文档库 最新最全的文档下载
当前位置:文档库 › Phosphorus sorption and fraction characteristics in the upper, middle and low

Phosphorus sorption and fraction characteristics in the upper, middle and low

Phosphorus sorption and fraction characteristics in the upper, middle and low
Phosphorus sorption and fraction characteristics in the upper, middle and low

Journal of Hazardous Materials 170(2009)278–285

Contents lists available at ScienceDirect

Journal of Hazardous

Materials

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j h a z m a

t

Phosphorus sorption and fraction characteristics in the upper,middle and low reach sediments of the Daliao river systems,China

Chunye Lin ?,Zhigang Wang,Mengchang He,Yanxia Li,Ruimin Liu,Zhifeng Yang

State Key Laboratory of Water Environment Simulation,School of Environment,Beijing Normal University,Beijing 100875,China

a r t i c l e i n f o Article history:

Received 6November 2008

Received in revised form 24April 2009Accepted 24April 2009

Available online 3May 2009Keywords:Phosphorus Sorption Fraction Sediment River

a b s t r a c t

Stream sediments play an important role in the transport and storage of phosphorus in the stream ecosys-tems.This research investigated the sorption and fraction of P in the sediments of a long-term seriously contaminated river,the Daliao river system,using isotherm sorption and selective sequentially extrac-tion tests.Results indicated that the total content of P in the sediments was 479–1202mg kg ?1,depending on iron content in the sediments.The content of potential bioavailable P,including soluble and loosely bound P,Al bound P,Fe bound P,and reductant soluble P was only 10–20%of total P in the sediments of the Hun river and Taizi river,while it was 40–55%in the sediments of the Daliao river,the downstream of the river system.Equilibrium phosphorus concentration without net P sorption (EPC 0)was from 0.05to 0.54mg L ?1,with an increasing trend from upstream to downstream,indicating increasingly release potential.On the other hand,the upstream sediment generally sorbed more P than the downstream sed-iment for each river at the same equilibrium P concentration.The binding energy constant of P on the strong sites of the sediments generally decreased from 2.24to 2.65L mg ?1at upstream to 0.41L mg ?1at downstream or estuary,suggesting that the strong binding sites have been occupied and partly saturated by the phosphate added by point and diffuse sources along the river.On the other hand,molar ratio of Fe to TP contents in the sediments showed sorption capacity of the sediments to P might be under-saturated.The added or sorbed P by the isotherm test was primarily bound to Fe oxides and secondly to Al oxides.Long-term pollution of the river lead to the decrease of P sorption capacity of the river sediment and the increase of P release potential.

?2009Elsevier B.V.All rights reserved.

1.Introduction

Worldwide,the increased loading of rivers with phosphorus has been a severe problem starting in the 1960s because P has mostly been the limiting nutrient in streams and rivers [1–3].The transport and storage of P in the river is important to understand impact of point and nonpoint sources in catchments and subsequently estu-aries and coastal waters [4].The sediments downstream of sewage in?ows from urban are generally rich in phosphorus,due to strong interacting of dissolved inorganic P with sediments through its adsorption on mineral surfaces and/or its precipitation with Al,Fe and Ca [5–8].

Stream sediments have the ability to sorb dissolved P from the water column or release P to overlying waters depending on the equilibrium P concentration (EPC 0)[9].The sediment EPC 0is the concentration in the aqueous phase at which net adsorption or des-orption of dissolved P from the benthic sediment does not occur [10,11].The sediment EPC 0concept is often used to determine if

?Corresponding author.Tel.:+861058802078;fax:+86105880397.E-mail address:c.lin@https://www.wendangku.net/doc/e13840551.html, (C.Lin).benthic sediments are a potential source or sink to the overlying waters in streams and estuaries [8,12–16].

On the other hand,phosphorus can be found in the sediment matrix in the forms of calcium,iron,aluminum complex salts and organic species,or sorbed onto the surface minerals [17].Chemical extractions,especially selective sequential extractions,designed to quantify discrete chemical or mineralogical compounds of P in the sediments,are relatively simple and can estimate the potentially bioavailable P in the sediments [18–20].Therefore,they have been widely used to determine P species in sediments [17,21–25].

The Daliao river watershed in the Liaoning province has been an urban-,industry-,and agriculture-intensive area in China since 1950s.Leading industries include mining and metallurgy,petro-chemicals,beer,pharmacy,electronics and telecommunications,and machinery etc.Big industrial cities include Fushun,Shenyang,Benxi,Anshan,Liaoyang,Panjin,and Yingkou,with population of 2.24,6.98,1.56,3.47,1.82,1.25and 2.30million in 2005,respectively [26](Fig.1).The Daliao river system consists of the Daliao river,Hun river,and Taizi river,with 94,415,and 413km in length,draining 1390,11500and 13900km 2of land area,respectively.The water-shed is located in the temperate monsoonal zone (E122?–125?10 ,N40?30 –42?20 ),characterized by long cold winter,hot and rainy

0304-3894/$–see front matter ?2009Elsevier B.V.All rights reserved.doi:10.1016/j.jhazmat.2009.04.102

C.Lin et al./Journal of Hazardous Materials170(2009)278–285

279

Fig.1.Schematic graph of the Daliao river system(Daliao river,Hun river,Taizi river)and sampling sites.

summer,and dry windy spring,with annual average temperature and precipitation of7?C and800mm,respectively.The aver-age annual water discharge to Liaodong Bay is6.3km3through the Daliao river system,which receives about1200million ton of industrial and domestic wastewater annually.Annually average concentration of total P in the water of the Hun river near Shenyang city was0.33,0.55,0.63and0.24mg L?1in2002,2003,2005and 2006,respectively[27],while it was0.31mg L?1,in the range of 0.08to0.93mg L?1for the Taizi river near Anshan city in2005[28]. Hence,the Daliao river system has been one of the most contami-nated rivers in China,resulting in increasing occurrence,duration and extent of red tide events in the period of July–September in the last20years[29,30].Therefore,it is necessary to investigate the potential sorption and release of phosphorus to/from the sediments of the Daliao river system to understand transport and storage of phosphorus in the seriously contaminated river on the world.

The objectives of this paper were to study the variations in phos-phorus sorption and fraction characteristics of the sediment along the river system and assess the effects of long-term pollution on the P retention characteristics of the river sediments.

2.Materials and methods

2.1.Sediment sampling and analyses

In August2006(?ood season),six surface sediment samples (c.a.0–15cm depth)were collected in the Daliao river system (Fig.1),using cable operated sediment samplers–Van Veen grabs (Eijkelkamp),put into the plastic bags,and bring back to laboratory, where these sediment samples were freeze-dried,slightly crushed, passed through2mm sieve,and stored in glass bottles.

The content of organic matter(OM)in the sediment was deter-mined by potassium bichromate-dilution heat colorimetric method [31].The granularity of the sediment samples was measured by a LS230laser diffraction particle analyzer(Beckman Coulter)and percent contents of clay(<2?m)and silt(2–20?m)were cal-culated.The pH value of sediment samples was analyzed in the suspension of1:10solid:liquid ratio by using combination pH elec-trode(Orion,U.S.).Aliquots of the sediment samples were digested with HNO3–HF–HClO4and concentrations of P,Al,Fe and Ca in the extracts were measured by ICP-OES(IRIS Instrepid II,Thermo Electron)[32].Four reference materials(GSS1,GSS2,GSS3,GSS4), provided by Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences,were also digested and analyzed to check the analytical quality.Average relative errors of P,Al,Fe and Ca in the four reference materials were?2.40%to0.95%,?0.21%to3.92%,?0.29%to8.16%and?1.40%to10.71%,respectively.

2.2.Sorption isotherm measurement

Accurately weighed duplicate samples(~1g soil each)were mixed with25mL solution with varying concentrations of KH2PO4·2H2O.The initial concentration of phosphate in the solu-tion was varied in the range of0(blank)–100mg L?1of P.The suspensions were gently shaken for7days at25±1?C.At the end of this equilibration period,suspension pH was measured using com-bination pH electrode.Then the suspensions were centrifuged at 12,000rmp for10min using Xiang Yi centrifuge(H-1650,China). The supernatant was decanted and?ltered through0.45?m?lter. Phosphorus in the solution was measured employing the Malachite green method[33].The total and net sorbed P was calculated by

q t=(C i?(C?C0))×V/W s(1) q n=(C i?C)×V/W s(2)

where q t and q n are total and net sorbed amount of P,respectively (mg kg?1);C i is the initially added concentration of P(mg L?1);C0 is the measured concentration of P in the equilibrium solution at C i=0;C is the measured concentration of P in the equilibrium solu-tion,V is solution volume,L,W s is oven-dried(105?C)soil weight (kg).The isotherm data,q t=fun(C?C0),were?tted by the linear form of the Langmuir equation:

1

t

=

1

max

1

+1

max

(3)

where q max is the maximum sorbed amount of P(mg kg?1),and k is a constant related to the binding strength(L mg?1),and the respective adsorption parameters were calculated.Noting two

280 C.Lin et al./Journal of Hazardous Materials170(2009)278–285

linear segments were generally observed in the isotherm,the step-wise q max and k parameters were calculated for each segment separately.

2.3.Phosphorus fractionation

To investigate the partition of native and added P into various minerals,selective sequential fractionation of P was performed in the native sediment samples and P-added sediment samples imme-diately after7days of sorption isotherm test.Following stepwise extraction was performed:soluble and loosely bound P(S/L-P), Al bound P(Al–P),Fe bound P(Fe–P),reductant soluble P(RS–P), and Ca bound P(Ca–P)were selectively extracted,respectively,by NH4Cl,NH4F,NaOH,Na2S2O4,and H2SO4solutions[34].Residual phosphorus(RES–P)is given by the difference between the total phosphorus content(TP)and the sum of reactive(inorganic)frac-tions and mainly consists of organic phosphorus.Phosphorus in the supernant was measured employing the same method as sorption isotherm test.Average detection limits were0.72,2.93,0.33,0.46 and0.32mg kg?1for S/L-P,Al–P,Fe–P,RS–P and Ca–P,respectively, estimated by?ve blank analyses without sediment.All reagents are analytical grade.

3.Results and discussion

3.1.Sediment properties and phosphorus partition in the native sediment

The pH values of the sediments generally were higher than7.5, while it was only6.9at H6site(Table1).The contents of sediment organic matter(SOM)were in the range of0.23–7.57%.Sediment texture was sandy loam for D1and D2sites,and loamy sand for H1, H6,T1,T7sites.The contents of Al,Fe,and Ca were in the ranges of

6.77–

7.35%,1.67–4.60%,and1.09–2.16%,respectively,similar to Al

(7.20%)and Fe(4.10%)contents,but lower than Ca(6.60%)content in the world sediment[35].The total content of P ranged from479 to1202mg kg?1,while the mean content of P in the world sediment is670mg kg?1[35].TP was positively correlated to the content of Fe in the sediments of the Daliao river system,with R2=0.841(Fig.2).

The content of S/L-P was very low,less than1%of TP(Table1, Fig.3).RS–P was about7–14%of TP.The sum of Ca–P and RES–P was about80–90%of TP in the sediment of the Hun river and Taizi river, while it was only45–60%in the sediment of the Daliao river.On the other hand,the contents of Fe–P and Al–P were much higher in the sediment of the Daliao river than the Hun river and Taizi river, possibly because most part of the Daliao river is in the tidal zone of estuary with more reactive clay content in the sediment.

3.2.The sorption isotherms

The isotherms generally showed two-step sorption process:an initial steep increase in sorption at low equilibrium concentra-tions and moderate increase approaching a steady state sorption at high equilibrium concentrations(Fig.4).This shape of the sorp-tion isotherm suggests an initial surface

adsorption/complexation,Fig.2.Relationship between total phosphorus(TP)and Fe contents in the surface sediments of the Daliao river

system.

Fig.3.P fractionation in the surface sediments of the Daliao river system. followed by solid-state diffusion of adsorbed phosphate and/or sur-face precipitation[9,36].The pH values of equilibrium solutions generally decreased from about7.0to6.5for H1,T1,T7,and D1site, while it decreased from6.2to5.7for H6site and from8.0to6.5for D3site.This was due to lower pH value of the sediment at H6site and higher pH value of the sediment at D3(Table1).Increase of pH value generally decreases sorption of P on the surface of inorganic minerals,due to competition of OH anion with phosphate anion [37,38].However,higher pH values of equilibrium solutions for sed-iment H1and T1relative to sediment H6and T7,respectively,did not lead to less sorption of phosphate on sediment H1and T1,indi-cating other factors,such as Fe and P content etc.,overpowered pH effect on the sorption.For each river,upstream sediment generally sorbed more P than downstream sediment at the same equilibrium concentration of P.

To estimate the binding strength constant and maximum adsorption capacity of the sediments,the isotherm data were ?tted with the linearized Langmuir equation(Eq.(3),Fig.5). Noting that isotherms showed two parts,the linearized plots of the sorption data exhibit two linear segments(Fig.5).Previous

Table1

Properties and chemical composition of the studied sediments.

Site pH SOM(%)Clay(%)Silt(%)Al(%)Fe(%)Ca(%)TP

(mg kg?1)S/L-P

(mg kg?1)

Al–P

(mg kg?1)

Fe–P

(mg kg?1)

RS–P

(mg kg?1)

Ca–P

(mg kg?1)

RES–P

(mg kg?1)

H17.557.57 5.515.7 6.77 2.69 1.425290.513.127.474.9229.3183.8 H6 6.86 1.73 4.511.17.35 1.67 1.314790.28.130.968.293.4278.2 T17.94 1.79 5.214.77.06 4.60 2.1612020.0 3.018.079.2356.6745.3 T77.560.23 4.8 2.9 6.87 2.83 1.436210.810.941.550.8469.447.7 D17.45 1.6113.133.17.04 4.13 1.10976 1.253.8370.2112.6237.0201.2 D38.12 1.4015.132.77.18 3.62 1.09675 5.366.5127.271.5228.1176.3

C.Lin et al./Journal of Hazardous Materials170(2009)278–285

281

Fig.4.Sorption isotherms of phosphate by the sediments from the Daliao river system and pH change with equilibrium phosphate concentration(C e=C?C0,see de?nition of C and C0in the text).

studies reported similar results for P adsorption on soils and some minerals[15,16,39–41].Stepwise binding strength constants and maximum adsorption capacities for the initial concentration ranges of1–10mg L?1and10–100mg L?1of P were calculated (Table2).The data were well?tted in the initially added P con-centration of1–10and10–100mg L?1,separately,with regression coef?cients of0.7926–0.9991.On the other hand,at low initially added concentrations of P,desorption of P occurred due to release of P originally present in the sediments.This will be discussed further below.The binding energy constant of P on the strong sites ranged from0.41to2.65L mg?1,while it ranged from0.03 to0.11L mg?1for the weak sites.Thus,the strong sites had a very much higher(between4.4and58.4times)binding energy constant than the weak sites.However,maximal sorption by the strong sites was only between17%and44%of the total maximal sorption(Table2),indicating the concentration of the strong sites was lower than that of the weak sites.The total maximal sorption of P ranged from204to714mg kg?1for the sediment of the Daliao river system.The binding energy constant of P on the strong sites was reported to be0.01–0.05L mg?1for calcareous soils[42], 0.17–0.23L mg?1for iron coated sorbents[43],and4.7–10.9L mg?1 for the clayey soils with clay content of16–80%[39].Lin and Banin[44]reported0.25–0.26and0.02–0.05L mg?1of the binding energy constants on the strong sites and weak sites,respectively,in the clayey sand with0.02–0.32%of carbonate content.Therefore, the values we measured roughly fall within the same magnitude as those for clayey soils and clayey sand,but much higher than those for calcareous soils.Fox et al.[5]indicated that the bonding of P is weaker in calcareous compared to iron-containing sediments.

The strong sites are mainly strongly reactive sites on amorphous iron oxides in the sediments,while the weak sites may include reactive sites on the surface of other minerals.The binding energy constant of P on the strong sites generally decreased gradually from 2.24to2.65L mg?1at upstream to0.41L mg?1at downstream or

282 C.Lin et al./Journal of Hazardous Materials170(2009)

278–285

Fig.5.Adsorption isotherms of P plotted according to the linearized form of the Langmuir equation.Calculated isotherm parameters are given in Table2.

estuary,while it did not show such changing trend for the weak sites.This indicated that phosphate added by point and diffuse sources along the river appears to have occupied and partly satu-rated the strong binding sites having the highest binding constant. Whereas maximal sorption of P for each river was higher in the upper reach sediment than in the down reach sediment,the maxi-mal sorption of P in the sediment of the Daliao river was generally higher than that of the Hun river and Taizi river.The high sorption maximal of P in the sediment of the Daliao river may be due to its high clay,Al and Fe contents.

3.3.Sorption/desorption equilibrium

The net sorbed P was plotted against P concentration in equi-librium solution(Fig.6).Simple linear regression of net sorbed P against P concentration in the equilibrium solution was used to estimate sediment EPC0(the x intercept)and NAP(native sorbed phosphorus,the y intercept).The slope of this line was used as a measure of the ability of stream sediments to absorb P at low concentration,e.g.,<1.0mg L?1of initial P concentration in this research.For each river,the slope of this line was higher for the upper reach sediment than for the down reach sediment,indicating that the upper reach sediments had a stronger ability to sorb P than the down reach sediment at lower equilibrium P concentration.

Sediment EPC0ranged from c.a.0.05mg L?1at H1,T1and T7 site to0.54mg L?1at D3site(Table3).EPC0was generally higher than the dissolved P concentration in overlying water for?ood season,indicating possible release of sediment P to water col-umn.Especially,EPC0at the estuarine D3site was much high that its overlying water P concentration.In addition,soluble and loosely bound P was much higher at D3site than the other sites (Table1).The sediment EPC0of eight samples at same site of the Blackwater river(UK)for various seasons,six sediments in the Taihu lake(China),six sediments in Three-Gorges reservoir (China),and22selected Ozark streams in northwest Arkansas (US)was0.09–0.61mg L?1,0.02–0.12mg L?1,0.04–0.67mg L?1,and 0.001–0.33mg L?1[8,12,13,16],roughly in the same magnitude as those of the Daliao river system.However,Wang et al.[25] reported30.1–634.1mg L?1of EPC0for trophic lake sediments with 441–2275mg kg?1of total P.

Previous researches showed that EPC0was positively correlated to the exchangeable P content(P exch)in the sediments[14,45]. Change of EPC0as function of P exch in the sediments of the Daliao river system is shown in Fig.7.Quantitative relationships between EPC0and exchangeable P content in the sediments of the Florida Bay[14]and Nansi lake in China[45]are also shown in the Fig.7. It is clearly shown that the relationships are different,with high, moderate,and low ratios of EPC0to P exch for the sediments from the Daliao river system,the Florida Bay,and Nansi lake,respec-tively.Hence,the sediments of the Daliao river system might have relatively high potential of P release,whereas it contained relatively low P exch.

On the other hand,degree of P saturation(DPS)is generally accepted as a good indicator for the risk of P loss from soils [46].Although DPS is generally determined by extracting the soil/sediment with an acid oxalate solution and then calculating molar ratio of P to(Al+Fe)[47],Jensen et al.[48]directly used the molar ratio of Fe to TP in the sediments to estimate the P release potential from the sediments.He found that freshwater sediments with molar Fe:P ratios above8.5were capable of retaining phos-phate in the oxidized surface layer while phosphate released when the ratio was below8.5.The molar ratio of total Fe to total P generally was17.32–29.71in the sediment samples of the Daliao river sys-tem,suggesting that sorption capacity of iron oxide/hydroxide with phosphate in the sediments of the Daliao river system was under-saturated.Noting that DPS estimated by the molar ratio of Fe to TP is dependent on both Fe content and TP content in the sediments, it did not show decreasing trend from upstream to downstream.

Table2

Stepwise and overall maximum isotherm adsorption capacity(q max)and binding strength constant(k)of phosphorous estimated by linearized Langmuir isotherm plots. Sediment Linear segment C e range(mg/L)Linearized Langmuir equation R2K(L mg?1)Stepwise q max(mg kg?1)

H1(I)0.83–4.80(1/q)=0.0042(1/C)+0.00940.9858 2.24106.38 (II) 4.80–83.95(1/q)=0.0479(1/C)+0.00190.96500.04419.93

Overall526.32

H6(I)0.40–8.84(1/q)=0.0132(1/C)+0.01430.9508 1.0869.93 (II)8.84–88.93(1/q)=0.0648(1/C)+0.00490.79260.08134.15

Overall204.08

T1(I)0.21–6.13(1/q)=0.0049(1/C)+0.0130.9753 2.6576.92 (II) 6.13–84.18(1/q)=0.0506(1/C)+0.00230.94710.05357.86

Overall434.78

T7

(II)7.10–86.50(1/q)=0.0823(1/C)+0.00250.97150.03328.57

Overall400.00

D1(I)0.34–2.97(1/q)=0.0043(1/C)+0.0040.89510.93250.00 (II) 2.97–71.00(1/q)=0.0124(1/C)+0.00140.99080.11464.29

Overall714.29

D3(I)0.64–4.63(1/q)=0.011(1/C)+0.00450.99910.41222.22 (II) 4.63–79.87(1/q)=0.0215(1/C)+0.0020.97180.09277.78

Overall500.00

C.Lin et al./Journal of Hazardous Materials170(2009)278–285

283

Fig.6.EPC0values of the sediments.EPC0,measured concentration of P when net sorbed P(q n)=0and signi?es the point at which no sorption nor desorption

occurs.Fig.7.EPC0as function of P exch for the sediments of the Daliao river system,Florida Bay[14]and Nansi lake in China[45].S/L-P is de?ned as P exch

.

Fig.8.The fractionation of the native sediment(NS)and P-added sediment imme-diately after7days of sorption isotherm experiment at D1site.C i is added initial concentration of P in the sorption isotherm experiment.

Whereas the sediments of the Daliao river system were under-saturated for P sorption,P sorption or release to/from the sediments directly depends on EPC0and the concentration of P in the water column.In addition,the decrease of P sorption capacity of the sedi-ments,caused by the long-term pollution,can be further indicated by binding strength constant.

Sediment NAP of the Hun river and Taizi river ranged from6.1 to12.3mg kg?1,while it was35.7–42.0mg kg?1for the Daliao river. Sediment NAP in more serious eutrophic and moderate eutrophic areas of the Taihu lake was44–380mg kg?1and12–15mg kg?1, respectively[13].Hence,the Daliao river’s sediments and the Hun river and Taizi river’s sediments had slightly lower NAP than the serious eutrophic and moderate eutrophic area in the Taihu lake, respectively.In addition,sediment NAP of the Daliao river system was signi?cantly correlated to the Al–P content in the sediment.

Table3

Calculated EPC0and NAP of the sediments and measured P concentration in overlying water of the Daliao river system.

Sediment C e range(mg L?1)Linearized regression equation R2EPC0(mg L?1)NAP(mg kg?1)Water column(mg L?1) H10.05–0.11q=168.28C e?8.750.81130.058.750.008

H60.10–0.20q=93.56C e?11.290.97880.1211.290.126

T10.05–0.21q=132.29C e?6.690.88890.05 6.690.009

T70.05–0.15q=97.27C e?6.060.97980.06 6.060.015

D10.08–0.11q=426.95C e?35.730.89730.0835.730.011

D30.41–0.53q=78.03C e?41.980.97910.5441.980.029

284 C.Lin et al./Journal of Hazardous Materials170(2009)278–285

3.4.Partition of the added P into the various minerals

The sediment of D1site by the isotherm batch experiment was fractionated into the S/L-P,Al–P,Fe–P,RS–P,Ca–P,and RES–P. The concentrations of each fraction were plot as against the ini-tial P concentration added in the isotherm experiment(Fig.8). Results indicated that added or sorbed P was primarily bound to Fe oxide minerals and secondly bound to Al oxide minerals at higher treatment concentration.Only small amount of the P-added was classi?ed as reductant soluble(occluded-bound)P fractions.And extremely low amount of the P-added was bound to carbonate min-erals,whereas separate calcite can remove phosphate from solution [49].In addition,at relatively low treatment concentration,RES–P and Ca–P in the sediment might transform to Fe–P,RS–P and Al–P.

4.Conclusion

The content of P in the sediments of the Daliao river system was 479–1202mg kg?1and depended on iron contents in the sediments. The content of potential bioavailable P,including S/L-P,Al–P,Fe–P, and RS–P was only10–20%out of total P in the sediment of the Hun river and Taizi river,while it was40–55%in the sediment of the Daliao river,the downstream of the river system.In addition,the EPC0generally increased from upstream sediment to downstream sediment,indicating increasingly release potential.

On the other hand,the upstream sediment generally sorbed more P than the downstream sediment for each river at the same equilibrium P concentration.The maximal sorption capacity was 204–714mg kg?1.The binding energy constant of P on the strong sites of the sediments generally decreased from2.24to2.65L mg?1 at upstream to0.41L mg?1at downstream or estuary,suggesting that the strong binding sites have been occupied and partly satu-rated by the phosphate added by point and diffuse sources along the river.The added or sorbed P in the isotherm test was primarily bound to Fe oxides and secondly to Al oxides.The molar ratio of Fe to TP in the sediments indicated that sorption capacity of the sediments to P was under-saturated.

Generally,long-term pollution of the river lead to the decrease of P sorption capacity of the river sediment and the increase of P release potential.This might further result in a lagging restoration of overlying water quality.

Acknowledgements

This research was?nancially supported by the National Basic Key Research Program of China(2004CB418502)and the National Natural Science Foundation of China(40671002).Financial support by the Scienti?c Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry and by Beijing Normal University to C.L.is gratefully acknowledged.

References

[1]W.K.Dodds,Eutrophication of streams and rivers,Limnol.Oceanogr.51(2006)

671–680.

[2]R.B.Alexander,R.A.Smith,Trends in the nutrient enrichment of US rivers during

the late20th century and their relation to changes in probable stream trophic conditions,Limnol.Oceanogr.51(2006)639–654.

[3]S.Y.Li,W.Z.Liu,S.Gu,X.L.Cheng,Z.F.Xu,Q.F.Zhang,Spatio-termporal dynam-

ics of nutrients in the upper Han River Basin,China,J.Hazard.Mater.(2008), doi:10.1016/j.jhazmat.2008.06.059.

[4]W.A.House,Geochemical cycling of phosphorus in rivers,Appl.Geochem.18

(2003)739–748.

[5]I.Fox,M.A.Malati,R.Perry,The adsorption and release of phosphate from

sediments of a river receiving sewage ef?uent,Water Res.23(1989)725–732.

[6]W.A.House,F.H.Denison,Phosphorus dynamics in a lowland river,Water Res.

32(1998)1819–1830.

[7]P.D.Bedore,M.B.David,J.W.Stucki,Mechanisms of phosphorus control in urban

streams receiving sewage ef?uent,Water Air Soil Pollut.191(2008)217–229.

[8]B.E.Haggard, D.R.Smith,K.R.Brye,Variation in stream water and sedi-

ment phosphorus among select Ozark catchments,J.Environ.Qual.36(2007) 1725–1734.

[9]P.N.Froelich,Kinetic control of dissolved phosphate in natural rivers and estuar-

ies:A primer on the phosphate buffer mechanism,Limnol.Oceanogr.33(1988) 649–668.

[10]A.W.Taylor,H.M.Kunishi,Phophate equilibria on stream sediment and soil

in a watershed draining an agricultural region,J.Agric.Food Chem.19(1971) 827–831.

[11]N.J.Barrow,A mechanistic model for describing the sorption and desorption of

phosphate by soil,J.Soil Sci.34(1983)733–750.

[12]W.A.House,F.H.Denison,Exchange of inorganic phosphate between river

waters and bed-sediments,Environ.Sci.Technol.36(2002)4295–4301. [13]A.M.Zhou,H.X.Tang,D.S.Wang,Phosphorus adsorption on natural sediments:

modeling and effects of pH and sediment composition,Water Res.39(2005) 1245–1254.

[14]J.Z.Zhang,X.L.Huang,Relative importance of solid-phase phosphorus and

iron on the sorption behavior of sediments,Environ.Sci.Technol.41(2007) 2789–3279.

[15]S.R.Wang,X.C.Jin,Q.Y.Bu,X.N.Zhou,Effects of particle size,organic matter and

ionic strength on the phosphate sorption in different trophic lake sediments,J.

Hazard.Mater.128(2006)95–105.

[16]Y.Wang,Z.Y.Shen,J.F.Niu,R.M.Liu,Adsorption of phosphorus on sediments

from the Three-Gorges Reservoir(China)and the relation with sediment com-positions,J.Hazard.Mater.(2008),doi:10.1016/j.jhazmat.2008.05.013.

[17]K.Pettersson,B.Bostr?m,O.S.Jacobsen,Phosphorus in sediments–speciation

and analysis,Hydrobiologia170(1988)91–101.

[18]S.C.Chang,M.L.Jackson,Fractionation of soil phosphorus,Soil Sci.84(1957)

133–134.

[19]J.D.H.William,J.K.Syers,D.E.Armstrong,F.Harris,Fractionation of inorganic

phosphate in calcareous lake sediments,Soil Sci.Soc.Am.Proc.35(1971) 250–255.

[20]A.H.M.Hieltjes,L.Lijklema,Fractionation of inorganic phosphates in calcareous

sediments,J.Environ.Qual.9(1980)405–407.

[21]B.Bostr?m,K.Pettersson,Different patterns of phosphorus release from

lake sediments in laboratory experiments,Hydrobiologia92(1982)415–492.

[22]M.S?ndergaard,J.Windolf,E.Jeppesen,Phosphorus fractions and pro?les in

the sediment of shallow Danish lakes as related to phosphorus load,sediment composition and lake chemistry,Water Res.30(1996)992–1002.

[23]J.Z.Zhang,C.J.Fischer,P.B.Ortner,Potential availability of sedimentary phos-

phorus to sediment resuspension in Florida Bay,Global Biogeochem.Cycles18 (2004)GB4008,doi:10.1029/2004GB002255.

[24]C.Z.Katsaounos,D.L.Giokas,I.D.Leonardos,Speciation of phosphorus fraction-

ation in river sediments by explanatory data analysis,Water Res.41(2007) 406–418.

[25]S.R.Wang,X.C.Jin,H.C.Zhao,F.C.Wu,Phosphorus release characteristics of dif-

ferent trophic lake sediments under simulative disturbing conditions,J.Hazard.

Mater.(2008),doi:10.1016/j.jhazmat.2008.05.004.

[26]Liaoning Provincial Population and Family Planing Commission,Popula-

tion of Liaoning province in2005(2007),https://www.wendangku.net/doc/e13840551.html,/site/ content.asp?id=1576.

[27]J.J.Wang,X.Zhong, D.F.Zhang,L.Y.Kang,Water pollution survey in

Shenyang section of Liaohe river,J.Shenyang Med.Coll.10(2008)238–240 (in Chinese).

[28]N.Y.Zhang,Correlation analysis of major pollutants in the water of Taizi river

near Anshan city,Liaoning Urban Rural Environ.Sci.Technol.25(2005)17–19 (in Chinese).

[29]L.M.Huang,X.P.Huang,X.Y.Song,Y.H.Tan,H.K.Wang,Frequent occurrence

areas of red tide and its ecological characteristics in Chinese coastal waters, Ecol.Sci.22(2003)252–256(in Chinese).

[30]L.M.Qu,D.Yao,P.F.Cong,Inorganic nitrogen and phosphate and potential

eutropication assessment in Liaodong Bay,Environ.Sci.27(2006)263–267(in Chinese).

[31]S.D.Bao,Measurement of organic matter content in soil,in:S.D.Bao,R.F.Jiang,

C.G.Yang(Eds.),Analysis of Agri-Chemistry in Soil,3rd ed.,Chinese Agricultural

Science and Technology Press,Beijing,China,1999,pp.34–35.

[32]C.Lin,M.C.He,Y.X.Zhou,W.Guo,Z.F.Yang,Distribution and contamination

assessment of heavy metals in sediment of the Second Songhua River,China, Environ.Monit.Assess.137(2008)329–342.

[33]A.S.Rao,K.S.Reddy,P.N.Takkar,Malachite green method compared to ascorbic

acid for estimating small amounts of phophorus in water,0.01M calcium chlo-ride,and Olsen soil extracts,Commun.Soil Sci.Plant Anal.28(1997)589–601.

[34]H.Zhang,Phosphorus Fractionation,in:Pierzynski(Ed.),Methods of

Phosphorus Analysis for Soils,Sediments,Residuals,and Waters,North Car-olina State University,2000,pp.50–59,https://www.wendangku.net/doc/e13840551.html,/sera17/ publications/sera17-2/pm cover.htm.

[35]H.J.M.Bowen,Environmental Chemistry of the Elements,Academic Press,Lon-

don,1979,pp42.

[36]J.S.Freeman,D.L.Rowell,The adsorption and precipitation of phosphate onto

calcite,J.Soil Sci.32(1981)75–84.

[37]D.L.Sparks,Environmental Soil Chemistry,2nd ed.,Academic Press,London,

2003,pp.175.

[38]Y.Arai,D.L.Sparks,ATR-FTIR spectroscopic investigation on phosphate adsorp-

tion mechanisms at the ferrihydrite-water interface,J.Colloid Interface Sci.241 (2001)317–326.

C.Lin et al./Journal of Hazardous Materials170(2009)278–285285

[39]J.K.Syers,M.G.Browman,G.W.Smillie,R.B.Corey,Phosphate sorption by soils

evaluated by the Langmuir adsorption equation,Soil Sci.Soc.Am.Proc.37(1973) 358–363.

[40]J.A.Mead,A comparison of the Langmuir,Freundlich,and Temkin equations to

describe phosphate adsorption properties of soils,Aust.J.Soil Res.19(1981) 333–342.

[41]W.Yao,https://www.wendangku.net/doc/e13840551.html,lero,Adsorption of phosphate on manganese dioxide in seawater,

Environ.Sci.Technol.30(1996)536–541.

[42]I.C.R.Holford,G.E.C.Mattingly,The high-and low-energy phosphate adsorbing

surfaces in calcareous soils,J.Soil Sci.26(1975)407–417.

[43]N.Boujelben,J.Bouzid,Z.Elouear,M.Feki,F.Jamoussi,A.Montiel,Phospho-

rus removal from aqueous solution using iron coated natural and engineered sorbents,J.Hazard.Mater.151(2008)103–110.

[44]C.Lin,A.Banin,Effect of long-term ef?uent recharge on phosphate sorption

by soils in a wastewater reclamation plant,Water Air Soil Pollut.164(2005) 257–273.[45]W.C.An,X.M.Li,Phosphate adsorption characteristics at the sediment-water

interface and phosphorus fractions in Nansi Lake,Chian,and it main in?ow rivers,Environ.Monit.Assess.148(2009)173–184.

[46]V.D.Nair,K.M.Portier,D.A.Graetz,M.L.Walker,An environmental threshold

for degree of phosphorus saturation in sandy soils,J.Environ.Qual.33(2004) 107–113.

[47]V.D.Nair,D.A.Graetz,Phosphorus saturation in spodosols impacted by manure,

J.Environ.Qual.31(2002)1279–1285.

[48]H.S.Jensen,P.Kristensen,E.Jeppesen,A.Skytthe,Iron:phosphorus ratio in sur-

face sediment as an indicator of phosphate release from aerobic sediments in shallow lakes,Hydrobiologia235–236(1992)731–743.

[49]K.Karageorgiou,M.Paschalis,G.N.Anastassakis,Removal of phosphate species

from solution by adsorption onto calcite used as natural adsorbent,J.Hazard.

Mater.A139(2008)447–452.

word套用图片模板

竭诚为您提供优质文档/双击可除 word套用图片模板 篇一:利用word和excel制作套打模板方法 利用word和excel制作套打模板 a、打印自行设计的奖状。除部分信息(如姓名、年级、科目、奖别、指导教师等)不固定,其余内容都是固定的。 1、在excel表格中新建表格,五列,第一行写上标题:姓名、年级、科目、奖别、指导教师,录入相应信息,保存。 2、在word中将奖状排好,姓名、年级等五个地方不打字,也不留空隙。 3、调出“邮件合并”工具栏。(视图→工具栏→邮件合并) 4、在工具栏上,点“打开数据源”按钮,在文件类型中选择“excel文件”,找到刚才保存的表格,选择工作表(一般都是sheet1)。 5、在应打印姓名地方,点“插入域”,在“插入合并域”框中选择相应的“域名”(就是excel第一行的标题名,如“姓名”),插入→关闭。同样方法完成其他地方,全部做好后,点“查看合并数据”,再点击“上一记录”、“下一记录”,

就可以一条条的打印了。 6、更快速的方法:点击“合并到新文档”,就会将所有的数据按一条数据一页文档的方法新建一个文档(即:“字母1”文档),或是点“合并到打印机”,就会全部打印出来了。 b、套印已有表格的空栏处。(如:学籍卡、义务卡等) 首先、用扫描仪把表格扫描成图片文件,插入到文件,调整纸张大小与表格文件的原始尺寸一致,然后右击该图片并选择“设置图片格式”,在弹出的对话框中选择“版式”标签,然后选择“衬于文字下方”,调整图片使其正好覆盖整个页面。 接着、在需要打印的空栏处插入文本框,调整其大小正好和表格图片的空栏尺寸一致。设置文本框为“无填充颜色”和“无线条颜色”。最后、按“a”的方法进行操作。 篇二:用word排版来制作快递模板 下面告诉(word套用图片模板)大家一种简单方便的方法:用word排版来制作快递模板(我是用的中通的)工具:1、针式打印机一台, 2、扫描仪一台(非必备,因为需要将快递单扫描到电脑中去。如果你没有,那么把快递单拿到其他有扫描仪的地方扫描一下,然后把文件复制到自己的电脑中去也行。) 3、小尺一个,用来量快递单的尺寸。步骤:1.用尺子

完整word版,个人储蓄业务操作指南

实验一个人储蓄业务 一、实验目的 (一)熟悉个人储蓄业务的相关业务种类和基本知识; (二)熟练个人储蓄业务相关柜面操作流程、基本程序; (三)了解个人储蓄业务相关重要凭证与单证的种类及用途。 二、实验环境 (一)系统模块环境:柜面业务系统 (二)情景数据库环境:日常练习授权库情景包,机构共有36个(包括北京、广州两家分行),操作柜员300名,每个机构网点开设9名柜员,分别属于C、D、E、F权限操作级别。(三)建议添加进柜面业务系统‘常用交易’的快捷菜单(可将下面内容直接复制进对话框):5341,尾箱查询 5221,客户号查询 5222,账户查询 5345,卡号查询 5361,大额现金入账 53562,企业支票查询 5232,表内账务查询 5235,表外账务查询 三、教学组织 (一)学生分组方式:学生的按每组6-8人分组。 (二)银行机构分配:每个小组分属于实验银行的一个机构网点,可以是分行营业部或二级支行。 (三)柜员号申请方式:自行申请。 (四)不同权限柜员配置:每个小组的全部成员中确保至少C、D、E、F操作权限的柜员都有人担任。 (五)柜员分工与协作方式及流程:小组成员根据小组协商结果分配各自柜员权限,并自行申请指定网点的柜员号、柜员尾箱。登录柜面业务系统后,根据实训课程要求,开展相应的业务练习,遇到属于银行内控要求需要授权、复核时,高级权限柜员为经办柜员进行业务授权。 (六)教学演示预计时间:30分钟。

(七)学生练习时间:90分钟。 (八)实验项目课时安排:4课时。 四、基本业务种类与流程 五、系统操作要点与难点 (一)开立客户号界面中哪些位置属必填项目,哪些属选填项目? (二)开立客户号的合法证件包括哪些? (三)开立储蓄账号,现金方式与转账方式开户操作过程有何区别? (四)开立储蓄账号,需空白储蓄存折,如何查询存折号?如何使用? (五)开立一卡通,需空白银行卡,如何查询卡号? (六)存取款、转账、挂失等业务,哪些环节可能需要授权? (七)熟练进行客户信息查询、账号查询、尾箱查询、卡凭证关联查询等。 六、实验实训内容 (一)自拟客户信息,至少开立两个个人客户,客户甲和客户乙(注:请使用其他别称代替‘甲’、‘乙’); (二)查询客户甲、客户乙的客户信息、客户号。 (三)为客户乙办理‘开卡本客户’业务,开办一张空白的银行一卡通C (思考:如何通过银行卡凭证号查询16位卡号?)

红外测温仪的操作指南及各模块说明

《红外测温仪的操作指南及各模块说明》 红外测温仪操作指南:将单片机连接电源后,只需将红外测温仪的红外探头瞄准被测物体,按下矩阵键盘上的S13按钮(设定为“开始测温”),测温仪开始工作,LCD显示屏上显示两个温度数值,上为被测点温度,下为环境温度(由探头外环探测得出)。由于探头精度灵敏,温度数值在稳定建立时间过后仍有小幅度跳变。按下矩阵键盘上的 S14按钮(设定为“STOP”),LCD显示按下时刻的温度值,方便读数。按下S13“开始测温”,测温仪开始新一轮测温。 单片机模块 红外测温仪系统的硬件结构框图

红外测温仪系统的软件方案设计框图 主程序模块:主要完成系统初始化,温度的检测,串行口通信,键盘和显示等功能。其中 系统初始化包括: 时间中断的初始化、外部中断源的初始化、串口通信中断的初始化、LED 显示的初始化。 红外测温模块:包括获取温度数据,计算温度值。 键盘扫描模块:获取按键信息,处理按键请求等。 显示模块:获取并处理相应的温度数据,通过LED数显管显示温度数据。 单片机处理模块 单片机模块的工作原理是:加载相应程序的STC89C51单片机把红外测温模块传来的数据加以处理,送LED显示屏显示。 下图1是单片机处理模块的电路原理图

图1 单片机处理模块电路图 其复位电路如图2-1左边上部分,本单片机处理模块是通过开关手动复位的,只要在RST引脚出现大于10ms的高电平,单片机就进入复位状态,这样做的目的是便于根据实际情况而选择是否复位温度测量数据。而此仪器的震荡电路选用的是晶体震荡电路,其具体电路如图2-1左边下部分。采用晶体震荡电路的原因是因为它的频率稳定性好,而这正是本红外测温仪非常重要的技术要求。 单片机作为红外测温仪的核心处理部件,它关系到整个仪器的性能指标。因此它的选择是非常重要的。本测温仪选择的STC89C51RC单片机,下面是STC89C51RC单片机相关资料信息: STC89C51RC单片机是宏晶科技推出的新一代超强抗干扰/高速/低功耗的新一代8051单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可任意选择,最新的D版本部集成MAX810专用复位电路。STC89C51RC系列单片机具有在系统可编程(ISP)特性,这样可以省去购买通用编程器,单片机在用户系统上即可下载/烧录用户程序,无须将单片机从以生产好的产品上拆下。对于一些尚未定型的设计可以一边设计一边完善,加快了设计速度,减少了一些软件缺陷风险。由于可以在用户的目标系统上将程序直接下载进单片机看运行结果,故无须仿真器。下图2-2是此单片机的引脚图: 图2-2 STC89C51RC单片机引脚图 一、STC89C51RC单片机的特点: 1.增强型6时钟/机器周期,12时钟/机器周期8051 CPU; 2.工作电压:5.5v- 3.8v; 3.工作频率围:0-40MHz,相当于普通8051的0~80M,实际工作频率可达48MHz; 4.4k的Flash程序存储器;

word目录及图表编号自动生成操作指南

第一节、自动生成文章目录的操作: 一、设置标题格式 1.选中文章中的所有一级标题;并按照系模版要求更改标题字体及字号 2.在“格式”工具栏的左端,“样式”列表中单击“标题1”。 仿照步骤1、2设置二、三级标题格式为标题2、标题3。 二、自动生成目录 1.把光标定位到文章第1页的首行第1个字符左侧(目录应在文章的前面); 2.执行菜单命令“插入/引用/索引和目录”打开“索引的目录”对话框; 3.在对话框中单击“目录”选项卡,进行相关设置后,单击“确定”按钮,文章的目录自动生成完成。 第二节在word中自动生成图表目录 第一步:对图进行自动编号 自动编号可以通过 Word 的 " 题注 " 功能来实现。 1、按文档格式要求,第一章的图编号格式通常为 " 图 1-×" 。 2、将图插入文档后,选中新插入的图,在菜单条上选择“插入” “引用” “ 题注” 。新建一个标签 " 图 1 - " ,编号格式为阿拉伯数字(如果不是点击 " 编号 " 修改),位置为所选项目下方,单击 " 确定 " 后 Word 就插入了标签文字和序号,此时可以在序号后键入说明,比如 "XX 功能 " 等。 3、再次插入图时题注的添加方法相同,不同的是不用新建标签了,直接选择就可以了。 Word 会自动按图在文档中出现的顺序进行编号 第二步:生成图表目录 对图进行编号完毕后,在菜单条上选择“ 插入” “ 引用” “ 索引和目录” 。选择“ 图表目录选项” ,点击“ 确定” 按钮,图表目录就 OK 自动生成啦。 以后删除图表时,只要选择更新域就可实现图表编号的自动更新! 目录的更新相同! 第三节目录页码应该与正文页码编码不同。 把光标定位在目录页末,执行“插入/分隔符/下一页/确定”操作,在目录与正文之间插入分页符; 执行“视图/页眉和页脚”命令,把光标定位到正文首页的页脚处,单击“页眉和页脚”工具栏上的“链接到前一个”按钮正文页脚与目录页脚的链接;执行“插入/页码”命令,在“格式”中选择页码格式、选中“起始页码”为“1”,单击“确定。至此完成正文的页码插入。

完整word版软件系统操作手册

3DMS监控平台软件使用说明书

4.23 版本: 深圳市亚美达通讯设备有限公司 目录 5 .......................................................................................................................... 1、系统登录6、主界面 ............................................................................................................................. 2 .............................................................................................................................. 62.1标题 栏 .............................................................................................................................. 62.2菜单 栏 .............................................................................................................................. 62.3工具 栏 .............................................................................................................................. 6状态栏

SOP模板-标准操作流程编写程序(可编辑修改word版)

标准操作流程编写程序 编制部门:商务部 文件审核: 文件批准: 批准日期:2005.05.25 修改记录

1目的 指导文件编写者能够高效的编写出符合文件编写标准程序的文件来。 2范围 此文件适合所有编写标准操作流程的文件编写人员。

3职责 3.1SOP 文件编写总负责人对程序的有效性负责。 3.2编写 SOP 文件的相关人员执行本程序,并反馈修改信息。 3.3SOP 文件编写总负责人根据此程序对各部门文件编写人进行培训。 3.4各主过程负责人对文件的编写和修改的有效性负责。 4定义 4.1SOP:SOP 是标准操作程序(standard operation program)英文的第一个字母的缩写。为各部门共性的、可以固化的业务活动。 4.2工具书:制定的作为岗位快速参考的文件,例如:公差,目标值等贴或放在工作区域附近用于员工工作时参考的文件,这类文件主要包括操作方法,测试标准,流程图等限于特定岗位使用的操作指南,可以作为程序文件的一部分,也可以单独使用。 4.3附件:指 SOP 文件中所引用的文件,执行文件的同时也必须同时执行的文件,主要包括管理规定,规章制度和标准,可以作为程序文件的一部分,也可以单独使用。 4.4流程体系:共由四部分组成,SOP-规范制度-表单-手册。其中,规范为各部门之间在共性流程操作之上的不同的业务管理细的规定,是对 SOP 的支持和补充;表单是与 SOP,和管理规范相匹配的单据、附件等文件;手册是已经固化的指导我们进行 SOP 操作或执行规范制度的指南性文件。 5程序说明

7 流程修改文件编写人 5.7 8 流程附件文件编写人 5.8 5程序说明 5.1编出流程图 5.1.1文件编写员根据部门业务主过程编出相应的流程图。 5.1.2根据管理的需要和流程的可持续性和有效性确定流程的控制环节。 5.1.3流程的控制环节一般是另一个新流程或子流程或附件的起点。 5.1.4画流程图的统一工具为 Visio,图标模板为 Sap.vss。图标说明: 5.2确定流程清单 5.2.1部门文件编写人员根据流程图的主过程确定本部门的流程数量和名称。 5.3流程编写 5.3.1程序文件包括以下内容 : (1)目的-此程序的执行目的。 (2)范围-此程序文件所规定及涉及的范围。 (3)职责-明确列出该程序的主要制定人及执行人。 (4)定义-对程序中所使用的专门和特定名词给出定义。 (5)程序说明-详细表述具体工作的执行方法来强调及解释如何作,其重心是技术 性、技巧性及可操作性,应涉及技术指标、标准、规范和记录等。同样可用文字,流程图, 表格,图片等多种形式描述并可以用数字或字母标明前后顺序,明了易懂。 (6)记录-列出并在有可能的情况下附上本程序中所用的报告、记录、表格、单据或 电子记录名称和编号。 (7)参考文件及附件-列出并在有可能的情况下附上本程序中所采用的重要参考文 件。另外必须列明此程序支持的纲要和其他相关文件的名称,具体包括三项: -参考文件-列出本程序所参考的重要文献及编号。 -本程序支持的纲要-此程序支持的纲要及编号。 -附件-列出全文引用的支持此程序的文件或工具书及编号等 5.3.2程序文件内容的编码、字体及版面 (1)页眉、页脚设置 页眉设置见模板,涵盖“文档名称”、“文档编号”、“文件负责人”和“第 X 页共 X 页”

Word学习要点模板

Word学习要点 一、利用模板创建新文档: 1、优点很多:可以加快文档的创建、标准化文档 二、光标双击定位插入点, 2、输入法工具条的使用: 1、ctrl+space 中英文输入法切换,ctrl+shift 不同输入法之间切换。 ①全半角转换---全角指个数字或字母占用一个汉字的字符;半角指一个数字或字母占用半个汉字的字符。 ②软键盘的使用------单击软键盘显示/隐藏软键盘;显示软键盘后用鼠标单击录入;右/左键单击选取软键盘类型(特殊字符、pc键盘、希腊字符………) 三、文字编辑: 1、选定-----鼠标拖拉;词双击;段落三击;ctrl+鼠标拖动非连续文本的选定。 2、段落------一段文字末尾有回车符号的就形成一个段落 3、移动复制文本的快捷方法:移动---选定后按住鼠标左键移动到目标位置。复制----选定后按住ctrl+按住鼠标左键移动到目标位置。 4、常用热键----ctrl+c复制、ctrl+v粘贴、ctrl+a全选、ctrl+z撤销。 四、书签: 1、书签的制作------在指定位置/按插入菜单/选择书签选项,编辑书签名,会在插入点形成水印的字形;将选定文字/按插入菜单/选择书签选项,编辑书签名,会在选定文本前后形成的大刮号形。 2、书签的作用------用于定位查询。 五、文字排版: 1、对文字的格式的排版-------选中文本中的字体直接点击格式工具栏对应的设置对文字进行设置;选中文本中的字体点击格式----字体(对文字进行字形、字号、下划线、阴影等效果的设置。) 2、文字格式的字符间距选项-------①缩放选项用于文字的宽度缩放比例②间距选项用于调整文字之间。段落的间距③位置选项指设置的文字相对于正常文字的位置高低设置。

企业复工必备防疫指南WORD模板(A4打印)

企业复工必备防疫指南 1.上班途中如何做 正确佩戴一次性医用口罩。尽量不乘坐公共交通工具,建议步行、骑行或乘坐私家车、班车上班。如必须乘坐公共交通工具时,务必全程佩戴口罩。途中尽量避免用手触摸车上物品。 2.入楼工作如何做 进入办公楼前自觉接受体温检测,体温正常可入楼工作,并到卫生间洗手。若体温超过37.2℃,请勿入楼工作,并回家观察休息,必要时到医院就诊。 3.入室办公如何做 保持办公区环境清洁,建议每日通风3次,每次20-30分钟,通风时注意保暖。人与人之间保持1米以上距离,多人办公时佩戴口罩。保持勤洗手、多饮水,坚持在进食前、如厕后按照六步法严格洗手。接待外来人员双方佩戴口罩。 4.参加会议如何做 建议佩戴口罩,进入会议室前洗手消毒。开会人员间隔1米以上。减少集中开会,控制会议时间,会议时间过长时,开窗通风1次。会议结束后场地、家具须进行消毒。茶具用品建议开水浸泡消毒。 5.食堂进餐如何做

采用分餐进食,避免人员密集。餐厅每日消毒1次,餐桌椅使用后进行消毒。餐具用品须高温消毒。操作间保持清洁干燥,严禁生食和熟食用品混用,避免肉类生食。建议营养配餐,清淡适口。 6.下班路上如何做 洗手后佩戴一次性医用口罩外出,回到家中摘掉口罩后首先洗手消毒。手机和钥匙使用消毒湿巾或75%酒精擦拭。居室保持通风和卫生清洁,避免多人聚会。 7.公务采购如何做 须佩戴口罩出行,避开密集人群。与人接触保持1米以上距离,避免在公共场所长时间停留。 8.工间运动如何做 建议适当、适度活动,保证身体状况良好。避免过度、过量运动,造成身体免疫能力下降。 9.公共区域如何做 每日须对门厅、楼道、会议室、电梯、楼梯、卫生间等公共部位进行消毒,尽量使用喷雾消毒。每个区域使用的保洁用具要分开,避免混用。传递纸质文件前后均需洗手,传阅文件时佩戴口罩。 10.公务出行如何做 专车内部及门把手建议每日用75%酒精擦拭1次。乘坐班车须佩戴口罩,建议班车在使用后用75%酒精对车内及门把手擦拭消毒。

简易常用-Word文档使用技巧方法大全(超全)

Word文档使用技巧方法大全 Word2000、2003、2007、2010快捷键使用大全总结常用快捷键 快捷键作用 一、字体类 Ctrl+B 使字符变为粗体 Ctrl+I 使字符变为斜体 Ctrl+U 为字符添加下划线 Ctrl+Shift+D 双下划线 Ctrl+Shift+< 缩小字号 Ctrl+Shift+> 增大字号

Ctrl+] 逐磅增大字号 Ctrl+[ 逐磅减小字号 Ctrl+Shift+F 改变字体 Ctrl+Shift+P 改变字号 Ctrl+D 改变字符格式("格式"菜单中的"字体"命令) Shift+F3 切换字母大小写(一次首字母变成大写,两次单词变成大写) CTRL+SHIFT+A 将所选字母设为大写 二、格式类 Ctrl+Shift+C 复制格式 Ctrl+Shift+V 粘贴格式 Ctrl+1 单倍行距(1为主键盘的数字键) Ctrl+2 双倍行距

Ctrl+5 1.5 倍行距 Ctrl+0 在段前添加一行间距 Shift+F1(单击)需查看文字格式了解其格式的文字Ctrl+E 段落居中 Ctrl+J 两端对齐 Ctrl+L 左对齐 Ctrl+R 右对齐 Ctrl+Shift+J 分散对齐 Ctrl+M 左侧段落缩进 Ctrl+Shift+M 取消左侧段落缩进 Ctrl+T 创建悬挂缩进 Ctrl+Shift+T 减小悬挂缩进量

Ctrl+Shift+S 应用样式 Ctrl+Shift+N 应用"正文"样式 Alt+Ctrl+1 应用"标题1"样式 Alt+Ctrl+2 应用"标题2"样式 Alt+Ctrl+3 应用"标题3"样式 三、编辑和文字移动 Backspace 删除左侧的一个字符 Ctrl+Backspace 删除左侧的一个单词 Delete 删除右侧的一个字符 Ctrl+Delete 删除右侧的一个单词 F2(然后移动插入移动选取的文字或图形点并按Enter键)

完整word版用户操作手册模板

项目名称用户操作手册 部门:项目:密级: 日期: 编写说明 类别:项目文档

密级: 撰稿人: 修改人: 存放位置: 编辑软件: 版本信息: 版本修改点说明 页1目录. 目录 1 引 言 .................................................................. ..................................................................... 1-1 1.1 编写目的................................................................................................................... 1-1 项目背景................................................................................................................... 1-1 1.2 术语定义................................................................................................................... 1-1 1.3 参考资料................................................................................................................... 1-1 1.4 软件概述 .2 ..................................................................... ......................................................... 2-3 2.1 目标........................................................................................................................... 2-3 功能.2.2 .......................................................................................................................... 2-3 性能 2.3 ........................................................................................................................... 2-3 3 运行环

2017年操作手册模板word版本

<项目名称> 操作手册 年月日

修改记录

目录 1简介 (1) 1.1手册目的 (1) 1.2手册范围 (1) 1.3名词定义 (2) 1.4参考文件 (2) 2系统简述 (2) 3公共操作 (2) 3.1开关机 (2) 3.2注册 (2) 3.3主菜单操作 (3) 3.4退出 (3) 3.5屏幕画面的布局 (3) 3.6公共画面属性 (4) 3.7提示窗 (4) 3.8按钮定义 (5) 3.9键盘定义 (6) 4功能概述 (7) 5功能模块1 (7) 5.1子功能模块1 (8) 5.2子功能模块2 (8) 6功能2 (8) 7功能3 (8) 8附件 (8)

1简介 本章将简要地说明软件操作手册(以下简称本手册)的目的、范围、名词定义和参考文件。 1.1 手册目的 本手册的目的在于告诉XXXXXX系统(以下简称本系统)的使用者,本系统提供了哪些功能,以及如何正确地、有效地来使用这些功能。 1.2 手册范围 本手册首先简要地介绍本系统结构以及软件环境,然后说明本系统为使用者提供的各项功能及其详细的操作步骤。关于系统详细软硬件结构、系统安装及系统运行维护方面的内容,请参考本系统的《系统安装手册》及《系统运行维护手册》。 本手册的使用者包括: 这里罗列手册的使用者。例如: 营业人员 帐务人员 网点操作员 … … … 本手册各章节内容安排如下: 第一章简介: 简单说明本手册的目的、范围、名词定义和参考文件。 第二章系统概述: 简单说明本系统的结构及其执行环境。 第三章公共操作: 介绍系统注册与退出、关机等公共操作,并指明为系统中各项操作所共有的屏幕属性、按钮定义及键盘定义。 第四章功能概述 第五章操作说明: 逐一说明各项功能及其详细的操作步骤。 其中“第四章功能概述”与“第五章操作说明”为本手册之重点,希望使用者能深入了解。 1 /9

快速套用IEEE Word模板方法

快速套用IEEE Word模板方法及注意事项(仅供参考) 所谓套用IEEE Word模板,就是将自己论文的内容逐步替换模板中的相应内容(千万不要整体复制) 具体方法与注意事项如下: 1、在屏幕上同时打开IEEE模版文档和自己已定稿论文的Word文档; 2、将IEEE模版文档中全部文字的字体改为红色字体(自己的论文还是黑色字体); 3、标题与正文应分开替换,正文也应该逐段逐段替换 以替换题目为例:将自己论文的题目复制到模版中题目的尾部(即,前面红色字体为模板中的题目,后面黑色字体为自己论文的题目),选择模板中题目的部分红色文字,使用工具栏中的格式刷,将复制过来的题目(黑色字体)刷红(目的是使题目字体与大小跟模板的一致),同时,再将其改为黑色字体,最后再删除前面的红色文字即可(文章标题为3号字加粗,实词首字母大写,其余小写); 4、继续采用上述替换方法,依次替换其他内容; 5、注意事项: (1)引言中的第一个单词分两次替换,先替换首字母,再替换该单词的其他字母,在删除红色字体时使用Backspace 键删除比较保险; (2)一、二级标题不能与正文一起套用,套用后注意及时修改字号 一级标题的每个实词的首字母是10号字体,其他字母是8号 二级标题每个单词的首字母大写,其余小写,字号均为斜体10号; (3)首页左下角的作者信息需要单独替换,其中要注意人名的简写方式,例:Xiaoming Wang,简写为X Wang; (4)替换图片下方的文字说明时注意,格式为Fig+点+空格+点+两个空格+图片文字说明(首字母大写); (5)替换表格上方的文字时注意,表的标题TABLE为大写8号字,后加空格加罗马数字,换行输入表的标题,标题全部大写,其中每个实词的首字母8号,其余字母6号;表头为实词首字母大写; (6)公式编号所在行应先选择右端对齐,然后在公式编号前加空格,直至公式“居中”; (7)引用文献编号时注意,参考文献按顺序引用,不用上标表示;引用的参考文献如果是第2和第3篇,表示为[2],[3];如果是第1到第3篇,则表示为[1]-[3]; (8)替换参考文献时,请按照下面的格式修改: 首先非英文文献需要译成相应的英文后著录;人名按西文习惯,名前姓后,名只用首字母加点,姓用全称;列出全部作者,超过六位后用,et al. ①在线专著:作者.(出版年,月日).书名(版本)[Online]. Available: 网址: ②在线期刊:作者.(出版年,月).文章名.期刊名(期刊名为斜体,实词首字母大写).[Online].卷(期).页码范围. Available: 网址: ③专著析出文献:作者,“文章名”(文章名加双引号,正体,实词首字母大写), in 专著名(专著名为斜体,实字 首字母大写),版本.卷,编者.出版地:出版商,年份, pp.页码范围. ④专著:作者, 书名(书名为斜体,实词首字母大写).出版地: 出版商,年份, pp.页码范围. ⑤期刊论文:作者,“文章名”(文章名加双引号,正体,实词首字母大写),期刊名(期刊名为斜体,实词首字母大 写),卷,期,pp.引用页码,月份.年份. ⑥会议论文:作者, “文章名”(文章名加双引号,正体,实词首字母大写),in 会议名称(会议名称斜体,实词首 字母大写),举办地,年份,pp.引用页码. ⑦专利文献:作者, “专利名”(专利名加双引号,正体,实词首字母大写),国家Patent 专利号, 月日, 年份. ⑧标准文献:标准名(标准名斜体,实词首字母大写),标准号, 年份. (9)文中需要强调的内容,使用斜体即可,不能采用其它方式(加粗或加下划线等)标注; (10)科技英语专家发现作者信息(首页左下角)的表述不统一,现规范如下,请作者对照修改: 关于作者信息的规范 文章标题下面按照名前姓后的顺序给出所有作者的全名,并以逗号间隔开,若有两个或以上的作者,在最后一个作者名前加and;若作者是IEEE会员,也请注明;举例如下: Yiyi Wang, Sansan Li and Wuliu Zhao, IEEE Member 请在第一页的左下角注明文章的资助项目和编号,然后给出作者信息,包括姓名(姓全拼,名只需首字母)、从小到大顺序的作者单位(到二级单位)、邮箱,通讯作者还需要注明联系电话,举例如下: This work was supported by the National Natural Science Foundation of China under Grant No. 60128008. Y Wang is with the Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PRC(e-mail: author@https://www.wendangku.net/doc/e13840551.html,). S Li, corresponding author, is with the Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PRC(phone: 027-8754****; fax:027-8754****; e-mail: author@ https://www.wendangku.net/doc/e13840551.html,) W Zhao is with the Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PRC (e-mail: author@https://www.wendangku.net/doc/e13840551.html,) , he is also with the Department of Electronic, Wuhan University of Science and Technology, Wuhan 430081, Hubei, PRC.

大疆御操作指南精编WORD版

大疆御操作指南精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、功能亮点 MavicPro配备28mm(35mm格式等效)低畸变广角相机和高精度防抖云台,可拍摄1200万像素JPEG以及无损RAW格式的照片及4K超高清视频。信号传输距离最远可达7km。 二、飞行模式 1、P模式(定位): 使用GPS模块和前视视觉系统和下视视觉系统以实现飞行器精确悬停、指点飞行以及高级模式等功能。P模式下,GPS信号良好时,利用GPS可精准定位;GPS信号欠佳,光照条件满足视觉系统需求时利用视觉系统定位。开启前视避障功能且光照条件满足视觉系统需求时,最大飞行姿态角为16°,最大飞行速度10m/s。未开启前视避障功能时最大飞行姿态角为25°,最大飞行速度16m/s。 在GPS卫星信号差或者指南针受干扰、并且不满足视觉定位工作条件时,飞行器将进入姿态(ATTI)模式。姿态模式下,飞行器容易受外界干扰,从而在水平方向将会产生飘移;并且视觉系统以及部分智能飞行模式将无法使用。因此,该模式下飞行器自身无法实现定点悬停以及自主刹车,请尽快降落到安全位置以避免发生事故。同时应当尽量避免在GPS卫星信号差以及狭窄空间飞行,以免进入姿态模式,导致飞行事故。 2、S模式(运动):

使用GPS模块以实现精确悬停。飞行器操控感度经过调整,最大飞行速度将会提升。当选择使用S模式时,前视视觉系统将自动关闭,飞行器无法自行避障。S模式下不支持地面站及高级模式功能。 3、注意: 在使用S模式(运动)飞行时,前视视觉系统不会生效,飞行器无法主动刹车和躲避障碍物,用户务必留意周围环境,操控飞行器躲避飞行路线上的障碍物。 三、飞行器状态指示灯说明 四、自动返航(智能返航,智能低电量返航以及失控返航。) 1、记录返航点 起飞时或飞行过程中,GPS信号首次达到(四格及以上)时,将记录飞行器当前位置为返航点,记录成功后,飞行器状态指示灯将快速闪烁若干次。 2、失控返航 当GPS信号良好,指南针工作正常,且飞行器成功记录返航点后,当无线信号在RC 控制模式下中断3秒或以上,或在Wi-Fi控制模式下中断20秒或以上,飞控系统将接管飞行器控制权,控制飞行器飞回最近记录的返航点。如果在返航过程中,无线信号恢复正常,返航过程仍将继续,用户可短按遥控器智能返航按键以取消返航。 注意: a.当GPS信号欠佳或者GPS不工作时,无法实现返航。

Word 操作指南

Word 操作指南 1、启动word. 开始--程序—Microsoft office –Microsoft office word 2003. 也有可能不是2003版本的,只要找到word打开就行了。如果想以后用着方便,可以把这个软件在桌面建立一个快捷方式。用这个路径“开始--程序—Microsoft office –Microsoft office word 2003.”找到它,然后--右击—发送到—桌面快捷方式”。这样以后就可以在桌面 直接找到它,打开即可。(这个是图标) 2、文本编辑 1)材料题目:打完后,点击上面工具条上的 ,这个图标是“居中对齐”的意思。 使题目位于第一行正中间。 2)正文。刚才是“居中对齐”,写正文要变成“两端对齐”,即 . 然后就可以写你的材料了。 3、调整字号大小 1)题目字号的大小,你可以单独来设置。 第一步,选中题目的文字,然后点击 右边的小黑三角,里面有字号选择,把字体调整到你想要的大小就行了。 2)正文的字号。 选中所有的正文文字,然后还在刚才那个设置里修改字体的大

小。 4、调整段落。 选中正文的所有文字,在空白处单击右键,找到“段落…”,这里要进行两个设置。 1)首行缩进。也就是每段第一行空出两格的设置。在“段落”里找 到“首行缩进”点击。它 的值是“2字符”。 2)文字行与行之间的间距设置。 ,找到“行距”,你可以选择“单倍行距”,也可以选择“1.5倍行距”,这样,两行文字之间的空隙就开以调整了,一般情况下,“1.5倍行距”比较合适。 5、调整字体 首先选中文字,,在这里选出想要的字体。“宋体”,“黑体”“楷体”都行。 6、调整字体颜色。 题目和文字,可以设置不同的颜色。 ,找到上面工具条的大写A,点击后面的小三角,里面有很多颜色,你可以选择。 7、保存。

Word 文档操作指南

Word 文档操作指南 在键盘的功能区有一个INSERT键,这个键可以调输入模式,你说的问题,是你的INSERT 处于覆盖状态了,也就是说你在前面打字的会覆盖掉后面的文字,如果出现这种情况你再按一下INSERT键,看问题解决了吧 ▲~~~~~~~~~~~~~~~~再告诉你一些Word快捷键吧,着些 对你是很有帮助的虽然多,慢慢记 [F1]键:帮助 [F2]键:移动文字或图形,按回车键确认 [F4]键:重复上一次的操作 [F5]键:编辑时的定位 [F6]键:在文档和任务窗格或其他Word窗格之间切换 [F8]键:打开Word的选择模式 [F12]键:打开“另存为”对话框 [shift+F2]组合键:复制文本 [shift+F3]组合键:改变字母大小写 [shift+F4]组合键:重复查找或定位有 [shift+F12]组合键:选择“文件”菜单中的“保存”菜单项 [shift+F5]组合键:跳转文档中上一次编辑位置 [shift+←] 组合键:选中光标左侧一个字符 [shift+→] 组合键:选中光标右侧一个字符 [shift+↑] 组合键:选中光标当前位置至上一行之间的内容 [shi ft+↓] 组合键:选中光标当前位置至下一行之间的内容 [shift+Ena] 组合键:选中光标所在处至行尾 [shift+Home] 组合键:选中光标所在处至行首 [shift+pageup] 组合键:选中光标当前位置至上一屏之间的一行内容 [Shift+Pagedown] 组合键:选中光标当前位置至下一屏之间的一行内容 [ctri+F2] 组合键:打印预览 [ctri+F4] 组合键:关闭窗口 [ctri+F6] 组合键:在打开的文档之间切换 [ctri+F12] 组合键:打开“打开”对话框 [ctri+1] 组合键:单倍行距 [ctri+2] 组合键:双倍行距 [ctri+5] 组合键:1.5倍行距 [ctri+O] 组合键:段前添加一行间距 [ctri+A] 组合键:全选 [ctri+B] 组合键:字符变为粗体 [ctri+C] 组合键:复制 [ctri+shift+D] 组合键:分散对齐 [ctri+E] 组合键:段落居中 [ctri+F] 组合键:查找

word模块操作指南

1、设置页眉页脚。 答:视图→页眉页脚→出现页眉页脚工具条。在工具条中的页面设置中,可以设置首页不同和奇偶页不同。 如果要消除页眉的横线,选选定页眉然后在格式→样式和格式→选择正文。 2、批注 答:在视图→标记点选的情况下,可以在需要加批注的部分,插入→批注。点算标记可以隐藏或显示批注。 3、如何进行简体、繁体之间的转换。 答:工具→语言→中文简繁转换。 4、公式编辑器的使用。 答:1.插入---对象----“microsoft 公式3.0” 2.进行公式的设置。 5、去除绘图时出现的画布。 答:工具→选项→常规→去除“插入自选图形时自动创建画布”复选框6、使用索引和目录 答:1.定位到放置的位置 2.选择“插入/引入/索引和目录”命令 3.打开“索引和目录”对话框,选择“目录”选项卡 4.设置完毕后,点确定 7、为汉字加注音 1.选定文字 2.格式---中文版式----拼音指南—确定 3.选择相应设置,字体、大小等

8、进行中文版式其他设置:带圈字符、纵横混排,双行合一、合并字符: 1.选定文字 2.格式---中文版式----带圈字符、纵横混排,双行合一、合并字符—确定9、快速输入特殊符号 1.选定位置 2.插入----特殊符号 3.选择对应符号 10、调整单元格中文字对齐方式 选中需要调整的表格,点击鼠标右键,调整对齐方式. 11、设置表格标题行重复 选中表格的第一行---选择表格菜单----标题行重复。 12、替换文章中内容: 编辑菜单---替换---在查找内容中输入需要替换的内容----在替换为中输入新内容----点击全部替换----关闭。 13、设置“标题1”样式: 选中需要设置的内容----点击格式菜单----样式和格式----选择标题一-----然后根据题目调整字体大小。 14、设置字体格式: 选中需要设置的内容---格式---字体—设置字体、字形、字号等。 15、设置段落格式: 选中需要设置的内容---格式----段落---设置段前段后间距、特殊格式里的首行缩进—行距里的1.5倍行距等。

word高级使用技巧操作指南

Word2007高级使用技巧 1.利用标题样式统一文档格式 我们日常使用Word工作时,除了文档的录入之外,我们的绝大部分时间都花在文档的修饰上,样式则正是专门为提升文档的修饰效率而提出的。使用样式能够协助用户确保格式编排的一致性,从而减少很多重复的操作,并且不需要重新设置文本格式,就可快速更新一个文档的设计,在短时间内排出高质量的文档。我们常用的是为案例文档的标题设置相对应的标题样式。 (1) 打开word2007文档,选择菜单栏中的“开始”选项,在下面的工具栏中既有相对应的“样式”的任务窗格。打开之后,我们能够看到它的列表中列出了现有的几种样式,如“标题1”、“标题2”等。 (2) 把插入点定位于将要执行样式更改的标题段落,然后用鼠标点一下“样式”任务窗格中的“标题1”,这时能够看到插入点所在的标题段落被应用了“标题1”样式。 (3) 用同样的方法为案例文档中其它的标题指定相对应的标题样式,全部完成后请保存一下文件。此时,即可将案例文档中的所有标题设置了相对应等级层次的标题样式了。 2.基于样式快速生成目录 要自动生成案例文档的目录,首先是要对目录的标题实行样式设置定义,然后再自动生成目录。创建目录最简单的方法就是使用内置的标题样式。 (1)打开案例文档,将文档中的各标题按照上述所讲的“标题样式”定义。 (2)点击word2007菜单栏中的“引用”按钮,找到“目录”选项,点击“目录”选项 下面的倒三角,选择“自动目录”。这时候即可自动生成相对应的目录。 (3)如果对生成的目录需要调整,经调整后点击“更新目录”,即可将目录实行更新。

3.个性设置页眉页脚 (1)打开“页眉页脚”工具栏 单击菜单栏中的“插入”按钮,便能够看到“页眉页脚”任务窗口。 点击“页眉”/“页脚”选项,然后选择“编辑页眉”/“编辑页脚”选项,既能够进入编辑状态,如图: (2)编辑页眉页脚 A进入编辑状态 将鼠标指针移至页眉框内,即可开始输入和编辑页眉页脚的内容。要回到主文档,可选择“页眉和页脚”工具栏上的“关闭”按钮,或者双击主文本区。要重新进入页眉和页脚编辑状态,可在主文档页眉或页脚区域内双击。当然,在“转至页眉”/“转至页脚”选项中,能够变换“页眉”或者“页脚”的编辑。 B设置文档奇偶页不同页眉 有的文档可能需要给奇数页和偶数页设置不同的页眉或页脚。要使奇偶页的页眉和页脚不同,也是通过“页眉页脚”工具栏中来实现。方法是在出现的“设计”菜单中勾选“奇偶页不同”选择框。 设置文档奇偶页不同页眉:“奇数页页眉”输入内容后,点击“页眉和页脚”工具栏的“显示下一项”按钮,即转换到“偶数页页眉”编辑状态。(“偶数页页眉”输入内容后,单击“显

相关文档