保护和生物学基本理论研究等方面都具有重要意义:在有益方面①真菌是酶工业的重要基础,可用于生产淀粉酶、蛋白酶和纤维素酶等多种酶制剂;②真菌还被用于多种有机化合物的生产:如柠檬酸、苹果酸和乳酸等多种有机酸;③真菌在医药工业上可用于生产青霉素、头孢霉素和灰黄霉素等抗生素,硫胺素、核黄素和抗坏血酸等维生素,以及生物碱、免疫调节剂、激素类药物等;④真菌在发酵工业上则具有传统的重要地位,用于生产酒、醋、酱、酱油、乳酪等,酵母被称为人类的第一种“家养微生物”。

⑤在农业生产上,真菌可用来生产植物生长调节素,例如赤霉素,也可用于进行农田病虫草害的生物防治,例如白僵菌;⑥在环境保护方面,真菌在工业三废处理、农田秸秆降解和生物测定等也发挥着特别重要的作用;⑦真菌在科学研究上常常被作为重要的实验或模式材料而应用广泛、作用重要,例如在遗传学领域最著名的真菌俗称红色面包霉的粗糙脉孢菌Nurospora crassa等。⑧在自然生态系统中,真菌不仅是物质和能量转换的重要中间体,而且还会与植物、昆虫、藻类等共生,促进了整个生物圈的繁荣。

在有害方面:①食品、纺织品、皮革、木器、纸张、光学仪器、等工农业产品和日常用品都易经常地因真菌而霉变或腐败;②真菌是引起传染性植物病害的主要病原微生物。仅就造成严重经济损失的就可以列出一个很长的目录,如:众所周知的稻瘟病、小麦锈病、小麦黑穗病、棉花枯萎病等等;③真菌感染也能引起严重的动物真菌病(mycoses),如非常著名的俗称“白念”的白色假丝酵母菌Candida albicans,而有丝状真菌引起的曲霉病,严重时可致

深部感染,并在某些条件下致命;不仅如此,许多霉菌产生毒素,污染食品,给人类生活和健康带来巨大问题,如黄曲霉毒素、赭曲霉素等;④丝状真菌也是木材腐烂的罪魁祸首之一,从而给林业生产、日常生活以及其他经济活动造成较大损害。

病毒是形体微小、结构简单、仅含有1种核酸DNA或RNA、具有超级寄生性,且必须在电子显微镜下才能观察到的一类非细胞形态的微生物。

(重点)病毒特点1、形体极其微小,必须在电子显微镜下才能观察,一般都可通

过细菌滤器;

2、没有细胞构造,故也称分子生物;

3、其主要成分仅是核酸和蛋白质两种;

4、每一种病毒只含有一种核酸,不是DNA就是RNA;

5、既无产能酶系也无蛋白质合成系统;

6、在宿主细胞协助下,通过核酸的复制和核酸蛋白装配的形式进行增殖,不存在个体生长和二均等分裂等细胞繁殖方式;

7、在宿主的活细胞内营专性寄生;

8、在离体条件下,以无生命的化学大分子状态存在,并可形成结晶;

9、对一般抗生素不敏感,但对干扰素敏感。

研究病毒的重要意义:

一是控制和消灭有害病毒,病毒威胁着人类健康和家养动物养殖业,病毒性疾病对国民经济造成严重的影响,发酵工业中的噬菌体污染会严重影响发酵生产;

二是病毒的研究和利用价值,主要表现为改良品种,培育活病毒疫苗株,保护生态环境,利用病毒作为昆虫杀虫剂,基因工程研究的重要载体。

(重点)病毒的基本结构

①病毒粒子:成熟的、结构完整、具有侵染力的单个病毒,又称病毒颗粒

②核心(core):核酸位于病毒粒子的中心,即为核心或基因组(genome);

④衣壳(capsid):蛋白质包围在核心周围,即为衣壳。是病毒粒子的主要结构支架和抗原

成分,对核酸有保护作用;

⑤衣壳粒(capsomere或capsomer):构成衣壳的一个个蛋白质颗粒;

⑥核衣壳(nucleocapsid):是任何病毒所必须具备的基本结构,核心和衣壳合起来称为核衣

壳。

⑦包膜(envelope):有些结构复杂的病毒,其核衣壳外被以曾有类脂或脂蛋白组成的外衣,称为包膜。有时包膜上还长有刺突(spike)等附属物。包膜实际上来自寄主细胞膜,但被病毒改造成具有其独特抗原特性的膜状结构,故易被乙醇等脂溶剂破坏

病毒的对称性①螺旋对称的病毒粒子

②二十面体对称病毒粒子

③复合对称的病毒粒

包涵体是宿主细胞经病毒感染后形成的光学显微镜下可见的大小、形态、数量不等的蛋白质结晶体,称为包涵体。在宿主细胞内形成包涵体是病毒的特征,不同的病毒其形成的包涵体具有不同的形态、结构和特性,可用于分类鉴定。

病毒群体形态①包含体②噬菌斑③病斑和空斑④枯斑

噬菌斑是指在宿主细菌的菌苔上,噬菌体使菌体裂解而形成的空斑

空斑和病斑:用于动物病毒粒子的计数也可以采用噬菌斑法类似的技术,但是这种斑点只能称为空斑或病斑。

枯斑:植物病毒在植物叶片上形成的群体称为枯斑。

噬菌体:是病毒中的一种,一般把侵染细菌、放线菌的病毒叫噬菌体。

(重点)烈性噬菌体(virulent phage)——感染细胞后,能在寄主细胞内增殖,产生大量子代噬菌体并引起细菌裂解的噬菌体。引起的反应称裂解反应。

(重点)温和噬菌体(temperate phrage)——噬菌体感染细胞后,将其

核酸整合(插入)到宿主的核DNA上,并且可以随宿主DNA的复制而进行同步复制,在一般情况下,不引起寄主细胞裂解的噬菌体。被侵染的细胞被称作溶原性细胞或溶原菌(lysogen),引起的反应称溶源性反应。

病毒的繁殖过程:一般可分为吸附、侵入、生物合成、成熟装配与裂解释放五步。烈性噬菌体所经历的繁殖过程,称作裂解性周期。

某些噬菌体侵染细菌后,将自身基因组整合到细菌细胞染色体上,随寄主细胞分裂而同步复制,并不引起细菌裂解释放噬菌体,因而被称作温和噬菌体(temperate phage)。这种噬菌体与细菌共存的特性称为溶原性(lysogeny),被侵染的细胞被称作溶原性细胞或溶原菌(lysogen),引起的反应称溶源性反应。整合到细菌细胞染色体上的病毒被称作前病毒或前噬菌体(prophage)。溶原性细菌对同源噬菌体有免疫性。

病毒的应用:(1)噬菌体的应用与防治

噬菌体的危害:主要是引起发酵中的噬菌体污染

例:①丙酮、丁醇发酵中的噬菌体污染

②抗生素发酵中的噬菌体污染

③食品工业上的噬菌体污染

防治:

①控制活菌排放

②选育抗性生产菌株

③生产中轮换使用菌种

④药物防治例如用金霉素、四环素等。

(2)昆虫病毒用于生物防治(3)基因工程中作为载体

病例(发酵液变清,菌顺减少到无菌,产量质量下降)

1分析原因2实验判断3解决措施

1)双层平板法分析原因实验判断

1 倒下层琼脂:融化下层培养基,倒平板

2 倒上层琼脂:融化上层培养基,待融化的上层培养基冷却至50℃左右时,每管中加入敏感指示菌(大肠杆菌) 菌液0.2mL,待检样品液或上述噬菌体增殖液0.2~0.5mL,混合后立即倒入上层平板铺平。

3 恒温培养30℃恒温培养6~12h观察结果。

4 观察结果:如有噬菌体,则在双层培养基的上层出现透亮无菌圆形空斑——噬菌斑

微生物笔记整理

第1章绪论 1、微生物的特点是: (1)繁殖快,长不大(2)体积微小,分布广泛 (3)观察和研究的手段特殊(4)物种多,食谱杂 (5)适应性强,易变异 2、(1)列文虎克:首次发现微生物,最早记录肌纤维、微血管中的血流。(2)路易斯·巴斯德:“巴氏杀菌法”(Pasteurization),62-65℃,30min,75-90℃,15-16s。[UHT=ultra high temperature,130-150℃,1-4s,常用在牛奶的杀菌。] (3)罗伯特·柯赫食品微生物发展大事记: 1680年,列文虎克发现了酵母细胞 1861年,巴斯德的曲颈瓶实验,推翻了“自然发生说” 1867年,炭疽菌(属于芽孢杆菌属,革兰氏阳性菌) 1890年,巴斯德杀菌工艺 1922年,肉毒梭状芽孢杆菌的芽孢在磷酸盐缓冲液中的Z值为18F(Z值:加热至死曲线中,时间降低一个对数周期所需升高的温度 D值:指在一定的处境和一定的热力致死温度条件下,某细菌数群中90%的原有残活菌被杀死所需的时间 F值:在基准温度中杀死一定数量对象菌所需要热处理的时间) 1988年,在美国,乳酸链球菌肽被列为“一般公认安全”(GRAS) 1990年,HACCP体系 1996年,O157:菌体的抗原,H7:鞭毛的抗原

3、GMP:Good Manufactureing Practice(良好生产操作规范),GMP标准规定了在加工。贮藏和食品分配等各个工序中所要求的操作、管理和控制规范。 HACCP:Hazard Analysis and Critical Control Points(有害分析和关键控制点) 栅栏技术(Hurdle techonology):利用食品当中各种有效因子(温度、pH、Aw、OR电度包装、辐照、防腐剂)交互作用控制腐败菌生长,提高食品安全。 4、ISO22000 食品安全管理;ISO9001 食品质量管理。 第2章微生物的基本形态与结构 1、细菌基本形态分为三种: 球状,如金黄色葡萄球菌(Staphylococcus aureus)(阳性菌) 杆状,如大肠杆菌(Escherichia coli)(阴性菌) 螺旋状,如霍乱弧菌(Vibrio cholarae) 2、细菌的形态受环境影响的因素:培养温度,培养时间,培养基的成分与浓度,pH等。 3、细菌细胞壁的主要成分是肽聚糖,其观察方法是质壁分离+染色;电镜观察。培养细菌的三种方式:1)固体培养,2)斜面培养,3)液体培养。 4、革兰氏阳性菌特别含有磷壁酸,带有负电荷,还可分为壁磷壁酸和膜磷壁酸;革兰氏阴性菌含有脂多糖(lipopolysaccharide,LPS),它由类脂A、核心多糖和O-特异性多糖三部分组成。 5、革兰氏阳细菌、阴细菌的差别:

考研微生物学笔记沈萍版

主要内容大豆的结构与成分?传统豆制品的生产?豆乳制品?豆乳粉及豆浆晶的生产?大豆低聚糖的制取及应用?大豆中生物活性成分的提取及应用?大豆加工副产品的综合利用? 大豆的结构与成分第一节一、大豆子粒的形态结构及组成? 二、大豆的主要化学成分?碳水

化合物1.? 大豆中的可溶性碳水化合物?人 体内的的消化酶不能分解水苏糖、棉子糖,但它们是人体肠道内有益菌-双歧杆菌的增殖因子,对人体生理功能提高有很好的 作用。大豆中的不溶性碳水化合物?果胶质、纤维素纤维有延缓 食物消化吸收的功能,可以降低对糖、。保健功能中性脂肪和胆 固醇的吸收,对人体产生 2.蛋白质?分为清蛋白和球

蛋白,其中球蛋白占到90%左右,球蛋白中7S和11S 球蛋白之和占总蛋白含量的70%以上。3.脂肪?。18%大豆中脂肪含量约为 4.大豆中的酶及抗营养因子脂 肪氧化酶:对食品影响作用:一是改善面粉色泽,?强化面筋蛋白质的作用,二是产生不良风味。尿素酶:大豆中抗营养因子,含量较高,受热失去活?性;淀粉分解酶和蛋白分解酶:豆粕中;?;,活性丧失90%20min℃:胰蛋白酶抑制剂100处理?:受热失活。

细胞凝集素?. 5.大豆中的微量成分无机盐?十余种,通常是含有钙、磷、铁、钾等的无机盐类。维生素?水溶性维生素为主,脂溶性很少。皂苷?抗营又称皂甙或皂素,具有溶血性和毒性,通常视为,但研究表明其对人体并无生理上的障碍作用,养成分反而有抗炎症、抗溃疡和抗过敏的功效。. 6.大豆中的味成分(1)脂肪族羰基化合物(2)芳香族羰基化合物(3)挥发性脂肪酸(4)挥发性

胺(5)挥发性脂肪醇(6)酚酸7.有机酸、异黄酮异黄酮抗氧化。柠檬酸、醋酸、延胡索酸等。.三、大豆蛋白质的性质?溶解性1. 四、大豆蛋白质的变性?由于物理、化学条件的改变使大豆蛋白质分子的内部结构、物理性质、化学性质和功能性质随之改变的现象称为大豆蛋白质的变性。1.酸碱引起的大豆蛋白的变性处于极端的酸性和碱性条件下的蛋

医学微生物学笔记重点!

医学微生物学 绪论 1. 微生物:存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须借助光学显微镜或电子显微镜放大数百倍、数千倍。甚至数万倍才能观察到的微小生物。 、病原微生物:少数具有致病性,能引起人类、植物病害的微生物。 机会致病性微生物:在正常情况下不致病,只有在特定情况下导致疾病的微生物。 4,郭霍法则:①特殊的病原菌应在同一种疾病中查见,在健康人中不存在;②该特殊病原菌能被分离培养得纯种;③该纯培养物接种至易感动物,能产生同样病症;④自人工感染的实验动物体内能重新分离得到该病原菌纯培养。 5、免疫学:㈠主动免疫;㈡被动免疫。 第一篇 细菌学 第一章 细菌的形态与结构 第一节 细菌的大小与形态 1、观察细菌常采用光学显微镜,一般以微米为单位。 2、按细菌外形可分为: ①球菌(双球菌、链球菌、葡萄球菌、四联球菌、八叠球菌) ②杆菌(链杆菌、棒状杆菌、球杆菌、分枝杆菌、双歧杆菌) ③螺形菌(弧菌、螺菌、螺杆菌) 第二节 细菌的结构 1、基本结构:细胞壁、细胞膜、细胞质、核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 2、革兰阳性菌(G+):显紫色;革兰阴性菌(G-):显红色。 3、 细胞壁结构 革兰阳性菌 G+ 革兰阴性菌 G- 肽聚糖组成 由聚糖骨架、四肽侧链、五肽交联桥构成坚韧三维立体结构 由聚糖骨架、四肽侧链构成疏松二维平面网络结构 肽聚糖厚度 20~80nm 10~15nm 肽聚糖层数 可达50层 仅1~2层 肽聚糖含量 占胞壁干重50~80% 仅占胞壁干重5~20% 磷壁酸 有 无 外膜 无 有 4、G-菌的外膜 {脂蛋白、脂多糖(LPS )→【脂质A ,核心多糖,特异多糖】、脂质双层、} 脂多糖(LPS ):即G-菌的内毒素。LPS 是G-菌的重要致病物质,使白细胞增多,直至休克死亡;另一方面,LPS 也可增强机体非特异性抵抗力,并有抗肿瘤等有益作用。

病原微生物学知识点重点整理学习资料

病原微生物学知识点 重点整理

精品资料 病原生物与免疫学记忆知识点 1.免疫的现代概念。P4 答:生物在生存、发展过程中所形成的识别“自我”与“非己”,以及通过排斥“非己”而保护“自我”维护自身生理平衡与稳定的现象。 2.固有免疫与适应性免疫的特点。 答:(1)固有免疫:非特异性,可遗传性,效应恒定性。 (2)适应性免疫:特异性(针对性),习得性,效应递增性。 3.免疫系统的功能。P5 答:(1)积极意义:免疫防御,免疫自稳,免疫监视。 (2)消极意义:免疫损伤:超敏反应,自身免疫病。 4.人体中枢免疫器官的类型及作用。P6 答:(1)骨髓:①产生所有血细胞; ②淋巴细胞产生发育的器官:B细胞分化、发育的最主要场所; (2)胸腺:T细胞分化、发育、成熟的场所。 5.人体外周免疫器官的类型。P7 答:淋巴结,脾脏,黏膜相关淋巴组织。 6.抗原的定义及双重属性。P12 答:指能与T、B细胞受体结合,启动免疫应答,并能与相应的免疫应答产物产生特异性结合的物质。 双重属性:(1)免疫原性:指抗原能够刺激机体产生抗体或致敏淋巴细胞的能力。 (2)免疫反应性:指抗原与其所诱导的抗体或致敏淋巴细胞发生特异性结合的能力。7.半抗原的概念。P12 答:仅具有免疫反应性的物质。 8.表位的概念。P13 答:决定抗原特异性的结构基础或化学集团称为表位,又称抗原决定簇。 9.影响免疫原性的主要因素。P14 答:(1)抗原的结构与生物学特性:“异物”性,分子量,复杂性,易接近性,可提呈性。(2)免疫系统的识别能力。 (3)抗原与免疫系统的接触方式。 10.T细胞依赖性抗原和T细胞非依赖性抗原的概念。P15、16 答:(1)T细胞依赖性抗原:指需在APC及Th细胞参与下才能激活B细胞产生抗体的抗原。(2)T细胞非依赖性抗原:指刺激B细胞产生抗体时不需要Th细胞辅助的抗原。

微生物学读书笔记

微生物学读书笔记 【篇一:微生物学文献读书笔记】 微生物学文献读后感 一、文章题目 a novel approach for assessing the susceptibility of escherichia coli to antibiotics (评估大肠杆菌对抗生素易感性的 一种新方法) 二、文章概要 escherichia coli cvcc249 在不同抗生素浓度下的动态增长过程的 分析结果表明,不能获得理想的最终结果的原因是用ast法不能完全确定药物浓度和细菌数量之比以及药物浓度和作用时间的综合效应。基于一系列浓度梯度的庆大霉素处理一定时间细菌的增长过程的分析,以及根据向前差分法,一种ast新方法被提了出来。 三、研究背景 1、ast(药敏试验)是临床微生物学实验室最重要的任务之一,它 通常定性在mic(最低抑制浓度)和mbc(最低杀菌浓度),这是 由不同的杀菌方法和纸片扩散确定的。从ast获得的参数通常用来表明抗性反应或细菌对抗生素的敏感性,利用这些结果提供合理用药 指导。 2、然而,由于ast的结果容易受到许多不确定因素的影响,使得耐 药性和敏感性之间的断点变得相当难以区分。许多临床研究组织为 ast的标准化方法作了巨大的努力。美国临床试验标准研究所1971 年提出了clsi的标准化方法,还有后来英国抗菌化疗协会提出bsac 法,欧洲药敏测试委员会提出eucast法等。尽管标准在逐渐完善和 提高,但前面的路还着实很远。 3、为了解决这个问题,该实验室设计了许多实验,改善ast方法。 根据fibonacci 序列分析,他们用细菌浊度的rc作为目标函数,提 出了ast新方法。这个方法有望发展成为药效学的一种常用方法。 四、研究材料 1、从鸡中分离出来的致病性大肠杆菌e. coli cvcc249 2、标准质量控制菌株 e. coli 25922 五、研究方法 1、用增长序列浊度的rc值描述抗生素的抑制率

医学微生物学笔记(总结得真的很好)

医学微生物学 总结得跟教材一样的哦 真的省了不少力气 微生物:存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须借助光学显微镜或电子显微镜放大数百倍、数 千倍。甚至数万倍才能观察到的微小生物。 3、病原微生物:少数具有致病性,能引起人类、植物病害的微生物。 机会致病性微生物:在正常情况下不致病,只有在特定情况下导致疾病的微生物。 4,郭霍法则:①特殊的病原菌应在同一种疾病中查见,在健康人中不存在;②该特殊病原菌能被分离培养得纯种;③该纯培养物接种至易感动物,能产生同样病症;④自人工感染的实验动物体内能重新分离得到该病原菌纯培养。 5、免疫学:㈠主动免疫;㈡被动免疫。 # 第一篇 细菌学 第一章 细菌的形态与结构 第一节 细菌的大小与形态 1、观察细菌常采用光学显微镜,一般以微米为单位。 2、按细菌外形可分为: ①球菌(双球菌、链球菌、葡萄球菌、四联球菌、八叠球菌) ②杆菌(链杆菌、棒状杆菌、球杆菌、分枝杆菌、双歧杆菌) ③螺形菌(弧菌、螺菌、螺杆菌) - 第二节 细菌的结构 1、基本结构:细胞壁、细胞膜、细胞质、核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 2、革兰阳性菌(G+):显紫色;革兰阴性菌(G-):显红色。 3、 细胞壁结构 革兰阳性菌 G+ @ 革兰阴性菌 G- 肽聚糖组成 由聚糖骨架、四肽侧链、五肽交联桥构成坚韧三维立体结构 由聚糖骨架、四肽侧链构成疏松二维平面网络结构 肽聚糖厚度 20~80nm 10~15nm

肽聚糖层数可达50层仅1~2层 占胞壁干重50~80%仅占胞壁干重5~20% 肽聚糖含量 磷壁酸有无 外膜无有 { 4、G-菌的外膜{脂蛋白、脂多糖(LPS)→【脂质A,核心多糖,特异多糖】、脂质双层、} 脂多糖(LPS):即G-菌的内毒素。LPS是G-菌的重要致病物质,使白细胞增多,直至休克死亡;另一方面,LPS也可增强机体非特异性抵抗力,并有抗肿瘤等有益作用。 ①脂质A:内毒素的毒性和生物学活性的主要成分,无种属特异性,不同细菌的脂质A骨架基本一致,故不同细菌产生的内毒素的毒性作用均相似。 ②核心多糖:有属特异性,位于脂质A的外层。 ③特意多糖:即G-菌的菌体抗原(O抗原),是脂多糖的最外层。 5、细胞壁的功能:维持菌体固有的形态,并保护细菌抵抗低渗环境。 G-菌的外膜是一种有效的屏障结构,使细菌不易受到机体的体液杀菌物质、肠道的胆盐及消化酶等的作用。 6、细菌细胞壁缺陷型(细菌L型):细菌细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制,这种细菌壁受损的细菌在高渗环境下仍可存活者称为细菌细胞壁缺陷型. … ■细菌L型的诱发因素,如:溶菌酶,青霉素,溶葡萄球菌素,胆汁,抗体,补体等。 溶菌酶:能裂解肽聚糖中N-乙酰葡萄胺和N-乙酰胞壁酸之间的β-1,4糖苷键,破坏聚糖骨架,引起细菌裂解。 青霉素:能与细菌竞争合成肽聚糖过程中所需的转肽酶,抑制四肽侧链上D-丙氨酸与五肽桥间的联结,使细菌不能合成完整的肽聚糖,在一般渗透压环境中科导致细菌死亡。 ■细菌L型需在高渗低琼脂含血清的培养基中生长。 G+菌细胞壁缺损形成的原生体,在普通培养基中很容易胀裂死亡,必须保存在高渗环境中。 7、细胞膜: 细胞膜的主要功能:①物质转运;②呼吸和分泌;③生物合成;④参与细菌分裂:细菌部分细胞膜内陷、折叠、卷曲形成的囊状物,称为中介体。 8、细胞质: } ①核糖体:链霉素(与细菌核糖体的30S亚基结合)和红霉素(与细菌核糖体的50S亚基结合)均能干扰其蛋白质合成,从而杀死细菌,但对人体核糖体无害。 ②质粒:染色体外的遗传物质,为闭合环状的双链DNA ③胞制颗粒:贮藏有营养物质。异染颗粒(也成迂回体,嗜碱性强,用甲基蓝染色时着色较深呈紫色)常见于白喉棒状杆菌。 9、核质:细菌的遗传物质。 10 ⑴荚膜:包绕在细胞壁外的一层粘液性物质,为多糖或蛋白质的多聚体,用理化方法去除后并不影响菌细胞的生命活动。 ■荚膜的功能:①抗吞噬作用;②粘附作用;③抗有害物质的损伤作用。 ⑵鞭毛:包括:单毛菌、双毛菌、丛毛菌、周毛菌 ~ 鞭毛由基础小体、钩状体、丝状体三部分组成。 ■鞭毛的功能:使细菌能在液体中自由游动,速度迅速。细菌的运动有化学趋向性,常向营养物质处前进,而逃离有害物质。有些细菌的鞭毛与致病性有关。

医学微生物学笔记(总结得真的很好)

医学微生物学 总结得跟教材一样的哦真的省了不少力气 微生物:存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须借助光学显微镜或电子显微镜放大数百倍、数 千倍。甚至数万倍才能观察到的微小生物。 1.微生物的分类: 3、病原微生物:少数具有致病性,能引起人类、植物病害的微生物。 机会致病性微生物:在正常情况下不致病,只有在特定情况下导致疾病的微生物。 4,郭霍法则:①特殊的病原菌应在同一种疾病中查见,在健康人中不存在;②该特殊病原菌能被分离培养得纯种;③该纯培养物接种至易感动物,能产生同样病症;④自人工感染的实验动物体内能重新分离得到该病原菌纯培养。 5、免疫学:㈠主动免疫;㈡被动免疫。 第一篇细菌学 第一章细菌的形态与结构 第一节细菌的大小与形态 1、观察细菌常采用光学显微镜,一般以微米为单位。 2、按细菌外形可分为:

①球菌(双球菌、链球菌、葡萄球菌、四联球菌、八叠球菌) ②杆菌(链杆菌、棒状杆菌、球杆菌、分枝杆菌、双歧杆菌) ③螺形菌(弧菌、螺菌、螺杆菌) 第二节细菌的结构 1、基本结构:细胞壁、细胞膜、细胞质、核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 2、革兰阳性菌(G+):显紫色;革兰阴性菌(G-):显红色。 3、 细胞壁结构革兰阳性菌 G+革兰阴性菌 G- 肽聚糖组成由聚糖骨架、四肽侧链、五肽交 联桥构成坚韧三维立体结构 由聚糖骨架、四肽侧链构成疏 松二维平面网络结构 肽聚糖厚度20~80nm10~15nm 肽聚糖层数可达50层仅1~2层 肽聚糖含量占胞壁干重50~80%仅占胞壁干重5~20% 磷壁酸有无 外膜无有 4、G-菌的外膜{脂蛋白、脂多糖(LPS)→【脂质A,核心多糖,特异多糖】、脂质双层、} 脂多糖(LPS):即G-菌的内毒素。LPS是G-菌的重要致病物质,使白细胞增多,直至休克死亡;另一方面,LPS也可增强机体非特异性抵抗力,并有抗肿瘤等有益作用。 ①脂质A:内毒素的毒性和生物学活性的主要成分,无种属特异性,不同细菌的脂质A骨架基本一致,故不同细菌产生的内毒素的毒性作用均相似。 ②核心多糖:有属特异性,位于脂质A的外层。 ③特意多糖:即G-菌的菌体抗原(O抗原),是脂多糖的最外层。 5、细胞壁的功能:维持菌体固有的形态,并保护细菌抵抗低渗环境。 G-菌的外膜是一种有效的屏障结构,使细菌不易受到机体的体液杀菌物质、肠道的胆盐及消化酶等的作用。 6、细菌细胞壁缺陷型(细菌L型):细菌细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制,这种细菌壁受

最新Abbekhj医学微生物学笔记

A b b e k h j医学微生物 学笔记

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。 --泰戈尔 绪论 1.微生物:存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须借助光学显微镜或电子显微镜放大数百倍、数千倍。甚至数万倍才能观察到的微小生物。 3.病原微生物:少数具有致病性,能引起人类、植物病害的微生物。 机会致病性微生物:在正常情况下不致病,只有在特定情况下导致疾病的微生物。 4,郭霍法则:①特殊的病原菌应在同一种疾病中查见,在健康人中不存在;②该特殊病原菌能被分离培养得纯种;③该纯培养物接种至易感动物,能产生同样病症;④自人工感染的实验动物体内能重新分离得到该病原菌纯培养。 5.免疫学:㈠主动免疫;㈡被动免疫。 第一篇细菌学 第1章细菌的形态与结构 第一节细菌的大小与形态 1.观察细菌常采用光学显微镜,一般以微米为单位。 2.按细菌外形可分为:①、球菌(双球菌、链球菌、葡萄球菌、四联球菌、八叠球菌) ②、杆菌(链杆菌、棒状杆菌、球杆菌、分枝杆菌、双歧杆菌) ③、螺形菌(弧菌、螺菌、螺杆菌) 第二节细菌的结构 1.基本结构:细胞壁、细胞膜、细胞质、核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 2.革兰阳性菌(G+):显紫色; 革兰阴性菌(G-):显红色。 3. 4.G-菌的外膜{脂蛋白LPS(脂质A,核心多糖,特异多糖)脂质双层脂多糖} 脂多糖即G-菌的内毒素。LPS是G-菌的重要致病物质,使白细胞增多,直至休克死亡;另一方面,LPS也可增强机体非特异性抵抗力,并有

微生物知识点总结

一、名词解释: 1.温和噬菌体(temperate phage):噬菌体基因与宿主染色体整合,不产生子代噬菌体,但噬 菌体DNA能随细菌DNA复制,并随细菌的分裂而传代。 2.溶原性:温和噬菌体这种产生成熟噬菌体颗粒(前噬菌体偶尔可自发地或在某些理化和生 物因素的诱导下脱离宿主菌基因组而进入溶菌周期,产生成熟噬菌体,导致细菌 裂解)和溶解宿主菌的潜在能力,称为溶原性。 3.溶原性细菌:带有前噬菌体基因组的细菌称为溶原性细菌。 4.荚膜:荚膜是一些细菌在其细胞表面分泌的一种黏性物质,把细胞壁完全包围封住,这层 黏性物质就叫荚膜。 5.菌胶团:有些细菌由于其遗传特性决定,细菌之间按一定的排列方式互相黏集在一起,被 一个公共荚膜包围形成一定形状的细菌集团,叫做菌胶团。 6. 芽孢:某些细菌遇到不良环境时,在其细胞内形成一个内生孢子叫芽孢。 7.酶的活性中心:是指酶的活性部位,是酶蛋白分子直接参与和底物结合,并与酶的催化 作用直接有关的部位。 8.生长因子:是一类调节微生物正常生长代谢所必需,但不能用简单的碳、氮源自行合成的 有机物。 9.培养基:根据各种微生物对营养的需要(如水,碳源,能源,氮源,无机盐及生长因子等), 按一定的比例配制而成的,用以培养微生物的基质,称为培养基。

10.选择培养基:根据某微生物的特殊营养要求,或对各种化学物质敏感程度的差异而设计、 配制的培养基,称为选择培养基。 11.鉴别培养基:几种细菌由于对培养基中某一成分的分解能力不同,其菌落通过指示剂显 示出不同的颜色而被区分开,这种起鉴别和区分不同细菌作用的培养基, 叫鉴别培养基。 12.发酵:是指在无外在电子受体时,底物脱氢后所产生的还原力[H]不经呼吸链传递而直接 交给某一内源性中间产物接受,以实现底物水平磷酸化产能的一类生物氧 化反应。 13.好氧呼吸:是有外在最终电子受体(O2)存在时,对底物(能源)的氧化过程。 14.无氧呼吸*:无氧呼吸又称厌氧呼吸,是一类电子传递体系末端的受氢体为外源无机氧化 物的生物氧化。 15.土壤自净:土壤对施入一定负荷的有机物或有机污染物具有吸附和生物降解的能力,通 过各种物理、化学过程自动分解污染物使土壤恢复到原有水平的净化过程, 称土壤净化。 16.水体自净:天然水体受到污染后,在没有人为的干预条件下,借助水体自身的能力使之 得到净化,这种现象成为水体自净,其中包括生物学和生物化学的作用。17:水体富营养化(环化有) 18.硝化作用:氨基酸脱下的氨,在有氧的条件下,经亚硝酸细菌和硝酸细菌的作用转化为 硝酸的过程。

医学微生物学笔记总结得真的很好

医学微生物学笔记总结得 真的很好 Modified by JEEP on December 26th, 2020.

医学微生物学 总结得跟教材一样的哦真的省了不少力气 微生物:存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须借助光学显微镜或电子显微镜放大数百倍、数千倍。甚至数万倍才能观察到的微小生物。1.微生物的分类: 3、病原微生物:少数具有致病性,能引起人类、植物病害的微生物。 机会致病性微生物:在正常情况下不致病,只有在特定情况下导致疾病的微生物。4,郭霍法则:①特殊的病原菌应在同一种疾病中查见,在健康人中不存在;②该特殊病原菌能被分离培养得纯种;③该纯培养物接种至易感动物,能产生同样病症;④自人工感染的实验动物体内能重新分离得到该病原菌纯培养。 5、免疫学:㈠主动免疫;㈡被动免疫。 第一篇细菌学 第一章细菌的形态与结构 第一节细菌的大小与形态 1、观察细菌常采用光学显微镜,一般以微米为单位。 2、按细菌外形可分为:

①球菌(双球菌、链球菌、葡萄球菌、四联球菌、八叠球菌) ②杆菌(链杆菌、棒状杆菌、球杆菌、分枝杆菌、双歧杆菌) ③螺形菌(弧菌、螺菌、螺杆菌) 第二节细菌的结构 1、基本结构:细胞壁、细胞膜、细胞质、核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 2、革兰阳性菌(G+):显紫色;革兰阴性菌(G-):显红色。 3、 细胞壁结构革兰阳性菌 G+革兰阴性菌 G- 肽聚糖组成由聚糖骨架、四肽侧链、五 肽交联桥构成坚韧三维立体 结构 由聚糖骨架、四肽侧链构 成疏松二维平面网络结构 肽聚糖厚度20~80nm10~15nm 肽聚糖层数可达50层仅1~2层 肽聚糖含量占胞壁干重50~80%仅占胞壁干重5~20% 磷壁酸有无 外膜无有 4、G-菌的外膜{脂蛋白、脂多糖(LPS)→【脂质A,核心多糖,特异多糖】、脂质双层、} 脂多糖(LPS):即G-菌的内毒素。LPS是G-菌的重要致病物质,使白细胞增多,直至休克死亡;另一方面,LPS也可增强机体非特异性抵抗力,并有抗肿瘤等有益作用。 ①脂质A:内毒素的毒性和生物学活性的主要成分,无种属特异性,不同细菌的脂质A 骨架基本一致,故不同细菌产生的内毒素的毒性作用均相似。 ②核心多糖:有属特异性,位于脂质A的外层。 ③特意多糖:即G-菌的菌体抗原(O抗原),是脂多糖的最外层。 5、细胞壁的功能:维持菌体固有的形态,并保护细菌抵抗低渗环境。

医学微生物学重点复习资料

医学微生物学复习资料汇总 绪论 微生物:存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须借助光学显微镜或电子显微镜放大数百倍、数千倍。甚至数万倍才能观察 到的微小生物。 3、病原微生物:少数具有致病性,能引起人类、植物病害的微生物。 机会致病性微生物:在正常情况下不致病,只有在特定情况下导致疾病的微生物。

4,郭霍法则:①特殊的病原菌应在同一种疾病中查见,在健康人中不存在;②该特殊病原菌能被分离培养得纯种;③该纯培养物接种至易感动物,能产生同样病症;④自人工感染的实验动物体内能重新分离得到该病原菌纯培养。 5、免疫学:㈠主动免疫;㈡被动免疫。 第一篇细菌学 第一章细菌的形态与结构 第一节细菌的大小与形态 1、观察细菌常采用光学显微镜,一般以微米为单位。 2、按细菌外形可分为: ①球菌(双球菌、链球菌、葡萄球菌、四联球菌、八叠球菌) ②杆菌(链杆菌、棒状杆菌、球杆菌、分枝杆菌、双歧杆菌) ③螺形菌(弧菌、螺菌、螺杆菌) 第二节细菌的结构 1、基本结构:细胞壁、细胞膜、细胞质、核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 2、革兰阳性菌(G+):显紫色;革兰阴性菌(G-):显红色。 3、

细胞壁结构革兰阳性菌G+革兰阴性菌G- 肽聚糖组成由聚糖骨架、四肽侧链、五肽交 联桥构成坚韧三维立体结构 由聚糖骨架、四肽侧链构成疏 松二维平面网络结构 肽聚糖厚度20~80nm 10~15nm 肽聚糖层数可达50层仅1~2层 肽聚糖含量占胞壁干重50~80% 仅占胞壁干重5~20% 磷壁酸有无 外膜无有 4、G-菌的外膜{脂蛋白、脂多糖(LPS)→【脂质A,核心多糖,特异多糖】、脂质双层、} 脂多糖(LPS):即G-菌的内毒素。LPS是G-菌的重要致病物质,使白细胞增多,直至休克死亡;另一方面,LPS也可增强机体非特异性抵抗力,并有抗肿瘤等有益作用。 ①脂质A:内毒素的毒性和生物学活性的主要成分,无种属特异性,不同细菌的脂质A骨架基本一致,故不同细菌产生的内毒素的毒性作用均相似。 ②核心多糖:有属特异性,位于脂质A的外层。 ③特意多糖:即G-菌的菌体抗原(O抗原),是脂多糖的最外层。 5、细胞壁的功能:维持菌体固有的形态,并保护细菌抵抗低渗环境。 G-菌的外膜是一种有效的屏障结构,使细菌不易受到机体的体液杀菌物质、肠道的胆盐及消化酶等的作用。 6、细菌细胞壁缺陷型(细菌L型):细菌细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制,这种细菌壁受损的细菌在高渗环境下仍可存活者称为细菌细胞壁缺陷型。 原生质体:G+菌细胞壁缺失后,原生质层仅被一层细胞膜包住 原生质球:G-菌肽聚糖层受损后尚有外膜保护 ■细菌L型的诱发因素,如:溶菌酶,青霉素,溶葡萄球菌素,胆汁,抗体,补体等。 溶菌酶:能裂解肽聚糖中N-乙酰葡萄胺和N-乙酰胞壁酸之间的β-1,4糖苷键,破坏聚糖骨架,引起细菌裂解。 青霉素:能与细菌竞争合成肽聚糖过程中所需的转肽酶,抑制四肽侧链上D-丙氨酸与五肽桥间的联结,使细菌不能合成完整的肽聚糖,在一般渗透压

人教版重点高中生物选修一专题二《微生物的培养与应用总结归纳》知识点归纳

精心整理 专题二微生物的培养与应用 课题一微生物的实验室培养 ·培养基:人们按照微生物对营养物质的不同需求,配制出供其生长繁殖的营养基质,是进行微生物培养的物质基础。 ·培养基按照物理性质可分为液体培养基半固体培养基和固体培养基。在液体培养基中加入凝固剂琼脂(是从红藻中提取的一种多糖,在配制培养基中用作凝固剂)后,制成琼脂固体培养基。微生物在固体培养基表面生长,可以形成肉眼可见的菌落。根据菌落的特征可以判断是哪一种菌。液体培养基应用于工业或生活生产,固体培养基应用于微生物的分离和鉴定,半固体培养基则常用于观察微生物的运动及菌种保藏等。 ·按照成分培养基可分为人工合成培养基和天然培养基。合成培养基是用成分已知的化学物质配制而成,其中成分的种类比例明确,常用于微生物的分离鉴定。天然培养基是用化学成分不明的天然物质配制而成,常用于实际工业生产。 ·按照培养基的用途,可将培养基分为选择培养基和鉴定培养基。选择培养基是指在培养基中加入某种化学物质,以抑制不需要的微生物生长,促进所需要的微生物的生长。鉴别培养基是根据微生物的特点,在培养基中加入某种指示剂或化学药品配制而成的,用以鉴别不同类别的微生物。 ·培养基的化学成分包括水、无机盐、碳源、氮源、生长因子等。 ·碳源:能为微生物的代谢提供碳元素的物质。如CO2、NaHC3O等无机碳源;糖类、石油、花生粉饼等有机碳源。异养微生物只能利用有机碳源。单质碳不能作为碳源。·氮源:能为微生物的代谢提供氮元素的物质。如N2、NH3、NO3-、NH4+(无机氮源)

2019年-9 月

精心整理蛋白质、氨基酸、尿素、牛肉膏、蛋白胨(有机氮源)等。 只有固氮微生物才能利用N2 。 ·培养基还要满足微生物生长对pH、特殊营养物质以及氧气的要求。例如,培养乳酸杆菌时需要在培养基中添加维生素,培养霉菌时须将培养基的pH调至酸性,培养细菌是需要将pH调至中性或微碱性,培养厌氧型微生物是则需要提供无氧的条件·无菌技术·获得纯净培养物的关键是防止外来杂菌的入侵,要注意以下几个方面: ①对实验操作的空间、操作者的衣着和手,进行清洁和消毒。 ②将用于微生物培养的器皿、接种用具和培养基等器具进行灭菌。 ③为避免周围环境中微生物的污染,实验操作应在酒精灯火焰附近进行。 ④实验操作时应避免已经灭菌处理的材料用具与周围的物品相接触。无菌技术除 了用来防止实验室的培养物被其他外来微生物污染外,还有什么目 的? 答:无菌技术还能有效避免操作者自身被微生物感染。 ·消毒与灭菌的区别 消毒指使用较为温和的物理或化学方法仅杀死物体表面或内部一部分对人体有害的微生物(不包括芽孢和孢子)。消毒方法常用煮沸消毒法,巴氏消毒法(对于一些不耐高温的液体)还有化学药剂(如酒精、氯气、石炭酸等)消毒、紫外线消毒。 灭菌则是指使用强烈的理化因素杀死物体内外所有的微生物,包括芽孢和孢子。 灭菌方法有灼烧灭菌、干热灭菌、高压蒸汽灭菌。 灭菌方法: ①接种环、接种针、试管口等使用灼烧灭菌法; ②玻璃器皿、金属用具等使用干热灭菌法,所用器械是干热灭菌箱; 2019 年-9月

医学微生物学复习重点

医学微生物学复习重点 绪论 一.微生物的种类与分布 1.非细胞型微生物: 就是最小的一类微生物。 特点:无典型细胞结构,无能量产生酶系统,只能在活细胞内增殖;核酸类型为DNA或RNA。 代表生物:病毒属于此类微生物。 2.原核细胞型微生物: 特点:核呈环状裸DNA团块,无核膜、核仁;细胞器不完善,只有核糖体;DNA 与RNA 同时存在。 代表生物:分古生菌与细菌二大类。细菌的种类繁多,包括:细菌、支原体、衣原体、立克次体、螺旋体与放线菌。 3.真核细胞型微生物: 特点:细胞核分化程度高,有核膜与核仁;细胞器完整。 代表生物:真菌属于此类微生物。 4.微生物在自然界的分布极为广泛 江、河、湖泊、海洋、土壤、矿层、空气及人类、动物与植物的体表、与外界相通的腔道,都有数量不等、种类不一的微生物存在。其中以土壤中的微生物最多。 第一章细菌的形态与结构 一、细菌的大小与形态:细菌一般以微米(μm)为单位;按期外形区分主要有球菌、杆菌与螺形菌三大类。 二、细菌的基本结构:细胞壁、细胞膜、细胞质、核质。 1、细胞壁:

用革兰染色法可以分为两大类,即革兰阳性(G+染成紫色)菌与革兰阴性(G-染成红色)菌。两类细菌细胞壁的共有组分就是肽聚糖,但分别拥有各自的特殊组分。 (1)肽聚糖:就是细菌细胞壁的共同组分,为原核细胞所特有,又称为粘肽或胞壁质。G+菌的肽聚糖由聚糖骨架、四肽侧链与五肽交联桥三部分组成,G-菌的肽聚糖仅由聚糖骨架与四肽侧链两部分组成。 聚糖骨架:由N-乙酰葡萄糖胺与N-乙酰胞壁酸交替间隔排列,经β-1,4糖苷键(溶菌酶作用点)联结而成。 五肽交联桥:青霉素的作用点,所以革兰阳性菌对青霉素敏感。 (2)革兰阳性菌细胞壁特殊组分 G+细菌的细胞壁较厚,肽聚糖(G+主要成分)与磷壁酸(特有成分)还有少数就是磷壁醛酸。磷壁酸具有抗原性及黏附素活性,具有黏附作用,与细胞的致病性有关。 (3)革兰阴性菌细胞壁特殊组分 G-细菌细胞壁较薄,除了肽聚糖以外,还有外膜(G-主要成分),外膜由脂蛋白、脂质双层与脂多糖三部分组成。由脂质双层向细胞外伸出的就是脂多糖(LPS)。LPS由脂质A、核心多糖与特异多糖三部分组成,即G-菌的内毒素。 ●脂质A: i.不同种属细菌的脂质A骨架基本一致 ii.脂质A就是内毒素的毒性与生物学活性的主要组分,无种属特异性。 iii.耐热,毒性反应为发热 ●核心多糖:有属特异性,同一属细菌的核心多糖相同 ●特异多糖:就是G-的菌体抗原(O抗原),具有种特异性。

微生物细菌部分笔记整理

第一章细菌的形态与结构 一、细菌的大小与形态 (一)细菌(bacterium)的大小——微米(μm) (二)细菌的基本形态——球菌、杆菌、螺形菌(弧菌、螺菌) 二、细菌的结构 基本结构:细胞壁、细胞膜、细胞质、核质 特殊结构:荚膜、鞭毛、菌毛、芽胞 (一)细菌的基本结构 1、细胞壁 (1)细胞壁的主要成分——肽聚糖(peptidoglycan) ▲肽聚糖(peptidoglycan)(粘肽/胞壁质)是一类复杂多聚体,是细菌细胞壁的主要成分,原核细胞特有 组成及结构:革兰阳性菌G+:聚糖骨架、四肽侧链、五肽交联桥 革兰阴性菌G—:聚糖骨架、四肽侧链 (2)革兰阳性菌细胞壁特殊组分---磷壁酸 分类:壁磷壁酸、膜磷壁酸(或脂磷酸壁LTA) 作用:1 G+菌重要表面抗原 2参与调节细胞外离子平衡 3与细菌粘附致病有关 (3)革兰阴性菌细胞壁特殊组分——外膜 组成:脂蛋白、脂质双层、脂多糖(LPS)(有些细菌为脂寡糖LOS) ▲脂多糖(LPS):脂质A(无种属特异性) 核心多糖(有属特异性) 特异多糖(有种特异性,即G-的菌体抗原O抗原) ▲革兰阳性菌与阴性菌细胞壁结构比较 G+ G- 肽聚糖厚、多层,50层薄、层少,1-2层 糖脂含量糖多脂少糖少脂多 特殊成分磷壁酸外膜 意义:导致两类细菌在染色性、抗原性、致病性及药物敏感性等方面不同。 例如:青霉素(破坏肽聚糖),溶菌酶(破坏聚糖骨架)均作用于G+ (4)▲细胞壁的功能a. 维持细菌的固有形态、保护细菌抵抗低渗环境 b. 构成细菌的重要抗原 c. 与细菌致病性有关: A群链球菌膜磷壁酸——粘附作用 革兰阴性菌脂多糖——多种生物学效应 d. 参与营养物质的交换 (5)▲细菌细胞壁缺陷型(细菌L型) 含义:细菌受到理化或生物因素作用后,可使其细胞壁肽聚糖结构破坏或合成抑制,在高渗环境下,多数细菌可存活而成为细胞壁缺损的细菌。 特点:细菌L型呈高度多形性; 独特的培养特性:高渗透压、高营养、低琼脂; L型菌仍有一定的致病性; 有些L型菌在去除诱发因素后,能回复为原菌。 2、细胞膜:1物质转运2呼吸分泌3生物合成4参与细菌分裂

医学微生物学总结

08级口腔医学七年制 医学微生物学 复习 Candy 2010

绪论 微生物(microorganism):存在于自然界的一大群体形微小、结构简单、肉眼直接看不见,必须借助光学显微镜或电子显微镜放大数百倍、数千倍,甚至数万倍才能观察到的微小生物。微生物的种类 微生物的特点:1、个体微小,结构简单2、种类繁多,分布广泛3、繁殖迅速,易于变异微生物发展史:经验微生物学时期、实验微生物学时期、现代微生物学时期 细菌学 第1章细菌的形态与结构 测量单位:微米 分类:球菌、杆菌、螺形菌 脂多糖LPS: 细菌细胞壁缺陷型(细菌L型):细菌细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制时[常在使用作用于细胞壁(溶菌酶、青霉素)抗生素时发生],这种细胞壁受损的细菌在高渗环境下仍可存活者称为细菌细胞壁缺陷型。 因细胞壁缺失而呈高度多态性 大多染色呈格兰阴性 高渗低琼脂含血清的培养基中培养 菌落为荷包蛋样 有一定致病力,多引起慢性感染;具有可回复性 芽胞抵抗力强的原因: 含水量少,蛋白质不易受热变性 具有多层致密的厚膜,理化因素不易透入 核心和皮质中含吡啶二羧酸(DPA),与钙结合生成的盐能提高芽胞中各种酶的稳定性中介体:部分细胞膜内陷、折叠、卷曲形成的囊状物,多见于革兰阳性菌。其功能类似于真核细胞的线粒体,故亦称为拟线粒体。

第2章 细菌的生理 细菌的营养物质:水、碳源、氮源、无机盐、生长因子 生长因子(growth factor ):某些细菌生长所必需的但自身又不能合成,必须由外界供给的物质称为生长因子。 影响细菌生长的环境因素: 营养物质 充足的营养物质 氢离子浓度 多数病原菌最适PH 为7.2—7.6 温度 多数病原菌最适温度为37度 渗透压 气体: 专性厌氧菌为何不能在有氧环境中生长: 缺乏还原电势高的呼吸酶类,不能利用有氧环境中的营养物质 厌氧菌缺乏过氧化氢酶、过氧化物酶、超氧化物岐化酶,不能消除细菌在有氧环境中代谢产生的具有强杀菌性的超氧离子、过氧化氢 细菌个体的生长繁殖:二分裂无性繁殖,速度快 合成代谢产物: 1、热源质(pyrogen ):细菌(大多是革兰阴性菌,LPS )合成的一种注入人体或动物体内能引发发热反应的物质称热源质,又称致热源。(耐高温,高压蒸汽灭菌亦不能破坏,250.C 高温干烤可破坏,蒸馏法效果最好,用吸附剂和特殊石棉滤板可除去液体中大部分热源质,注射药品制备和使用时注意无菌操作) 2、毒素与侵袭性酶 外毒素(exotoxin ):多数革兰阳性菌和少数格兰阴性菌在生长繁殖过程中释放到菌体外的蛋白质,有较强毒性。 内毒素(endotoxin ):格兰阴性菌的脂多糖,当菌体死亡崩解后游离出来,毒性弱于外毒素。 3、色素:有助于鉴别细菌;脂溶性、水溶性 4、抗生素(antibiotic ):某些微生物(多为放线菌、真菌,细菌产生少)代谢过程中产生的一类能抑制或杀死其他微生物或肿瘤细胞的物质。 5 、细菌素:某些菌株产生的一类具有抗菌作用的蛋白质称为细菌素。作用范围窄,仅对与产生菌有亲缘关系的细菌有杀伤作用,可用于细菌分型和流行病学调查。 6、维生素

医学微生物学重点整理

第三章消毒灭菌与病原微生物实验室生物安全 一、消毒灭菌的常用术语 ⑴灭菌:杀灭物体上所有微生物的方法。灭菌比消毒要求高,包括杀灭细菌芽胞在内的全部病原微生物和非病原微 生物。 ⑵消毒:杀死物体上病原微生物的方法,并不一定能杀死含芽胞的细菌或非病原微生物。用以消毒的药品称为消毒 剂。⑶抑菌:抑制体内或体外细菌的生长繁殖。常用的抑菌剂为各种抗生素。⑷防腐:防止或抑制体外细菌生长繁殖的方法。细菌一般不死亡。⑸无菌:不存在活菌,多是灭菌的结果。⑹无菌操作:防止微生物进入人体或物体的操作技术。⑺清洁:是指通过除去尘埃和一切污秽以减少微生物数量的过程。 二、热力灭菌法原理: ⑴干热灭菌法:通过脱水、干燥和大分子变性。一般细菌繁殖体在干燥状态下,80-100℃经1小时可被杀死,芽 胞则需要更高温度才能被杀死。包括:焚烧、烧灼、干烤、红外线。 ⑵湿热灭菌法:最常用,在相同温度下湿热灭菌法比干热灭菌法效果更好,因为:①湿热中细菌菌体蛋白较易凝 固变性;②湿热的穿透力比干热大;③湿热的蒸汽有潜热效应存在。包括:巴氏消毒法(加热至61.1-62.8℃30分钟,71.7℃经15-30秒)、煮沸法、流动蒸汽消毒法、间歇蒸汽灭菌法、高压蒸汽灭菌法(压力103.4KPa (1.05Kg/cm2)、温度121.3 ℃、时间—15-20min;效果:杀灭包括芽孢在内所有微生物;应用:所有耐高温、高压、耐湿的物品)。 三、辐射杀菌法紫外线 原理:波长200-300nm的紫外线具有杀菌作用。其中260~266nm波长UV与DNA吸收光谱一致。其主要作用于DNA,使一条DNA链上相邻的两个胸腺嘧啶共价结合形成二聚体,干扰DNA复制与转录,导致细菌变异和死亡,并可杀灭病毒。特点:穿透力较弱。应用:物体表面及空气消毒 四、滤过除菌法 用物理阻留的方法除去液体或空气中的细菌, 真菌。特点:只能除去细菌,真菌, 不能除去病毒、支原体、L型细菌。应用:用于一些不耐高温灭菌的血清、毒素、抗生素,以及空气的除菌。 五、口腔黏膜消毒可用3%过氧化氢;冲洗阴道、膀胱、尿道等可用0.1%~0.5%氯已定或1g/L高锰酸钾。 六、第一类、第二类病原微生物统称为高致病性病原微生物。一、二级实验室不得从事高致病性病原微生物实验活动。 三级、四级实验室从事高致病性病原微生物实验活动。 第四章噬菌体 一、噬菌体是感染细菌、真菌、放线菌或螺旋体等微生物的病毒。基本特点★个体微小,可以通过细菌滤器;★无细 胞结构,主要由衣壳(蛋白质)和核酸组成;★只能在活的微生物细胞内复制增殖,是一种专性胞内寄生的微生物。★噬菌体分布极广。 二、噬菌体感染细菌有两种结果: ①毒性噬菌体:能在宿主细胞内复制增殖,产生许多子代噬菌体,并最终裂解细菌,建立溶菌周期。②温和噬菌 体:噬菌体基因与宿主染色体整合,成为前噬菌体,细菌变成溶原性菌,不产生子代噬菌体,但噬菌体DNA能随细菌DNA复制,并随细菌的分裂而传代,建立溶原性状态。 三、溶原性细菌温和噬菌体的基因组能与宿主菌基因组整合,并随细菌分裂传至子代细菌的基因组中,不引起细菌裂 解。整合在细菌基因组中的噬菌体基因组称为前噬菌体。带有前噬菌体基因组的细菌称为溶原性细菌。 第五章细菌的遗传与变异 一、细菌变异的类型:表型变异与基因型变异。 二、细菌变异的机理:?突变的概念,规律及分子基础。遗传性变异是细菌DNA的结构发生了改变而引起的,改变了 的性状能相对稳定地遗传给子代。 三、基因转移:外源性的遗传物质由供体菌进入某受体菌细胞内的过程。 基因重组:转移的基因与受体菌DNA整合在一起,使受体菌获得供体菌某些特性。 细菌的基因转移和重组方式:转化、接合、转导、溶原性转换、原生质体融合。 四、转化:是供体菌裂解释放的DNA被受体菌直接摄取,使受体菌获得新的性状。 转导:是以温和噬菌体为载体,将供体菌的DNA转入到受体菌,使受体菌获得供菌的部分遗传性状。根据转导基因片段的范围,可将转导分为两类:普遍性转导和局限性转导。 溶原性转换是指温和噬菌体感染宿主菌后,以前噬菌体形式与细菌基因组整合,成为溶原性细菌,从而获得由噬

微生物笔记实用总结

细菌 细胞壁 G+ G- 壁磷酸 + - 外膜 - + 芽孢 + - G-:特异多糖(O 抗原)、鞭毛(H 抗原) G-:外膜可阻挡溶菌酶、抗生素、碱性染料等进入;某些G-(如淋病奈瑟氏菌和脑膜炎奈瑟菌)对青霉素亦敏感 医院感染病原体主要是:G- 壁磷酸和LPS 有抗原性 初次分离需CO2:脑膜炎奈瑟菌、淋病奈瑟菌、布鲁菌 最强毒素:肉毒毒素 糖发酵: 大肠埃希菌 伤寒沙门菌 痢疾杆菌

乳糖 + - - 抗菌药物的主要作用部位 细胞壁 细胞膜 蛋白质 核酸 万古霉素 两性霉素B 大环内脂类(红霉素) 利福平 异烟肼 酮康唑 氨基糖苷类(链霉素、庆大霉素) 喹诺酮类(环丙沙星) 四环素类(四环素、多西环素) 酮康唑:固醇、真菌 抗结核药物:利福平、异烟肼、乙胺丁醇、吡嗪酰胺 R 质粒:接合、转化 转座子:跳跃基因 白假丝酵母菌:鹅口疮 特殊结构 病原体

鞭毛大肠杆菌属、沙门菌属、霍乱弧菌、幽门螺杆菌 菌毛奈瑟菌属 芽孢厌氧芽孢梭菌 G-球菌:脑膜炎奈瑟菌、淋病奈瑟菌 伊红美蓝紫黑色:大肠杆菌 皮试:破伤风抗毒素 繁殖最慢:结核分枝杆菌 不被超广谱β-内酰胺酶灭活——亚胺培南(碳氢霉烯类) 病原体首选药物 青霉素 钩端螺旋体、梅毒螺旋体、 肺炎链球菌、溶血性链球 菌 万古霉素 耐甲氧西林金黄色葡萄球 菌 肺炎支原体、嗜肺军团菌红霉素(飞鸿) 立克次体四环素、多西环素(赐死)伤寒沙门菌、痢疾志贺菌环丙沙星(沙粒环星) 厌氧菌、阴道毛滴虫甲硝唑(莺燕假笑)

药物药理 利福平抑制细菌DNA依赖的RNA 多聚酶 氨基糖苷类抑制细菌细胞壁合成 喹诺酮类抑制DNA解旋酶 多西环素抑制蛋白质合成 磺胺类药物抑制二氢叶酸合成酶 菌种无效药物 立克次体磺胺类药物 无芽孢厌氧菌氨基糖胺类 全身感染: 全身感 细菌 染 中毒性细菌性痢疾 内毒素 血症 菌血症伤寒(二次)、脑膜炎奈瑟菌 败血症大肠杆菌、鼠疫耶尔森菌、炭疽芽胞杆菌、大肠埃希菌、产气荚膜梭菌(气性坏疽)、 脑膜炎奈瑟菌、伤寒菌

相关文档
相关文档 最新文档