文档库 最新最全的文档下载
当前位置:文档库 › AM超外差收音机的Systemview仿真

AM超外差收音机的Systemview仿真

AM超外差收音机的Systemview仿真
AM超外差收音机的Systemview仿真

绪论 (2)

第一章软件SystemView的介绍 (3)

1.1设计窗口 (3)

1.2分析窗口 (5)

1.3 SystemView仿真系统的优点 (8)

第二章 AM调制解调原理 (10)

2.1 AM调制原理 (10)

2.1.1 幅度调制的一般模型 (10)

2.1.2 常规双边带调幅(AM) (10)

2.2AM解调原理 (11)

第三章超外差收音机原理与仿真 (13)

3.1超外差收音机原理 (13)

3.2超外差收音机仿真 (16)

小结 (20)

参考文献 (21)

谢辞 (22)

1

超外差式是与直放式相对而言的一种接收方式,超外差式收音机能把接收到的频率不同的电台信号都变成固定的中频信号(465kHz),再由放大器对这个固定的中频信号进行放大。它的优点是灵敏度高,选择性好,音质好工作稳定,它的缺点是镜像干扰较大,存在假响应,但这并不影响它的广泛应用,现在大部分的收音机都是超外差的。随着现代通信技术的飞速发展,通信系统的性能和集成度也越来越高,这对通信系统的分析和设计提出了更高的要求在通信实验设备有限的情况下,利用通信仿真软件进行系统分析和设计可有效地解决这一矛盾SystemView 是一个信号级的系统仿真软件,主要用于电子信息与通信系统,满足不同层次的通信系统的设计和仿真需求,从而提高系统的可靠性参数的设置的合理性等.

随着通信技术的发展日新月异,通信系统也日趋复杂。因此,在通信系统的设计研发过程中,通信系统的软件仿真已成为必不可少的一部分。目前,电子设计自动化EDA(Electronic Design Automatic)已成为通信系统设计的主潮流。为了使复杂的设计过程更加便捷高效,使得分析与设计所需的时间和费用降低。美国Elanix公司推出的基于PC机Windows平台的SystemView动态系统仿真软件,是一个比较流行的,优秀的仿真软件。

SystemView 是一个用于现代工程与科学系统设计及仿真的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,SystemView 在友好而且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。

第一章软件SystemView的介绍

SystemView 是一个用于现代工程与科学系统设计及仿真的动态系统分析平台。利用SystemView 可以构造各种复杂的模拟、数字、数模混合系统,各种多速率系统。因此,它可用于各种线性或非线性控制系统的设计和仿真。基本库中包括多种信号源、接收器、加法器、乘法器,各种函数运算器等;尤其特色的是,利用它可以从各种不同角度,以不同方式按要求设计多种滤波器,并可自动完成滤波器各指标—如幅频特性(伯特图)、传递函数、根轨迹图等—之间的转换。

SystemView 是一个用于现代工程与科学系统设计及仿真的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域,SystemView 在友好而且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。

它还自带有通讯、逻辑、数字信号处理、射频/模拟等专业库以备选择,特别适合于现代通信系统的设计、仿真和方案论证。它还可以实时的仿真各种DSP 结构,并进行各种系统时域和频域分析、谱分析,及对各种逻辑电路、射频/模拟电路(混合器、放大器、RLC电路、运放电路等)进行理论分析和失真分析等。随着现代通信技术的不断发展,无线通信技术已日趋成熟和完善。利用System View带有的CDMA、DVB等扩展库即可十分方便的完成这些系统的设计和仿真。

利用SystemView,不用写一句代码即可完成各种系统的设计与仿真,快速地建立和修改系统、访问与调整参数,方便地加入注释,它具有与外部文件的接口,可直接获得并处理输入/输出真实世界的数据。另外,它还提供了与编程语言VC++或仿真工具Matlab的接口,可以方便的调用其函数。

System View的用户环境包括两个常用的界面设计窗口和分析窗口。

1.1设计窗口

启动SystemView 后就会出现如图1.2 所示的系统设计窗口。它包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计窗工作区。其中设计窗口工作区是用于设置、连接各种图符以创建系统,进行系统仿真等操作;提示

3

栏用于显示系统仿真的状态信息、功能快捷键的功能信息提示和图符的参数显示;滚动条用于移动观察当前的工作区域。当鼠标器位于功能图符上时,则该图符的具体参数就会自动弹出显示。

图1

1、图标库

图标是SystemView 仿真运算、处理的基本单元共分三大类:

第一类包括信号源库,它只有输出端没有输入端;

第二类包括观察窗库,它只有输入端没有输出端;

第三类包括其它所有图标库,这类图标都有一定个数的输入端和输出端。SystemView的图标库可分为三种,即基本库、专业库以及扩展库。

(1)基本库(Main Libraries)共八个,分别为信号源库、子系统库、加法器、子系统输入输出端口、算子库、函数库、乘法器及观察窗库等。

(2)专业库包括四个直接调用的库—通信库、数字信号处理库、逻辑库、射

频/模拟库;

(3)扩展库包括其它需要从用户代码库中以动态链接库的方式加载的—码分

多址系统CDMA库、数字视频广播 DVB库、自适应滤波器库等。

2、S y st emVi ew基本图符

图符图符名功能说

连接节点用于多个图符输入输出信号的汇聚、连接,在图符连接点较多时使用

信号源用于产生用户系统所需的信号源。这个库中的图符只有输出,没有输

子系统它代表一个复杂的子系统、子函数或仿真的子过程的图符。

加法器对输入信号进行加法操作。

子系统I/O用于设置一个嵌套子系统的输入和输出节点。

算子对输入数据进行某一算子操作,如延时、平均、滤波等等。

函数对输入数据进行某一指定函数操作。

乘法器对输入信号进行乘法操作。

接收器用于实现信号的收集、显示、分析以及输出(包括输出到文件)等功能。它只有输入,没有输出。

图2

1.2 分析窗口

1、分析窗口界面

分析窗口是用户观察SystemView 数据输出的基本工具。如图1.7 所示。

有多种选项可以增强显示的灵活性和用途。这些功能可以通过单击分析窗工具

条上的快捷按钮或通过下拉菜单来激活。在系统设计窗口中单击分析窗口按钮,

即可访问分析窗口。在分析窗口中单击系统按钮即可返回系统设计窗口。分析

5

窗口包括标题栏、菜单栏、工 具条、滚动条、活动图形窗口和提示信息区。同设计窗口一样,滚动条包括用于左右滚 动的水平滚动条和用于上下滚动的垂直滚动条;提示信息区显示分析窗口的状态信息、 坐标信息和分析的进度指示;活动图形窗显示输出的各种图形,如波形图、功率谱、眼 图等。

图 3

2、系统定时 System View 系统是一个离散时间系统。在每次系统运行之前,首先需要设

定一个系统频率。仿真各种系统运行时,是先对信号以系统频率进行采样,然后按照系统对信号的处理计算各个采样点的值,最后在输出时,在观察窗内,按要求画出各个点的值或拟合曲线。所以,系统定时是系统运行之前一个必不可少的步骤。单击“系统定时”(System Time)按钮,打开如图的系统定时窗口。

图4

系统仿真之前首先必须定义这些参数,系统定时直接控制系统的仿真。同时系统定时的设定直接影响系统仿真的精度,所以选取参数必须十分注意,这是应重点注意的内容,采样频率过高会增加仿真的时间,过低则有可能得不

到正确的仿真结果。需要注意的主要有以下几点:

(1)起始和终止时间控制了系统运行的时间范围,SystemView 要求终止时间值大于起始时间值;

(2)采样率/采样间隔控制着时间步长,这两个值是相互关联的两个系统参数,采样率=1/采样间隔,改变其中一个数值,系统会自动修改另一个;

(3)采样点数指定了系统仿真过程中总的采样点个数,其基本计算关系为:采样点数=(终止时间-起始时间)╳采样率+1。根据这个关系式,在采样率不变时, SystemView 将遵循下列规则自动修改参数:如果改变了采样点数,SystemView 不改变起始时间,但会根据新的采样间隔修改终止时间;如果对起始时间和终止时间中的一个或全部做了修改,则采样点数会被自动修改;采样点数只能是整数。若计算值不是整数,SystemView 将取其近似整数值。除非用户自行修改,否则系统会一直保持固定的采样点数。

(4)频率分辨率是指系统对用户数据进行 Fourier 变换时,根据时间序列所得到的频率分辨率,其值为:采样率/采样点数。

(5)系统循环次数提供了系统自动重复运行的功能。在它的下方还有两个选项:Reset system on loop 和 Pause on loop,选择了“循环后复位系统”选项时,每次循环后图符的参数都复位(恢复为设置参数),否则,每次循环后所有图符的结果都作为下个循环的初始参数。“循环后暂停”功能用于在每次循环结束后暂停系统运行,以便分析本次运行的结果。

(6)在系统定时窗口中还有两组按钮:Time values 和Auto Set No.Samples。 Time Va1ues 中的“Update”按钮用于更新数值,当修改了某一时间参数后,只要按下此按钮,SystemView 就会自动对所有其他参数进行修改。

7

按“OK”按钮也会得到相同的效果。“Reset”按钮用于恢复原有的时间参数。Auto Set No.Samples 中的“Set for FFT”能使用户十分方便地把数据长度设置成 2 的整次幂。单击“Set for FFT”按钮,用户数据采样点数会自动靠拢到适当的 2 的整次幂,系统地终止时间也会同时自动改变。 SystemView 的FFT 计算程序是使用 2 的整数次幂方式进行速度优化的,如果用户的数据个数不是 2 的整数次幂,SystemView 将自动补零。如果因为某种原因而不希望执行FFT 操作时,按下,“undo”按钮即可恢复原有的设置。按住键盘的 Shift 键,再按“Set for FFT”会减小数字。

1.3 SystemView仿真系统的优点

1.能仿真大量的应用系统。

能在DSP、通讯和控制系统应用中构造复杂的模拟、数字、混合和多速率系统。具有大量的可选择的库,允许用户有选择地增加通讯、逻辑、DSP和射频/模拟功能模块。特别适合于无线电话、无绳电话、调制解调器以及卫星通信系统等的设计;课进行各种系统是与/频域分析和谱分析;对射频/模拟电路进行理论分析和失真分析。

2.快速方便的动态系统设计与仿真。

SystemView图标库包括几百种信号源、接收端、操作符合功能块,提供从DSP、通信、信号处理、自动控制、直到构造通用数学模型等应用。信号源和接收端图标允许在SystemView内部生成和分析信号,并提供可外部处理的各种文件格式和输入/输出数据接口。

3.在报告中方便地加入SystemView的结论。

SystemView通过Notes(注释)很容易在屏幕上描述系统;生成的SystemView 系统饿输出的波形图可以很方便地使用复制和粘贴命令插入微软word等文字处理器。

4.提供基于组织结构图方式的设计。

通过利用SystemView中的图符和MetaSystem(子系统)对象的无限制分层结构功能,SystemView能很容易地建立复杂的系统。

5.多速率系统和并行系统。

SystemView允许合并多种数据采样率输入的系统,以简化FIR滤波器的执行。这种特性尤其适合于同时具有低频和高频部分的痛ixnxitongd而设计于仿真,有利于提供整个系统的仿真速度,而在局部又不会降低仿真的精度。同时还可以降低对计算机硬件配置的要求。

6.完备的滤波器和线性系统设计。

SystemView包含一个功能强大的、很容易使用的图形模板设计模拟和数字

以及离散和连续时间系统的环境,还包含大量的FIR/IIR滤波类型和FFT类型,并提供易于用DSP实现滤波器或线性系统的参数。

7.先进的信号分析和数据块处理。

SystemView提供的分析窗口是一个能够提供系统波形详细检查的交互式可视环境。分析窗口还提供一个能岁仿真生成数据进行先进的块处理操作的接受计算器。

SystemView还提供了一个真实而灵活的窗口用以检查系统波形。内部数据的图形放大、缩小、滚动、谱分析、标尺以及滤波等,全部都是通过敲击鼠标器实现的。

8.课扩展性。

SystemView允许用户插入自己用C/C++编写的用户代码库,插入的用户库自动集成到SystemView中,如同系统内建的库一样使用。

9.完善的自我诊断功能。

SystemView能自动执行系统连接检查,通知用户连接出错并通过显示指出出错的图符。这个特点对用户系统的诊断是十分有效的。

总之,SystemView的设计者希望它成为一种强大有力的基于个人计算机的动态的通信系统仿真工具,以实现在不具备先进仪器的条件下同样也能完成复杂的通信系统设计与仿真。

9

第二章 AM 调制解调原理

2.1 AM 调制原理

2.1.1 幅度调制的一般模型

标准调幅就是常规双边带调制,简称调幅(AM)。假设调制信号()t m 的平均值为0,将其叠加一个直流分量0A 后载波相乘(图3-3),即可形成调幅信号。其时

域表达式为

()()00cos cos cos AM c c c S A m t t A t m t t ???=+=+????

式中:0A 为外加的直流分量;()t m 可以是确知信号,也可以是随机信号。

设计的AM 调制模型如图3-3

()t m ()t S AM

0A t c ωcos

图5 AM 调制模型

由以上表达式可见,对于幅度调制信号,在波形上,它的幅度随基带信号规律而变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。由于这种搬移是线性的,因此幅度调制通常又称为线性调制,相应地,幅度调制系统也称为线性调制系统。

2.1.2 常规双边带调幅(AM )

在图3-1中,若假设滤波器为全通网络(=1),调制信号叠加直流后再与载波相乘,则输出的信号就是常规双边带调幅(AM )信号。 AM 调制器模型如图3-2所示。

AM 信号的时域和频域表示式分别为

加法器

乘法器

式中,

为外加的直流分量;可以是确知信号也可以是随机信号,但通常认

为其平均值为0,即。

AM信号的典型波形和频谱分别如图3-3(a)、(b

)所示,图中假定调制信号

的上限频率为。显然,调制信号的带宽为。

图6 AM信号波形

由图3-3(a)可见,AM

信号波形的包络与输入基带信号成正比,故用包

络检波的方法很容易恢复原始调制信号。但为了保证包络检波时不发生失真,

必须满足,否则将出现过调幅现象而带来失真。

由Flash的频谱图可知,AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。显然,无论是上边带还是下边带,都含有原调制信号的完整信息。故AM信号是带有载波的

双边带信号,它的带宽为基带信号带宽的两倍,即

2.2 AM解调原理

调制过程的逆过程叫做解调。AM信号的解调是把接收到的已调信号还原为调制信号。 AM信号的解调方法有两种:相干解调和包络检波解调。(1)相干解调

由AM信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。解调中的频谱搬移同样可用调制时

11

的相乘运算来实现。相干解调的原理框图如图3-4所示。

将已调信号乘上一个与调制器同频同相的载波,得

由上式可知,只要用一个低通滤波器,就可以将第1项与第2项分离,无失真的

恢复出原始的调制信号。

相干解调的关键是必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

(2)包络检波法

由的波形可见,AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和

低通滤波器组成,如图3-5所示。

图3-4为串联型包络检波器的具体电路及其输出波形,电路由二极管D、电

阻R和电容C组成。当RC满足条件时,包络检波器的输出与输

入信号的包络十分相近,即包络检波器输出的信号中,通常含有频率为的波纹,可由LPF滤除。

图7串联型包络检波器电路及其输出波形

13

第三章 超外差收音机原理与仿真

3.1超外差收音机原理

超外差式收音机的工作原理

图8 超外差式调幅收音机的工作原理方框图

一、最简收音机原理图

图中LC 谐振回路是收音机输入回路,改变电容C 使谐振回路固有频率与无线电发射频率相同,从而引起电磁共振,谐振回路两端电压VAB 最大,将该电波接收下来。经高频放大电路放大后,通过由二极管D 和滤波电容C1构成的检波电路,将调幅信号包络解调下来,得到调制前的音频信号,再将音频信号进行低

频放大,送到喇叭,就完全还原成可闻的声波信号。

图9 最简单的收音机组成框图

这就是最简AM 收音机(也称高放式收音机)的工作原理,它简单,但可行性、可使用性太差,不适合日常使用。

由于高放式收音机中高频放大器只能适应较窄频率范围的放大,要想在整个中波频段535kHZ —1605kHZ 获得一致放大是很困难的。因此用超外差接收方式来代替高放式收音机。

一、超外差式收音机原理 输

入 混频 中放1 中放检前

AG

本振

所谓超外差式,就是通过输入回路先将电台高频调制波接收下来,和本地振荡回路产生的本地信号一并送入混频器,再经中频回路进行频率选择,得到一固定的中频载波(如:调幅中频国际上统一为465KHz或455KHz)调制波。

超外差的实质就是将调制波不同频率的载波,变成固定的且频率较低的中频载波。在广播、电视、通讯领域,超外差接收方式被广泛采用。如图3-4。

图10 超外差原理

在超外差的设计中,本振频率高于输入频率。用同轴双联可变电容器,使输入回路电容C1-2和本振回路电容C1-1同步变化,从而使频率差值始终保持近似一致,其差值即为中频,即:

如接收信号频率是:

600kHz,则本振频率是1055kHz;

1000kHz,则本振频率是1455kHz;

1500kHz,则本振频率是1955kHz;

由于谐振回路谐振频率,f 与C不成线性变化,因此必须有补偿电容对其特性进行修正,以获得在收听范围内f与C近似成线性变化,保证f本振-f信号=f中频为一固定中频信号。超外差方式使接收的调制信号变为统一的中频调制信号,在作高频放大时,就可以得到稳定且倍数较高的放大,从而大大提高收音机的品质。

比较起来,超外差式收音机具有以下优点:

(1)接收高低端电台(不同载波频率)的灵敏度一致;

(2)灵敏度高;

(3)选择性好(不易串台)。

由于直接放大式收音机的灵敏度比较低,只能接受本地区强信号的电台,接收远地电台的能力较弱,它的选择性差,接收相邻频率的电台信号时存在串台现象。为了提高灵敏度和选择性,就要采用超外差式收音机。超外差式收音机有别于直放式收音机的特点是它不直接放大广播信号,而是通过一个叫变频级的电路将接收的任何一个频率的广播电台信号变成一个固定中频信号(我国规定中频频率是4 6 5 KHz),由中频放大器进行放大,然后进行检波,得到音频信号,

最后推动扬声器工作。

中夏牌S 6 6D型收音机,采用典型六管超外差式电路,具有安装调试方便、工作稳定、灵敏度高、选择性好等特点,功放级采用无输出变压器的功率放大器,(OTL电路),有效率高、频率特性好、声音宏亮、耗电省等特色。是一款值得青少年无线电爱好者动手制作的套件。

一、电路的工作原理

图1是中夏S 66D型收音机的原理电路图。为了分析方便,它的工作过程可以画成方框图,如图2。(图片看不清可以点击放大 )

1、输入调谐电路

输入调谐电路由双连可变电容器的CA和T 1的初级线圈Lab组成,是一并联谐振电路,T l是磁性天线线圈,从天线接收进来的高频信号,通过输入调谐电路的谐振选出需要的电台信号,电台信号频率是f=l/2πLabCA,当改变CA 时,就能收到不同频率的电台信号。

2、变频电路

本机振荡和混频合起来称为变频电路。变频电路是以VT l为中心,它的作用是把通过输入调谐电路收到的不同频率电台信号(高频信号)变换成固定的

465KHz的中频信号。

VT l、T2、CB等元件组成本机振荡电路,它的任务是产生一个比输入信号频率高465 KHz的等幅高频振荡信号。由于C l对高频信号相当短路,T l的次级Lcd的电感量又很小,对高频信号提供了通路,所以本机振荡电路是共基极电路,振荡频率由T2、cB控制,CB是双连电容器的另一连,调节它以改变本机振荡频率。T2是振荡线圈,其初次绕在同一磁芯上,它们把VT 1的等电极输出的放大了的振荡信号以正反馈的形式耦合到振荡回路,本机振荡的电压由T2的初级的抽头引出,通过C2耦合到VT 1的发射极上。

混频电路由VT l、T3的初级线圈等组成,是共发射极电路。其工作过程是:(磁性天线接收的电台信号)通过输入调谐电路接收到的电台信号,通过Tl的次级线圈Lcd送到VT l的基极,本机振荡信号又通过C2送到VT l和发射极,两种频率的信号在T 1中进行混频,由于晶体三极管的非线性作用,混合的结果产生各种频率的信号,其中有一种是本机振荡频率和电台频率的差等于465KHz的信号,这就是中频信号。混频电路的负载是中频变压器,T3的初级线圈和内部电容组成的并联谐振电路,它的谐振频率是465KHz,可以把465KHz的中频信号从多种频率的信号中选择出来,并通过T3的次级线圈耦合到下一级去,而其它信号几乎被滤掉。

3、中频放大电路

它主要由VT2、VT3组成的两级中频放大器。第一中放电路中的VT2负载是中频变压器T4和内部电容组成,它们构成并联谐振电路,谐振频率是465KHz,与前面介绍的直放式收音机相比,超外差式收音机灵敏度和选择性都提高了许多,主要原因是有了中频放大电

路,它比高频信号更容易调谐和放大。

4、检波和自动增益控制电路

中频信号经一级中频放大器充分放大后由T4耦合到检波管VT3,VT3既起放大作用,又是检波管,VT3构成的三极管检波电路,这种电路检波效率高,有较强的自动增益控制

(AGC)作用。

15

AGC控制电压通过R3加到VT2的基极,其控制过程是:

外信号电压↑→Vb3↑—Ib3↑→Ic3↑→Vc3↓通过R3

Vb2↓→Ib2↓→Ic2↓→外信号电压↓。检波级的主要任务是把中频调幅信号还原成音频信号,C4、C5起滤去残余的中频成分的作用。

5、前置低放电路

检波滤波后的音频信号由电位器RP送到前置低放管VT4,经过低放可将音频信号电压放大几十到几百倍,但是音频信号经过放大后带负载能力还很差,不能直接推动扬声器工作,还需进行功率放大。旋转电位器RP可以改变VT4的基极对地的信号电压的大小,可达到控制音量的目的。

6、功率放大器(OTL电路)

功率放大器的任务是不仅要输出较大的电压,而且能够输出较大的电流。本电路采用无输出变压器功率放大器,可以消除输出变压器引起的失真和损耗,频率特性好,还可以减小放大器的体积和重量。

VT5、VT6组成同类型晶体管的推挽电路,R7、R8和R9、R10分别是VT5、VT6的偏量电阻。变压器T5做倒相耦合,C9是隔直电容,也是耦合电容。为了减少低频失真,电容C9选得越大越好。无输出变压器的功率放大器的输出阻抗低,可以直接推动扬声器工作.

3.2超外差收音机仿真

广播发射端使用三个不同的声源,对其中的一路音频信号使用30KHz的载波进行AM调制;一路音频信号使用40KHz的载波进行AM调制;另外一路音频信号使用50KHz的载波进行AM调制.三路AM信号相加混合后同时进入AM超外差接收机。当本振频率为60KHZ时,可250KHz载波信号解调,并恢复原始声音;当本振频率为50KHZ时,可将40KHz载波信号解调,并恢复另一路的原始声音。当本振频率为40KHZ时,可将30KHz载波信号解调,并恢复另一路的原始声音。原始音频信号的参数为:原始取样速率:22050Hz。规定系统对其按22050*40=882KHz取样速率重新取样。对每一个原始采样值,再增加39个后,形成音频数码输出。图为三个模拟信号。

图11

AM调制波的实现其仿真图如下:

图12

AM调制。

图标14与图标11为增益为0.5的放大器,由此实现ma=0.5的

图标17为针对30KHz载波的AM电台的带通滤波器,其上、下限频率分别为:29KHz

17

和31KHz。如右图所示。

图14

同理,图标18为针对50KHz载波的AM电台的带通滤波器,其上、下限频率分别为:45KHz和55KHz。如右图所示。

图15

三路AM调制信号的混合综上所述,可利用加法运算符来仿真三路AM信号的

混合的情况对于30KHz、40KHZ和50KHZ载波的AM调制波混合后的信号,使用一个称为本振的正弦波信号。根据正弦运算规则,会产生两频率相减的混频信号,设法调节本振的频率,使其与所需电台频率的相减混频差为一个固定频率,本例取10KHz,这种处理频率的方法称为超外差接收。设计使用10KHz作为中频通道固定频率,此时中频通道的带通滤波的上下截止频率分别为:15KHz和25KHz由此即可将所需的电台信号选取出来。下图为解调过程:

设计使用10KHz作为中频通道固定频率,此时中频通道的带通滤波的上下截止频率分别为:15KHz和25KHz由此即可将所需的电台信号选取出来。在二极管检波器之后为低通滤波器,用于取出所需的音频信号,同时滤除高频杂波干扰。其低通截至频率为5KHz。

图16

最终的仿真结果图:

19

图17

小结

AM超外差式收音机利用混频电路使本机振荡信号与接收到的电台信号进行非线性混频,使二者的差值始终为定值,这样就降低了放大电路的信号频率,可以有效克服直接放大式收音机的缺点,由于本机振荡信号的频率始终比接收到的电台信号频率超出465KHZ,故把这种收音机叫做超外差收音机。超外差收音机比起一般的收音机具有显著的优点:接收高低端电台(不同载波频率)的灵敏度一致;灵敏度高;选择性好(不易串台)。在本次课设中广播发射端使用三种不同的扫频信号源模拟三个电台,分别用 30KHZ,40KHZ,50KHZ 的载波进行AM 调制,设定本振频率为60KHZ,可将50KHz 载波信号解调,经过处理可以还原出原始信号。我们知道AM调制是通信系统中最基础的调制方式,相比于DSB调制、SSB调制,AM调制的优点是接收设备较简单,正是基于这一点超外差式收音机这个设备也不是很复杂。

通过着两周通信原理课程设计,利用仿真软件对所学知识进行仿真,通过在仿真过程中解决问题使我对所学知识进一步了解,并且可以熟练应用

SystemView软件,总之这短短一周的课程设计使我们受益匪浅.

超外差收音机原理及原理图

超外差收音机原理及原理图

无线电广播传输过程 广播电台播出节目是首先把声音通过话筒转换成音频电信号,经放大后被高频信号(载波)调制,这时高频载波信号的某一参量随着音频信号作相应的变化,使我们要传送的音频信号包含在高频载波信号之内,高频信号再经放大,然后高频电流流过天线时,形成无线电波向外发射,无线电波传播速度为3×108m/s,这种无线电波被收音机天线接收,然后经过放大、解调,还原为音频电信号,送入喇叭音圈中,引起纸盆相应的振动,就可以还原声音,即是声电转换传送——电声转换的过程。 中波的频率(高频载波频率)规定为525—1605kHz(千周)。 短波的频率范围为3500—18000kHz。 超外差收音机原理 图3-2为调幅超外差收音机的工作原理方框图,天线接收到的高频信号通过输入电路与收音机的本机振荡频率(其频率较外来高频信号高一个固定中频,我国中频标准规定为465KHZ)一起送入变频管内混合——变频,在变频级的负载回路(选频)产生一

个新频率即通过差频产生的中频(实习图3-2中B处),中频只改变了载波的频率,原来的音频包络线并没有改变,中频信号可以更好地得到放大,中频信号经检波并滤除高频信号(实习图3-2中D处)。再经低放,功率放大后,推动扬声器发出声音。 本机工作原理简述。电路图见实习图3-3所示C1、B1组成天线输入回路。VT1、B2、B1、C组成变频级。VT1为变频管。初级线圈与C构成变频级负载。C1、B2组成本机振荡电路,C6为振荡耦合电路,VT2、VT3组成中频放大电路,2AP9为检波电路,R9为音量电位器(带电源开关),C16为高频耦合电容。 VT4、VT5为前置低频放大级、VT6、VT7组成乙类推挽功率放大器。R16、C21、C17为电源波波电路。R1、R2、R3、R4、R5、R6、R7、R12、R10、R11、R13、R17、R18为各级的直流偏置电阻。 超外差收音机 超外差收音机的安装: ①整机电路分析,熟悉元件在印刷板上安装位置。 ②元器件焊接、安装(安装时应检查元器件的好坏)。 ③检查电路,将安装好的收音机和电路原理图对照检查下列内容。 a.检查各级晶体管的型号,安装位置和管脚是否正确。 b.检查各级中周的安装顺序,初次级的引出线是否正确。 c.检查电解电容的引线正、负接法是否正确。 d.分段绕制的磁性天线线圈的初次级安装位置是否正确。 e.用指针式万用表R×100档测量整机电阻,用红表笔接电源负极线,黑表笔接电源正极引线,测得整机电阻值应大于500欧。 以上检查无误后,方能接通4.5伏电源。 超外差式收音机的调试。新装的收音机。必须通过调整才能满足性能指标的要求,其调整内容有:调整各级晶体管的工作点,调整中频频率,调整覆盖(即对刻度)统调(调整频率跟踪即灵敏度)。 下面对调整内容及方法分别加以叙述:

超外差式收音机设计

物理学院 课程设计 题目:超外差式收音机设计专业:09级电子信息科学与技术姓名: 学号: 实验地点: 指导老师: 成绩: ( 2012-5-20 )

目录 第1章摘要 (2) 1.1 设计目的 (2) 1.2 设计内容 (2) 1.3 设计器材 (2) 第2章超外差式收音机原理 (2) 2.1 工作原理 (3) 2.2 电路组成 (4) 2.3 各级电路作用 (5) 第3章超外差式收音机的安装过程 (8) 3.1 实验准备 (8) 3.2 焊接注意事项及步骤 (10) 第4章收音机调试 (10) 4.1 调试过程 (10) 4.2 故障分析 (14) 第5章总结 (14) 参考文献 (15) 附录 (15)

第一章摘要 收音机,又名无线电、广播等,由机械器件、电子器件、磁铁等构造而成,用电能将电波信号转换并能收听广播电台发射音频信号的一种机器。收音机的应用十分广泛,种类非常多。从体积大小上可基本分为袖珍型、便携式、台式收音机。从波段上基本分为调频与中波二波段收音机、短波与调频二波段收音机、短波与中波二波段收音机、3-4多波段收音机(调频|中波|1-2短波)、5- 14多波段收音机(调频|中波|3-12个短波)、全波段。目前市场上单波段、二波段收音机较少,融调频、中波与短波为一体的多波段收音机为多。从功能上可以基本分为传统机械指针式收音机、非存储模拟调谐数显收音机、能存储电台频率的PLL合成数字调谐收音机、DSP电子数调机。 1.1设计目的 1.熟悉电阻、电容、电感线圈、中周、变压器、二极管、三极管、电位器、耳机插座、喇叭等电子元件。 2.在散件的组装过程中进一步学习电子技术。 3.掌握电子安装工艺了解测量和调试技术。 4. 熟练焊接的基本技巧 5. 熟悉超外差式收音机的工作原理 6. 掌握收音机的调试方法,能安装、调试出成品收音机 1.2 设计内容 本实验主要包括以下几方面的内容: 1、熟悉了解收音机的工作原理。 2、元件检测方法描述。 3、安装、调试、故障检测及排除的简单过程。 4、学会对简单的电路板焊接以及实际操作动手。 5、掌握收音机的调试方法。 1.3 设计器材 1. 电烙铁:由于焊接的元件多,所以使用的是外热式电烙铁,功率为30 w,烙铁头是铜制。 2. 螺丝刀、镊子等必备工具。 3. 松香和锡,由于锡它的熔点低,焊接时,焊锡能迅速散步在金属表面焊接牢固,焊点光亮美观。 4. 两节5号电池。 第二章超外差式收音机原理

超外差式调幅收音机的设计(通信电子线路课程设计)

超外差式调幅收音机的设计(通信电子线路课程设计)通信电子线路 课程设计报告书 课程名称:题目: 系(院):学期:专业班级:姓名:学号: _________________________ 超外 差式调幅收音机 __________________________ __________________________ __________________________ 目录 1 引言 (1) 2 设计目的及要求…………………………………………………………………………1 3 超 外差调幅接收机的设计 (1) 3.1 超外差式调幅接收机的原理 (1) 3.2 输入回路设计 (2) 3.3 本振回路设计 (3) 3.4 混频电路设计 (4) 3.5 中频放大电路设计 (5) 3.6 检波电路设计 (6) 3.7 前置低频电压放大电路设计 (7) 3.7 功放电路设计 (8) 3.8 超外差调幅接收机的总电路 (9) 4 心得体会…………………………………………………………………………………11 参 考文献 (11) 超外差调幅接收机 1 引言 这学期开了一门课,《高频电子线路》,通过这门课我对无线电通信的理论知识有了 一定的理解和认识。为了进一步增强对电子技术的理解,通过课程设计,我学会查寻资料、比较方案;学会了一点通信电路的计算,也能进一步提高分析解决实际问题的能力。

低频信号有效的发射出去需要经过高频信号调制,利用高频信号作为载波,对信号进 行传递,可以用不同的调制方式。在无线电广播中可分为调幅制、调频制两种调制方式。 目前调频式或调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性 好及失真度小等优点。这次课程设计我选用了超外差式收音机的设计。 2 设计目的及要求 (1)目的: ①基本掌握调幅接收机各功能模块的基本工作原理。 ②巩固掌握电路设计的基本思想和方法。 ③提高分析问题、发现问题和解决问题的能力。 (2)要求: ①学会将接收的普通调幅信号转化为固定的中频信号(465kHz )。 ②能对中频信号进行放大。 ③能把中频信号转化为原来的低频调制信号。 3 超外差调幅接收机的设计 3.1 电路的工作原理 调幅收音机的工作原理过程为:天线接收到的高频信号通过输入,将所要收听的电台 在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率(我国 为465KHz ),然后再进行放大和检波。这个固定的频率,是由差频的作用产生的。我们 在收音机内制造—个振荡电波(通常称为本机振荡) ,使它和外来高频调幅信号同时送到 一个晶体管内混合,这种工作叫混频。由于晶体管的非线性作用导致混频的结果就会 产生一个新的频率,这就是外差作用。任何电台的频率,由于都变成了中频,放大起 来就能得到相同的放大量。调谐回路的输出,进入混频级的是高频调制信号,即载波与其 携带的音频信号。混频器输出的携音频包络的中频信号由中频放大电路进行一级、两级甚 至三级中频放大,从而使得到达二极管检波器的中频信号振幅足够大。二极管将中频信号 振幅的包络检波出来,这个包络就是我们需要的音频信号。音频信号最后交给低放级放大 到我们需要的电平强度,然后推动扬声器发出足够的音量。 超外差式收音机主要由输入电路、混频电路、中放电路、检波电路、前置低频放大器、功率放大电路和喇叭或耳机组成。 图1 超外差式调幅收音机的原理框图

六管超外差收音机的组装及调试

内蒙古师范大学计算机与信息工程学院《高频电路》课程设计报告

六管超外差收音机的组装及调试 计算机与信息工程学院 **级 *** **** 指导教师**讲师 摘要本文结合在组装收音机过程中所用到的分立器件,分析了各自的作用。在完成组装过程中具体分析了超外差收音机从接收到混频,选频,中放,低放,检波等各个环节的的工作原理及其优势。后期调试主要解决对中频的调整问题,从而加深对此类无线电通信的认识。 关键词六管收音机;工作原理;调试 收音机作为一种最常见的无线接收装置,其工作原理涉及无线通信最基本的几个环节,因此它的原理在无线通信领域有着代表性。而超外差收音机,作为实用的产品,克服了直放收音机在应用中的缺点,成了无线接收机的典范。以下以六管朝外差收音机做出具体分析。 1 元器件说明 ①磁性天线,它的作用是接收电磁波。磁性天线由一个铁氧体磁棒和线围绕组组成,对电磁波的吸收能力很强。另外线圈绕组内能够感应出比较高的高频电压,所以磁性天线兼有放大高频传号的作用。此外,磁性天线还有较强的方向性,能够提高收音机的抗干扰能力。 ②中频变压器(俗称中周),是超外差式晶体管收音机中特有的一种具有固定谐振回路的变压器,其谐振回路在一定范围内可微调,以使接入电路后能达到稳定的谐振频率(465kHz)。它的微调借助于磁心的相对位置的变化来完成。本试验中有红,白,黑三只。(红色)中周型号为LF10T2做振荡线圈使用、(白色)T3中周做第一级中放使用、(黑色)中周T4做二级中放使用,它们的位置不能随意调换。 ③ T5为输入变压器,它主要用于音频放大电路中,它需要有很宽的工作频率范围以保证信号的失真最小。它还要通过阻抗匹配使信号源与负载的阻抗相匹配,以获得最大的功率输出,因此安装时不能装反。 ④三极管起放大作用,9018适合于高频功放,放大倍数约为120; 9013属于中功率三极管放大倍数大约为180;9014为低频功放,放大倍数约等于250。 ⑤各种型号的电容和电阻,喇叭,导线等。

超外差式收音机组装与调试

《电子技术》实训报告 实训名称:超外差式收音机组装与调试专业:电气化铁道技术 班级:城轨供电11A3 学号:110463036 姓名: 指导教师:陈志红 二0一二年11月07 日

实训成绩(下表为参考) 成绩的评定标准(要和实训大纲、计划、实训指导书中评分标准一致) 注:1. 成绩的评定标准(要和实训大纲、计划、实训指导书中评分标准一致),上表供参考。 2.“各个实训模块考核”要详细(考什么内容、怎么考),根据实训大纲的成绩评定,具体项目进行细分,可以通过理论考核、口述、实做等多种形式。 考核、评价项目 考核内容 得分 实 训 评价 实训的 平时考核 对实训期间的出勤情况、实训态度、安全意识、职业道德素质评定成绩 职业素质、实训态度、效率观念、协作精神 各个实训 模块考核 根据学生完成各个实训模块完成情况评定成绩 知识掌握情况、基本操作技能、 知识应用能力、获取知识能力 实训文档 实训日记、实训报告等评定成绩 表达能力、文档写作能力、文档的规范性 总分

一、实训目的 1、学会识别常用元器件:熟悉常用电子器件的类别、型号、规格、性能及其使用范围; 2、学会焊接:熟悉手工焊锡的常用工具,基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊接; 3、完成收音机的焊接,并学会调试; 4、培养我们的动手能力,为日后学习制作电子类器件打下了基础; 5、了解收音机的简单工作原理; 二、课程设计报告内容 1、实训器材及元件 1、器材:电烙铁、万用表、螺丝刀、剪刀 2、元件:电阻若干、瓷片电容(223 九个 103 一个)、电解电容(100uF两个、4.7uF两个)、二极管4818三个、三极管(9018四个、9013三个)、中周(红、黑、白、黄各一)、变压器两个、电位器一个、双联电容一个、磁棒线圈、收音机外壳、螺丝等。2、实训要求 1、无错装漏装、焊点大小合适、美观,无虚焊、器件无丢失损坏、调试符合要求、收音机正常工作。 2、分析调幅接收系统各功能模块的工作原理。 3、安装调试及测量结果。 3、实训内容 这一次我们的实训内容是学习和制作超外差式收音机。

超外差式调幅收音机的设计(通信电子线路课程设计)

通信电子线路课程设计报告书 课程名称:_________________________ 题目:超外差式调幅收音机 系(院):__________________________ 学期:__________________________ 专业班级:__________________________ 姓名:__________________________ 学号:__________________________

目录 1 引言 (1) 2 设计目的及要求 (1) 3 超外差调幅接收机的设计 (1) 3.1 超外差式调幅接收机的原理 (1) 3.2 输入回路设计 (2) 3.3 本振回路设计 (3) 3.4 混频电路设计 (4) 3.5 中频放大电路设计 (5) 3.6 检波电路设计 (6) 3.7 前置低频电压放大电路设计 (7) 3.7 功放电路设计 (8) 3.8 超外差调幅接收机的总电路 (9) 4 心得体会 (11) 参考文献 (11)

超外差调幅接收机 1 引言 这学期开了一门课,《高频电子线路》,通过这门课我对无线电通信的理论知识有了一定的理解和认识。为了进一步增强对电子技术的理解,通过课程设计,我学会查寻资料、比较方案;学会了一点通信电路的计算,也能进一步提高分析解决实际问题的能力。 低频信号有效的发射出去需要经过高频信号调制,利用高频信号作为载波,对信号进行传递,可以用不同的调制方式。在无线电广播中可分为调幅制、调频制两种调制方式。目前调频式或调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。这次课程设计我选用了超外差式收音机的设计。 2设计目的及要求 (1)目的: ①基本掌握调幅接收机各功能模块的基本工作原理。 ②巩固掌握电路设计的基本思想和方法。 ③提高分析问题、发现问题和解决问题的能力。 (2)要求: ①学会将接收的普通调幅信号转化为固定的中频信号(465kHz)。 ②能对中频信号进行放大。 ③能把中频信号转化为原来的低频调制信号。 3超外差调幅接收机的设计 3.1电路的工作原理 调幅收音机的工作原理过程为:天线接收到的高频信号通过输入,将所要收听的电台在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率(我国为465KHz),然后再进行放大和检波。这个固定的频率,是由差频的作用产生的。我们在收音机内制造—个振荡电波(通常称为本机振荡),使它和外来高频调幅信号同时送到一个晶体管内混合,这种工作叫混频。由于晶体管的非线性作用导致混频的结果就会

完整word版超外差收音机原理详解word文档良心出品

超外差收音机方框图 超外差收音机电路组成方框图如图Z1002所示。它主要由输入回路、变频级、中放级、检波级、低放级(前置或推动级)和功放级及电源等部分组成。 超外差收音机的主要工作特点是:采用了"变频"措施。输入回路从天线接收到的信号中选出某电台的信号后,送入变频级,将高频已调制信号的载频降低成一固定的中频(对各电台信号均相同),然后经中频放大、检波、低放等一系列处理,最后推动扬声器发出声音。 这一"变频"措施,是超外差收音机性能得以改善的关键,也是分析超外差收音机"重点"。 堆9卜吕式洞奇才几方框E 收音机质量的高低是用其性能指标来衡量的。国家标准中规定的指标很多,我们就其重要的几项作一介绍。 1.灵敏度收音机正常工作(即输出功率和输出信噪比达到额定值)时,天 线上感应的最小信号(场强或电势)称为灵敏度。它反映收音机接收微弱信号的能力。使用磁性天线接收信号时,用电场强度来表示,其单位是mV/m,一般 中波段收音机的灵敏度应不劣于2mV/m;使用外接天线或拉杆天线时,灵敏度用电势表示,单位是yV。 2.选择性收音机抑制邻近电台信号干扰、选择有用信号的能力称为选择性。它反映收音机选择电台的能力。 调幅广播电台的中心频率是按9kHz间隔来分布的,故收音机的选择性通常用输入信号失谐±kHz时,灵敏度的衰减程度来衡量,一般要求收音机的选择性大于20 d B。 3.失真度收音机输出波形与输入波形相比失真的程度称为失真度。收音机中对音质有影响的主要是频率失真和非线性失真。 4.波段覆盖范围收音机所能接收的载波频率范围。调幅收音机的中波段频率范围为535?1605kHz,而短波范围则为1.6 —26MHz,调频收音机的覆盖范围为88—108 MHz。 LC串联谐振回路

超外差收音机文献

超外差收音机文献 本文由yekangan贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 台州学院毕业设计(论文)文献综述 超外差收音机的研究现状与发展趋势 学生姓名:谭国飞指导老师:杨金伟 摘要:摘要:本文首先简单介绍超外差收音机的发展背景,然后讨论超外差收音机的研究现状,最后大致的展望其发展趋势以及超外差收音机的应用前景。关键词:关键词:超外差,收音机 1. 课题背景 人类自从发现能利用电波传递信息以来,就不断研究出不同的方法来增加通信的可靠性通信的距离、设备的微形化、省电化、轻巧化等。接收信息所用的接收机,俗称为收音机。目前的无线电接收机不单只能收音,且还有可以接收影像的电视机、数字信息的电报机等。随着广播技术的发展,收音机也在不断更新换代。自1920 年开发了无线电广播的半个多世纪中,收音机经历了电子管收音机、晶体管收音机、集成电路收音机的三代变化,功能日趋增多,质量日益提高。20 世纪80 年代开始,收音机又朝着电路集成化、显示数字

化、声音立体化、功能电脑化、结构小型化等方向发展。1947 年,美国贝尔实验室发明了世界上第一个晶体管,从此以后,开始了收音机的晶体管时代。并且逐步结束了以矿石收音机、电子管收音机为代表的收音机的初级阶段。1956 年,西德西门子公司研制成了超高频晶体管,为调频晶体管收音机创造了必要的条件。1959 年,日本索尼公司生产了第一代调频晶体管收音机。1961 年,美国研制了集成电路。随后,1966 年,日本利用这一技术设计了世界上第一台集成电路收音机,开始了收音机工业的又一场技术革命,从此收音机向着小型化、系列化、集成化、低功耗、多功能的方向发展。[4] 直接放大式收音机所遇到的主要问题是,一个高频放大器很难适应各种不同的工作频率。如果能想办法使高频放大器的工作频率保持不变,那么许多问题就很容易解决了。超外差收音机就是根据这个指导思想设计的。下面主要说明一下超外差收音机的一些特点:超外差式收音机电路结构:超外差式收音机的特点是有频率变换(变频)过程,采用固定调谐的中频放大器。一般包括下面几个部分:变频级、中频放大级、 台州学院毕业设计(论文)文献综述 检波级、低频前置放大级、低频功率放大级。其中变频级包括混频器和本机振荡器两个部分。天线接收到的高频调幅信号,经过调谐回路和选择,送入变频级的混频器。本机振荡电路则总是跟踪着接收的信号,产生高一个固

超外差式收音机原理图及电路仿真

超外差式收音机原理及电路仿真 一、实习目的: 1、掌握收音机的原理与组成 2、识别各种电子元器件 3、掌握焊接技术 4、学会超外差收音机的安装与调试 二、原理 1、最简收音机原理 图1中LC谐振回路是收音机输入回路,改变电容C使谐振回路固有频率与无线电发射频率相同,从而引起电磁共振,谐振回路两端电压V AB最大,将该电波接收下来。经高频放大电路放大后,通过由二极管D和滤波电容C1构成的检波电路,将调幅信号包络解调下来,得到调制前的音频信号,再将音频信号进行低频放大,送到喇叭,就完全还原成可闻的声波信号。 图1 最简单的收音机组成框图 这就是最简AM收音机(也称高放式收音机)的工作原理,它简单,但可行性、可使用性太差,不适合日常使用。由于高放式收音机中高频放大器只能适应较窄频率范围的放大,要想在整个中波频段525kHZ—1605kHZ获得一致放大是很困难的。因此用超外差接收方式来代替高放式收音机。 2、超外差式收音机原理 所谓超外差式,就是通过输入回路先将电台高频调制波接收下来,和本地振荡回路产生的本地信号一并送入混频器,再经中频回路进行频率选择,得到一固定的中频载波(如:调幅中频国际上统一为465KHz或455KHz)调制波。超外差的实质就是将调制波不同频率的载波,变成固定的且频率较低的中频载波。如图2所示。

在超外差的设计中,本振频率高于输入频率。用同轴双联可变电容器,使输入回路电容C1-A和本振回路电容C1-B同步变化,从而使频率差值始终保持近似一致,其差值即为中频465KHZ,即:如接收信号频率是600kHz,则本振频率是1055kHz;若接收信号频率是1000kHz,则本振频率是1465kHz;若接收信号频率是1500kHz,则本振频率是1965kHz; 图2 超外差收音机组成框图 由于谐振回路谐振频率,f 与C不成线性变化,因此必须有补偿电容对其特性进行修正,以获得在收听范围内f与C近似成线性变化,保证f本振-f信号=f 中频为一固定中频信号。超外差方式使接收的调制信号变为统一的中频调制信号,在作高频放大时,就可以得到稳定且倍数较高的放大,从而大大提高收音机的品质。 3、电路的工作原理(HX108-2七管半导体收音机) 图3 收音机原理图

超外差式收音机课程设计报告

超外差式收音机课程设计报告 姓名:xx 学号:xx 人类自从发现能利用电波传递信息以来,就不断去研究出不同的方法来增加通信的可靠 性﹑通信的距离﹑设备的微型化、省电化、轻巧化等。接受信息所用的接收机,俗称为收音机。 一、课程设计目的 1.培养学生动手能力和思维能力。 2.丰富自身知识,增加学生专业知识的了解。 3.训练学生用实验方法分析。研究电子学问题。 4.培养学生养成工作品德和严肃的实验态度。 5.引导和启发学生将模拟电路、数学逻辑电路与科学研究和实践相结合,为今后的学习、工作打下良好的基础。 二、收音机的发展 广播方式从调幅(AM)广播时代开始,经历了调频(FM)广播、调频立体声(FM STEREO)广播、数字音频广播(DAB)等阶段。目前,科学家正研究短波段的数字广播(DRM)。 民用广播所使用的频率,经历了长波(LW)、中波(MW)、短波(SW)、超短波调频(FM)、卫星调频广播等阶段;广播的传播距离和覆盖范围也从近距离到利用人造地球卫星进行全球转播等;收音机从矿石收音机、电子管收音机、晶体管收音机、集成电路收音机,到使用微电脑处理器的数字调谐收音机;收音机的基本电路形式、也从直接放大式,到超外差式、多次变频式电路。收音机的体积也从笨重变小到微型,而音质却越来越好...... 20-60年代 电子管电路/直放式,外差式 长波/中波/短波 50-70年代 晶体管电路/外差式,多次变频 中波/短波/调频 70-80年代 集成电路/外差式,多次变频,数字调谐 中波/短波/调频 90年代 集成电路/外差式,多次变频,数字调谐 中波/短波/调频/数字广播 三、电磁波频率、周期与波长 在气温是15摄氏度的时候,声音在空气中传播的速度约是340米/秒,而电磁波的传播速度约为300,000,000米/秒。电磁波的频率、波长和周期是三个表达一个电磁波内在性质的重要单位: (1)频率(f ) 指的是电磁波在一秒钟内电磁波振动方向改变的次数; (2)波长(λ) 则是电磁波的另一个表达单位,指的是电磁波每个周期的相对距离,它可以通过电磁波的传输速度除以频率算出。低频率的电磁波有着较长的波长,较高频率的电磁波有着较短的波长。 (3)周期(T ) 与频率和波长之间的关系为T f /λ=。 四、超外差式收音机特点及工作原理 1、特点 最初的收音机属于直放式收音机,它的特点是:从天线上接收到的高频信号,在检波以前,一直不改变它原来的高频频率(即高频信号直接放大)。它的缺点是:在接收频段的高端和低段的放大不一样整个波段的灵敏度不均匀。如果是多波段收音机,这个矛盾更突出。其次,如果要提高灵敏度,必须增加高频放大的级数,由此带来各级之间的统一调谐的困难,而且高频放大器增益做不高,容易产生自激。 如果能够把收音机接收到的高频信号,都变换成固定的中频信号进行放大检波。由于中频频率比变换前的信号频率低,而且频率固定不变,所以任何电台的信号都能得到相等的放

超外差式调幅收音机

超 外 差 调 幅 收 音 机 学号:2009040301 姓名:常永辉 专业班级:电子093

目录 1 前言 (1) 2电路原理 (1) 3调幅半导体收音机的工作原理 (2) 3.1调幅的过程 (2) 3.2调幅收音机的工作原理 (3) 4各电路模块设计及原理分析 (3) 4.1输入回路 (4) 4.2变频级回路 (4) 4.3中频放大及检波回路 (6) 4.4低放级回路 (7) 4.5功率放大回路 (8) 5 收音机的调试 (8) 5.1调整三极管的静态工作点 (8) 5.1.1.三极管静态工作点的选取 (8)

5.1.2.静态工作点调整前的检查 (9) 5.1.3.静态工作点的测量与调整 (9) 5.2中频频率调整 (9) 5.3接收频率范围的调整 (10)

1前言 本学期学习了《高频电子线路》这门课程,对无线电通信的理论知识有了进一步的理解和认识。此外电子设计自动化技术已渗透到电子系统和专用集成电路设计的各个环节,个中软件应用到电子设计,使电路的设计,调整和改进更加高效便捷。 低频信号有效的发射出去需要经过高频信号调制,利用高频信号作为载波,对信号进行传递,可以用不同的调制方式。在无线电广播中可分为调幅制、调频制两种调制方式。目前调频式或调幅式收音机,一般都采用超外差式,它具有灵敏度高、工作稳定、选择性好及失真度小等优点。这次课程设计我选用的是超外差式调幅收音机。 2电路原理 图2.1 超外差调幅收音机基本原理方框图 超外差调幅收音机基本原理:空间有许许多多电台发送的电磁波,它们都有自己的固定频率,收音机通过天线和由电感线圈和可变电容器组成的谐振电路(称调谐电路)来选择性的接收所需高频信号。由调谐电路选择出的所需要的电台信号是已调幅的高频信号,并且十分微弱,需要先经过高频小信号放大器进行放大处理,再经过变频器(混频器和本振)将高频信号变为频率为465KHz的中频信号,这是超外差式收音机的核心部分,由于它是调制信号,喇叭无法将这种信号直接还原成声音,因此,必须从高频信号中把音频信号分离出来,这个分离过程称为解调,或检波。在收音机中,检波是由半导体器件二极管或三极管来完成。调幅的高频信号经检波还原出音频信号,再经过低频功放然后送往喇叭,喇叭将音频信号还原为声音。

S66E六管超外差式收音机原理及组装

S66E六管超外差式收音机原理及组装 17.1 超外差收音机原理 外差:输入信号和本机振荡信号产生差频的过程。输入信号和本机振荡信号产生一个固定中频信号的过程叫超外差。因为,它是比高频信号低,比低频信号又高的超音频信号,所以这种接收方式叫超外差式。 超外差式收音机就是利用这种方式,把接收到的频率不同的电台信号都变成固定的中频信号(465kHz),再由放大器对这个固定的中频信号进行放大,同时在选择回路(输入回路)或高频放大器与检波器之间插入一个变频器及中频放大器。 和直接放大式相比较,超外差式收音机具有灵敏度高而工作稳定,选择性好而失真度小等优点,在实际生活中有着广泛的应用。灵敏度是指收音机接收微弱信号的能力;选择性是指接收有用信号抑制无用信号的能力,也就是分隔邻近电台的能力;失真度是指收音机输出信号波形与输入信号波形相比失真的程度。灵敏度、选择性、失真度都是收音机的主要性能指标。将所要收听的电台在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率(在我国为465KHz),然后再进行放大和检波。这个固定的频率,是由差频的作用产生的。如果我们在收音机内制造—个振荡电波(通常称为本机振荡),使它和外来高频调幅信号同时送到一个晶体管内混合,这种工作叫混频。由于晶体管的非线性作用导致混频的结果就会产生一个新的频率,这就是外差作用。 采用了这种电路的收音机叫外差式收音机,混频和振荡的工作,合称变频。外差作用产生出来的差频,习惯上我们采用易于控制的一种频率,它比高频较低,但比音频高,这就是常说的中间频率,简称中频。任何电台的频率,由于都变成了中频,放大起来就能得到相同的放大量。调谐回路的输出,进入混频级的是高频调制信号,即载波与其携带的音频信号。经过混频,输出载波的波形变得很稀疏其频率降低了,但音频信号的形状没有变。通常将这个过程(混濒和本振的作用)叫做变频。变频仅仅是载波频率变低了,并且无论输入信号频率如何变化最终都变为465KHz,而音频信号(包络线的形状)没变。 混频器输出的携音频包络的中频信号由中频放大电路进行一级、两级甚至三级中频放大,从而使得到达二极管检波器的中频信号振幅足够大。二极管将中频信号振幅的包络检波出来,这个包络就是我们需要的音频信号。音频信号最后交给低放级放大到我们需要的电平强度,然后推动扬声器发出足够的音量。若要求超外差式收音机得到更高的灵敏度,在调谐回路与混频之间还可以加入高频放大级然后再去混频。根据超外差收音机的原理,分成以下几个模块(见图17-1):调谐回路、变频回路(包括本振电路、混频电路和选频电路)、中频放大(中放)回路、检波及AGC回路、低放级回路、功放级回路。 1.调谐回路 调谐回路是由可变电容 CA、CB 和天线线圈 L1 组成。调节可变电容C可使LC 的固有频率等于电台频率,产生谐振,以选择不同频率的电台信号。再由L2耦合到下一级变频级。2.变频回路 回路组成:由混频、本机振荡和选频三部分电路组成。 变频电路是超外差收音机的关键部分,它的质量对收音机的灵敏度和信躁比都有很大的影响。 它取本机振荡产生的等幅振荡信号频率f1和输入回路选择出来的电台高频已调波信号频率f2的差频465KHz作为中频信号输出,送往下一级。对变频电路,要求在变频过程中,原有的低频成分不能有任何畸变,并且要有一定的变频增益;躁声系数要非常小;工作要稳定;本机振荡频率要始终比输入回路选择出的广播电台高频信号频率高465KHz。如图17-2所示变频级是以晶体管 VT1 为中心,它兼有振荡、混频两种作用。它的主要作用是把输入的不同频率的高频信号变换成固定的465kHz 的中频信号。

超外差收音机实验报告

《超外差收音机安装与调试》 专 周 实 验 报 告 班级: 姓名: 专周时间:

一、实验目的 1.了解常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的 电子器件图书。能够正确识别和选用常用的电子器件,并且能够熟练使用万用表。 2.学习并掌握超外差收音机的工作原理 3.了解超外差式收音机的调试方法。 4.熟悉手工焊锡的常用工具的使用及其维护与修理,基本掌握手工电烙铁的焊 接技术。 二、实验原理图 三、元器件清单

四、超外差收音机工作原理 图一、超外差调幅收音机电路方框图 本机振荡信号与欲接收的高频信号进入混频管后,由于晶体三极管是非线性元件,在混频管输出就会得到除欲接收的高频信号(设其频率为f1)及本机振荡信号(设其频率为f2)外,还需要按一定规律产生的一些新的频率信号,如频率为f2+f1、f2-f1等信号。这些信号经过混频管输出端的调谐回路——中频变压器(简称中周)选择后,只允许f2-f1=465kHz的信号送入下一级。465kHz

称为中频信号。例如,当收音机接收810kHz电台信号时,收音机的本机振荡产生的振荡信号频率为1275kHz,1275kHz比810 kHz 高465 kHz ,送到中频放大器的信号频率为465 kHz 。 从混频管输出的中频信号是微弱的,为了使收音机又足够的灵敏度,必须把微弱的中频信号进行放大后再检波。为了保证有足够的放大量,一般收音机有两级中频放大级,用三只中频变压器,(专周实习是二只中频变压器,采用的是中频反馈放大,以满足中频放大器的两级放大)它们都被调在465 kHz 中频信号频率上,所以465 kHz 中频信号得以顺利通过而得到足够的放大量,其它频率的干扰信号受到中频变压器的抑制而被大大消弱。因而中频放大级对于收音机的灵敏度和选择性有着决定性的影响。 经过中频放大后465 kHz 的中频信号,是一种载波信号,它仍携带着音频信号,还需要有检波器把音频信号检出来。 通过检波器检出的音频信号是很微弱的,一般只有几毫伏,还不足以去推动扬声器发出声音,所以还要经历低放级(前置放大级)放大后再通过功率放大级放大后,才能推动扬声器发出宏亮悦耳的声音。 为了减小由于电磁波在传播过程的强弱变化而引起的音量不稳定,同时为了保证在收强信号时,不致产生失真,收音机需要加入自动增益控制电路。 超外差式收音机具有以下优点:(1)接收高低端电台(不同载波频率)的灵敏度一致;(2)灵敏度高;(3)选择性好(不易串台)。 五、实验内容与步骤 1、收音机装配 装配顺序:装配电阻→装配固定电容→装配电解电容→装配三极管、二极管→装配中周、变压器→装配可变电容器、电位器、耳机插口→装配天线线圈、磁棒→装配电池线、耳机插孔线、喇叭线。 2、收音机调试 调试方法: 待所有元器件都焊接完成后,测量电流,关掉电位器开关,装上电池(注意正负极)用万用表25mA档表笔跨接在电位器开关的两端(黑表笔接电池负极、红表笔接开关的另一端)若电流指示小于10mA,则说明可以通电,将电位器打开(音量旋至最小即测量静态电流)用万用表分别依次测量D、C、B、A、四个电流缺口,若测量的数值A点电位0.25~0.4mv,B点大于A点,0.4~0.6mA,C点大于B点,1.5~3mA,D点位4~7mA,即可用烙铁将四个缺口依次连通,再把音量调到最大,调双联拨盘即可收到电台。在安装电路板时注意把喇叭及电池引线埋在比较隐蔽的地方,并且不要影响调谐拨盘的旋转和避开螺丝桩子,电路板挪位后再上螺丝固定。当测量电流不在规定电流值左右要仔细检查三极管极性有没有装错,中周是否装错位置以及虚假错焊等,若测量哪一级电流不正常则说明那一级有问题。 ⑴调整静态工作点 在印制电路板上找到晶体三极管集电极电流检测缺口,并用烙铁烫开缺口上的焊锡。无检测缺口的印制电路板,可用小刀在被测三极管集电极电路切开一缺口,再将调到直流电流档的万用表串接到缺口处,通过调节偏置电阻,使万用表所指示值符合该级规定的工作电流。

超外差式收音机课程设计

超外差式收音机课程设计 院系:信息工程学院 专业:电子信息工程 班级: 姓名: 学号: 院长: 指导老师: 实验地点: 实验时间:

目录 (1) 概述 (3) 第一章、课程设计内容 (7) 1.1 设计题目 (7) 1.2 设计目的 (7) 1.3 设计要求 (7) 1.4 电子元器件 (7) 第二章、超外差式调幅收音机的原理及电路图 (9) 2.1超外差式调幅收音机电路原理图 (9) 2.2超外差式调幅收音机的工作原理分析 (9) 2.2.1 输入调谐电路 (9) 2.2.2 变频电路 (9) 2.2.3 中频放大电路 (10) 2.2.4 检波和自动增益控制电路 (10) 2.2.5 前置低放电路 (10) 2.2.6 功率放大器(OTL电路) (11) 第三章、超外差式调幅收音机的设计 (12) 3.1 元器件的安装 (12) 3.1.1安装工艺具体要求 (12) 3.2电路板的焊接 (12) 3.2.1 焊接注意事项 (12) 3.2.2 焊接方法 (13) 3.2.3 焊接时容易发生的错误 (13) 第四章、单元模块的调试调及试听 (14) 4.1超外差式收音机的调试 (14) 4.1.1 调整各级晶体三极管的静态工作点 (14) 4.1.2 调整中频频率 (14) 4.1.3 调整频率范围 (14) 4.1.4 跟踪统调 (15) 4.2 试听 (15) 第五章、分析故障及解决方法案 (16) 5.1 制作过程中可能出现的故障 (16) 5.1.1 元器件性故障 (16) 5.1.2 焊接性故障 (16) 5.1.3 元器件安装性故障 (16) 5.1.4 电源故障 (16) 5.2 出现故障的解决方案 (16)

六管超外差式收音机制作

1.设计内容与要求 1.1 设计内容 题目:六管超外差式收音机制作 1.熟悉六管超外差式收音机的基本工作原理。 2.进行天线、调谐电路、本机振荡、混频、中放、检波、低放、功放、扬声器等电路模块的设计。 3.根据电路图,安装元器件,进行焊接,确保焊接没有虚焊、错焊。 4.调试。确保能收听到至少两三个声音清晰的音频信号。 1.2 设计要求 1.熟悉常用电子元器件及材料的类型、型号、规格和符号,熟悉各电子器件的主要性能、使用知识; 2.掌握常用元器件规格参数表达方法、常用元器件识别及测量方法、元器件安装使用方法以及元器件检测方法与筛选方法; 3.了解电子元件焊接的基本知识与要求,能够进行简单的手工焊接; 4.掌握常用仪器设备的使用方法,学会简单电路的调试方法。 2.工作原理与电路原理图 2.1 电路构成与框图 根据超外差收音机的原理,我们可以将电路分成以下几个模块:调谐回路、变频回路(包括本振电路、混频电路和选频电路)、中频放大(中放)回路、检波及AGC回路、低放级回路、功放级回路,如图2-1。

图2-1超外差式收音机的电路框图 1.输入调谐电路 输入调谐电路的电路图如图2-2所示。输入调谐电路由双连可变电容器的 C A 和T1的初级线圈L ab 组成,是一并联谐振电路,Tl是磁性天线线圈,从天线接 收进来的高频信号,通过输入调谐电路的谐振选出需要的电台信号,电台信号频 率是f=l/2πL ab C A ,当改变C A 时,就能收到不同频率的电台信号,最低535KHz, 最高1605KHz。 图2-2 输入调谐电路的电路图图2-3 变频电路的电路图 磁棒线圈同样作为机音机的天线,接收频率范围为535KHz—1605KHz的中波段。一般接收中波是用磁棒天线,接收短波和超短波要用拉杆天线,这是因为当天线的长度(L)为无线电信号波长(λ)的1/4时,天线的发射和接收转换效率最高,即L=λ/4。又因为λ=V×T,V是电磁波的速度,300000公里/秒,T是电磁波的周期,即频率F的倒数,T=1/F,所以L=λ/4= V×T /4=300000K/4F,把接收频率范围535KHz—1605KHz带入可得,L的范围在47—140米,做这样长的天线是不切实际的,所以用磁性材料加绕线圈,来增强接收效果。因为天线的长度和接收或发射的信号的波长成正比,而短波和超短波因为波长比较短,可以直接用拉杆天线。 2.变频电路 本机振荡和混频合起来称为变频电路。变频电路是以VT1为中心,它的作用是把通过输入调谐电路收到的不同频率电台信号(高频信号)变换成固定的465KHz的中频信号。因为接收到的信号强度较弱,所以VT1同时起到高频放大的作用。变频电路的电路图如图2-3所示。

超外差收音机的常见故障现象及诊断

课程设计 课程名称:人工智能与专家系统________________ 课程题目:超外差收音机常见故障及诊断专家系统 学生班级; ____________________________ 学生姓名:_______________________________ 任课教师:______________________________ 一、超外差收音机的工作原理收音机是把广播电台发射的无线电波中的音频信号取出来,加以放大,然后通过扬声器还原出声音。具体讲:从天线(磁棒具有聚集电磁波磁场的能力,而天线线圈是绕在磁棒上)接收到的许多广播电台的高频信号,通过输入回路(为并联谐振回路,具有选频作用)选

出其中所需要的电台信号送入变频级的基极,同时,由本机振荡器产生高频等幅波信号,它的频率高于被选电台载波465,也送于变频级的发射极,二者通过晶体管结的非线性变换,将高频调幅波变换成载波为465的中频调幅波信号。在这个变换过程中,被改变的只是已调幅波载波的频率,而调幅波的振幅的变化规律(调制信号即声音)并未改变。变换后的中频信号通过变频级集电极接的并联回路选出载波为465 的中频调幅信号,被送到中频放大器,放大后,再送入检波器进行幅度检波,从而还原出音频信号,然后通过低频电压放大和功率放大,再去推动扬声器,还原出声音。 二、常见故障现象及诊断 2.1 混台 2.1.1 诊断依据 (1)磁性天线调谐回路线圈断线,信号输入就失去选择作用,同时灵敏度降低。 (2)本机振荡停振。 2.1.2诊断过程 (1)可用万用表测量该线圈的直流电阻来判断。(2)这时差不多满盘都是本地强台的声音。用万用表电压最低档测量 1 发射极 电压,用导线把振荡线圈的反馈线圈短路,或把双连可变电容器“振荡连”的定、动片短路,看发射极电压是否减低(一般可减低零点几伏),说明有振荡。 2.2 无声 2.2.1诊断依据(1)完全无声。故障部位可能发生在电源、扬声器、输出耦合电容。 (2)有一点“沙沙”。可根据旋动音量电位器来诊断故障部位,旋动音量电位器时“沙沙”声不变,故障多出在低放级;若“沙沙”声随音量电位器的变化而变化,故障出在检波级之前。 2.2.2诊断过程 (1)查看电源开关及引线、扬声器、C9 电容、耳机插座是否正常,如果异常则更换;如果正常则查看4、5、6 静态工作点是否正常,若不则对放大电路检修;正常则检查C9 和W1。 (2)有微弱的沙沙声,看是否随音量电位器控制变化,没有变化则查看4、5、 6静态工作点是否正常,若不则对放大电路检修;正常则检查C9和W1。(3) 若随变化,查看1、2 静态工作点是否正常,不正常则对放大电路检修;若正常则查看本振起振是否正常,不正常检查C1, C2,正常则检查中周T3、T4。 2.3 声音小 2.3.1 诊断依据 (1 )收到台数没有减少,但收音机的音量却显著减少,故障在低放部分。 (2)收到台数显著减少,只能收到强台信号,说明收音机增益不够,即收音机灵敏度低。 其故障时检波级以前的电路工作不正常。 232诊断过程 (1)当有信号时用万用表交流电压10V档测量扬声器两端电压,瞬时值是否大于0.6V,若大于则更换扬声器;若不大于则检测4、5、6静态工作点是否正常, 若不正常,则对放大电路检修;若正常则检测C6、C7、C9。 (2)查看接受台数是否减少,若减少则是灵敏度低。 2.4失真 2.4.1诊断依据 (1)声音失真,通常表现为声音沙哑难听,其故障为扬声器不良或者安装不良引起的共振。 (2)频率失真,其表现为音尖、刺耳,着重检查高音旁路电容和耦合电容有没有失效。

相关文档
相关文档 最新文档