文档库 最新最全的文档下载
当前位置:文档库 › 2008--2009(10)解三角形及其应用

2008--2009(10)解三角形及其应用

2008--2009(10)解三角形及其应用
2008--2009(10)解三角形及其应用

第04讲 解三角形及应用问题

广东高考考试大纲说明的具体要求:

(1)掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;

(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。 (一)基础知识梳理:

1.解三角形的主要依据:

(1)勾股定理:在RT △ABC 中,a,b,c 分别是角A ,B ,C 的对边,则c 2=_________________; (2)三角形的内角和定理:在△ABC 中,A+B+C=__________, 其中A ,B ,C ∈___________; (3)三角形的面积公式:S △=________=_________=_________;

(4)正弦定理:在△ABC 中,a,b,c 分别是角A ,B ,C 的对边,则_______________________; (5)余弦定理:在△ABC 中,a,b,c 分别是角A ,B ,C 的对边,则a 2=___________________,

b 2=_____________ _________,

c 2=________________________;

2.解三角形的主要题型:

在△ABC 的六个边、角元素中,已知其中任意三个(至少有一个是边),就可以求出其他元素。 (1)已知两角一边:用________定理求解;

(2)已知两边及一边的对角,求角:用________定理求解;

(3)已知两边及一边的对角,求第三边:用________定理求解; (4)已知两边及其夹角,求第三边:用________定理求解; (5)已知三边:用________定理求解;

(二)典型例题分析:

题型一:基本题型, 知三求三

例1:(1)(2005北京文)在△ABC 中,AC=3,∠A=45°,∠C=75°,则BC 的长为 .

(2)(2008陕西文) ABC △的内角A,B,C 的对边分别为a,b,c ,若120c b B =

== ,

则a = .

(3)在△ABC 中,7:5:3c :b :a =,则△ABC 的最大角是_________。

基础训练(一):

1.ΔABC 中, a=2 , b=23, ∠A=30°,则∠B 等于( )

A .60°

B .60°或120°

C .30°或150°

D .120°

2.符合下列条件的三角形有且只有一个的是( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30° C .a=1,b=2,∠A=100° D .b=c=1, ∠B=45°

3.在△ABC 中,ab b c a 2

2

2

=+-,则角C 为 ( )

(A )o

30 (B )o

60 (C )o

120 (D )o

45或o

135 4.(2006江苏)在△ABC 中,已知BC =12,A =60°,B =45°,则AC = 5.(2006全国Ⅱ卷理)已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中

线AD 的长为 .

例2. 如图,在四边形ABCD 中,已知AD ⊥CD, AD=10, AB=14, ∠BDA=60?, ∠BCD=135? 求BC 的长.

基础训练(二):

1. 在△ABC 中,bcosA=acosB ,则△ABC 的形状是 ( )

(A )直角三角形 (B )锐角三角形 (C )等腰三角形 (D )等边三角形

2.(2008四川文)ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若,2a A B ==,则cos B =( )

(A)

3 (B)

4 (C)

5 (D)6

3.(2006上海春招) 在△ABC 中,已知5,8==AC BC ,三角形面积为12,则=C 2cos .

4. 在△ABC 中,三个内角成等差数列,相对应的三边成等比数列,判断这个三角形的形状,并证明你的结论。

5.(2007上海文、理) 在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4

π,2==C a ,

5

522cos

=B ,求ABC △的面积S .

6.(2008全国Ⅰ卷文)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ; (Ⅱ)若ABC △的面积10S =,求ABC △的周长l .

例3.(2007海南、宁夏文、理)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .

例4.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西15

,相距210海里C 处的乙船。试问乙船应朝北偏东多少度的方向沿直线前往B 处救援?(说明:此题是依据2006上海文、理试题改编)

基础训练(三):

1.两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A,B 之间的相距 ( )

A .a (km)

B .3a(km)

C .2a(km)

D .2a (km)

2.从某电视塔的正东方向的A 点处,测得电视塔顶的仰角是60°;从电视塔的正西偏南30°的B 处,测得电视塔顶的仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是_________米.

3.(2007山东理)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,问乙船每小时航行多少海里?

4.(2008上海文、理)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120

.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).

5.如图,港口B 在港口O 正东方向120海里处,小岛C 在港口O 北偏东60

、港口B 北偏西30

方向上.一艘科学考察船从港口O 出发,沿北偏东30

的OA 方向以20海里/小时的速度驶离港口O .一艘快船从港口B 出发,以60海里/小时的速度驶向小岛C ,在C 岛装运补给物资后给考察船送去,现两船同时出发,补给物资的装船时间要1小时,问快艇驶离港口B 后最少要经过多少时间才能和考察船相遇?

6..某观测站C 在目标A 的南偏西o 25方向,从A 出发有一条南偏东o

35走向的公路,在C 处测得与C 相距31km 的公路上B 有一人正沿着此公路向A 走去,走20km 到达D ,此时测得CD 距离为21km ,求此人在D 处距A 还有多远?

参考答案

第04讲 解三角形及应用问题

(二)典型例题分析:

题型一:基本题型, 知三求三

例1:(1)2. (2 (3)__120°__。

基础训练(一):

1. B . 2.D . 3.B. 4.64. 5.3.

题型二:解三角形的综合应用:

例2. 解:在△ABD 中,设BD=x , 则BDA AD BD AD BD BA ∠??-+=cos 22

22

60cos 10210142

2

2

??-+=x x 整理得:096102

=--x x

解之:161=x 62-=x (舍去) 由余弦定理:

BCD BD

CDB BC ∠=

∠sin sin ∴2830sin 135

sin 16=?=

BC

基础训练(二):

1.C.

2.B.

3.

25

7

.

4. 解:△ABC 为等边三角形。

证明:由A ,B ,C 成等差数列,得A+C=2B ,A+B+C=180O ,解得,B=60O

,

又三边a 、b 、c 成等比数列,所以b 2

=ac,

由余弦定理,得b 2=a 2+c 2-2accos60O ,即ac=a 2+c 2-ac, (a-c)2

=0,所以a=c , 所以,△ABC 为等边三角形。

5. 解: 由题意,得3

cos 5B B =,为锐角,5

4sin =B ,

102

74π3sin )πsin(sin =??

? ??-=--=B C B A ,

由正弦定理得 7

10=c ,∴ 111048

sin 222757S ac B ==???= .

6. 解:(1)由sin 4b A =与cos 3a B =两式相除,有:

B

B B b b B B b a A B a A b cos sin cos sin cos sin cos sin 34=

?=?==,又1cos sin 2

2=+B B 由cos 3a B =知:cos 0B >, 所以3cos 5B =,4

sin 5

B =,

所以33

=a ,解得5a =.

(2)由1sin 2S ac B =

=5

4

521??c =10,得到5c =. 由余弦定理,得205

3

5522525cos 2222=???-+=-+=B ac c a b

,解得:b = 所以,ABC △的周长

10l =+.

题型三:解三角形的实际应用:

例3.解:在BCD △中,πCBD αβ∠=--.

由正弦定理得

sin sin BC CD

BDC CBD =

∠∠. 所以sin sin sin sin()

CD BDC s BC CBD β

αβ∠==

∠+·. 在ABC Rt △中,tan sin tan sin()

s AB BC ACB θβ

αβ=∠=+·.

例4.解:连接BC,在?ABC 中,∠BAC=105° 而cos 105°= cos (60°+ 45°)=46

2-, sin105°= 4

2

6+, 由余弦定理得

BC 2=202+(210)2-2×20×210cos 105°=400+2003. 于是 BC=10)13(+. 由正弦定理,得

)

13(10105sin 20sin +?=∠ACB , ∴sin ∠ACB=22

,

∵∠ACB<90° ∴∠ACB=45°

答:乙船应朝北偏东60°方向沿直线前往B 处救援.

基础训练(三):

1.C . 2.215.

3.解:如图,连结12A B

,22A B =

,1220

60

A A =

?=,

122A A B ?是等边三角形,1121056045B A B ∠=?-?=?,

在121A B B ?中,由余弦定理得

22212111211122

2

2cos 4520220200

2

B B A B A B A B A B =+-??

=+-??=,

12B B =

60

=

答:乙船每小时航行

.

4.解: 设该扇形的半径为r 米. 由题意,得CD =500(米),DA =300(米),∠CDO=060 在CDO ?中,2

2

2

2cos60,CD OD CD OD OC +-???= 即()()2221

5003002500300,2

r r r +--??-?= 解得4900

44511

r =≈(米).

5.解:设快艇驶离港口B 后,最少要经过x 小时,在OA 上点D 处与考察船相遇,连接CD ,则快艇

沿线段BC ,CD 航行.在OBC ?中,30BOC ∠= ,60CBO ∠= ,∴90BCO ∠=

. 又120BO =,∴60BC =

,OC = ∴快艇从港口B 到小岛C 需要1小时.

在OCD ?中,30COD ∠=

,20OD x =,()602CD x =-,

由余弦定理,得222

2cos CD OD OC OD OC COD =+-??∠. ∴()(

)(

2

2

2

60220220cos30x x x -=+-?????? .

解得3x =或3

8

x =

.∵1x >,∴3x =. 答:快艇驶离港口B 后最少要经过3小时才能和考察船相遇.

6..解:如图,在△BCD 中,由余弦定理,得7

1

20212312021cos 222-=??-+=

∠CDB , 在△ACD 中,∠A=60O ,7

1cos cos =

∠-=∠CDB ADC , 7

3

4sin =

∠ADC , 所以[

]

)60(180

sin sin o o

ADC ACD +∠-=∠

=14

3

5)60sin(=

+∠o

ADC , 由正弦定理,得

A

CD

ACD AD ∠=

∠sin sin , 所以152

3143

521=?

=

AD 。 答:此人在D 处距A 还有15km.

【学霸优课】高考数学(理)一轮复习对点训练:4-4-2 解三角形及其综合应用(含答案解析)

1.钝角三角形ABC 的面积是1 2,AB =1,BC =2,则AC =( ) A .5 B. 5 C .2 D .1 答案 B 解析 由题意知S △ABC =1 2AB·BC·sinB , 即12=12×1×2sinB ,解得sinB =22. ∴B =45°或B =135°. 当B =45°时,AC 2=AB 2+BC 2-2AB·BC·cosB =12+(2)2-2×1×2×22=1. 此时AC 2+AB 2=BC 2,△ABC 为直角三角形,不符合题意; 当B =135°时,AC 2=AB 2+BC 2-2AB·BC·cosB =12+(2)2-2×1×2× ? ?? ? -22=5,解得AC = 5.符合题意.故选B. 2.已知△ABC 的内角A ,B ,C 满足sin2A +sin(A -B +C)=sin(C -A -B)+1 2,面积S 满足1≤S≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( ) A .bc(b +c)>8 B .ab(a +b)>16 2 C .6≤abc≤12 D .12≤abc≤24 答案 A 解析 由sin2A +sin(A -B +C)=sin(C -A -B)+1 2得,sin2A +sin[A -(B -C)]+sin[A +(B -C)]=12,所以sin2A +2sinAcos(B -C)=12.所以2sinA[cosA +cos(B -C)]=1 2,所以 2sinA[cos(π-(B +C))+cos(B -C)]=12,所以2sinA[-cos(B +C)+cos(B -C)]=1 2 , 即得sinAsinBsinC =1 8.根据三角形面积公式 S =1 2absinC ,① S =1 2acsinB ,② S =1 2 bcsinA ,③

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

完整版三角形中的几何计算解三角形的实际应用举例

三角形中的几何计算、解三角形的实际应用举例 C知负整介 1. 仰角和俯角 在视线和水平线所成的角中,视线在水平线____________ 的角叫仰角,在水平线____________ 的角叫俯角(如图①). ① ② 2. 方位角 3. 方向角 相对于某一正方向的水平角(如图③) (1) 北偏东a °即由指北方向顺时针旋转a (2) 北偏西a°即由指北方向逆时针旋转 况°到达目标方向. (3) 南偏西等其他方向角类似. 【思考探究】1仰角、俯角、方位角有什么区别? 从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 到达目标方向.

何图形为背景,求解有关长度角度、面积、最值和 转化至u三角形中,利用正軽舷理加以解决n在解决 _ 常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通 常是转化到三角形中,利用正、余弦定理加以解决?在解决某些具体问题时,常先引 入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来, 再利用正、余弦定理列出方程,解之. 如右图,D是直角△ ABC斜边BC上一点,AB = AD, 记/ CAD = ,/ ABC= B . (1)证明:sin + cos 2B= 0; ⑵若AC= 3 DC,求B的值. =10,AB= 14,/ BDA = 60°,/ BCD= 135° 贝S BC 的长为 、最值和优化等问题,通常 亠一某些具体问题时, 【变式训练】 1.如图,在四边形ABCD中,已知AD丄CD,AD A R

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

三角函数-解三角形的综合应用

学思堂教育个性化教程教案 数学科教学设计 学生姓名教师姓名刘梦凯班主任日期时间段年级课时教学内容 教学目标 重点 难点 教学过程 命题点二解三角形 难度:高、中、低命题指数:☆☆☆☆☆ 1.(2015·安徽高考)在△ABC中,AB=6,∠A=75°,∠B=45°,则 AC=________. 2.(2015·广东高考改编)设△ABC的内角A,B,C的对边分别为a,b, c.若a=2,c=2 3,c os A= 3 2 且b<c,则b=________. 3.(2015·北京高考)在△ABC中,a=3,b=6,∠A= 2π 3 ,则∠B= ________. 4.(2015·福建高考)若△ABC中,A C=3,A=45°,C=75°,则 BC=________. 5.(2015·全国卷Ⅰ)已知a,b,c分别为△ABC内角A,B,C的对边, sin2B=2sin A sin C. (1)若a=b,求cos B;[来源:学科网ZXXK] (2)设B=90°,且a=2,求△ABC的面积. 教 学 效 果 分 析

教学过程 6.(2015·山东高考)△ABC中,角A,B,C所对的边分别为a,b,c. 已知cos B= 3 3 ,sin(A+B)= 6 9 ,ac=23,求sin A和c的值. 7.(2015·全国卷Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD= 2DC. (1)求 sin B sin C ; (2)若∠BAC=60°,求∠B. 8.(2015·浙江高考)在△ABC中,内角A,B,C所对的边分别为a,b, c,已知tan ? ? ?? ? π 4 +A=2. (1)求 sin 2A sin 2A+cos2A 的值; (2)若B= π 4 ,a=3,求△ABC的面积.[来源:学科 教 学 效 果 分 析

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

北师版数学高二-必修5学案 2.3 解三角形的实际应用举例

§3 解三角形的实际应用举例 [学习目标] 1.能够从实际问题中抽象出数学模型,然后运用正弦、余弦定理及三角函数的有关知识加以解决.2.巩固深化解三角形实际问题的思维方法,养成良好的研究、探索习惯.3.进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力. [知识链接] 在下列各小题的空白处填上正确答案: (1)如图所示,坡角是指坡面与水平面的夹角.(如图所示) (2)如上图,坡比是指坡面的铅直高度与水平宽度之比,即i =tan α=h l (i 为坡比,α为坡角). (3)东南方向:指经过目标的射线是正东和正南的夹角平分线. (4)方位角:从某点的北方向线起,顺时针方向到目标方向线之间的水平夹角,如方位角45°,是指北偏东45°,即东北方向. [预习导引] 1.仰角与俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图所示). 2.方向角:相对于某一正方向的水平角.(如图所示) ①北偏东α即由指北方向顺时针旋转α到达目标方向. ②北偏西α即由指北方向逆时针旋转α到达目标方向. ③南偏西等其他方向角类似.

要点一 测量距离问题 例1 某观测站C 在目标A 的南偏西25°方向,从A 出发有一条南偏东35°走向的公路,在C 处测得与C 相距31千米的公路上的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 为21千米,求此人在D 处距A 还有多少千米? 解 如图所示,易知∠CAD =25°+35°=60°,在△BCD 中,cos B =312+202-2122×31×20=23 31, 所以sin B =123 31 . 在△ABC 中,AC =BC sin B sin ∠CAB =31× 12331sin 60°=24(千米). 由BC 2=AC 2+AB 2-2AC ·AB ·cos ∠CAB 得AB 2-24AB -385=0, 解得AB =35或AB =-11(舍去). ∴AD =AB -BD =15(千米), 故此人在D 处距A 还有15千米. 规律方法 测量距离问题分为两种类型:两点间不可通又不可视,两点间可视但不可达.解决此问题的方法是,选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正弦、余弦定理求解. 跟踪演练1 如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522 m 答案 A 解析 ∵∠ACB =45°,∠CAB =105°,

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;s in s in B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

解三角形的实际应用举例

解三角形的实际应用举例 【学习目标】 1.了解斜三角形在测量、工程、航海等实际问题中的应用;能选择正弦定理、 余弦定理解决与三角形有关的实际问题. 2.在解三角形的实际问题中,进一步体会数学建模的思想,掌握数学建模的 方法. 3.体会数学知识来源于实际生活,体会正弦定理、余弦定理在实际生活中的 广泛应用. 【学习重点】 熟练掌握正弦定理、余弦定理和面积公式,结合几何性质建模解决生活中的应用问题. 【学习难点】 数学建模的过程及解三角形的运算. 【课前预习案】 1.有关概念: 仰角与俯角:在视线和水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角(如图 ). 方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②) 2.方向角:相对于某一正方向的水平角(如图③) (1)北偏东α°即由指北方向顺时针旋转α°到达目标方向. a (2)北偏西α°即由指北方向逆时针旋转α°到达目标方向. (3)南偏西等其他方向角类似. 思考:方位角与方向角的区别

3. 坡度与坡角:坡面与水平面的夹角叫坡角,坡面与垂直高度 h 和水平宽度l 的比叫坡度. 1. 解三角形的一般思路 (1)读懂题意,理解问题的实际背景,理解题中的有关名词的含义,如坡度、仰角、俯角、方位角等. (2)根据题意画出示意图,将实际问题抽象成解三角形模型, (3)选择正弦定理、余弦定理等有关知识求解. (4)将三角形的解还原为实际意义,检验解出的答案是否具有实际意义,对解进行取舍. 【课堂探究案】 解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 探究一:测量地面上两个不能到达的地方之间的距离 例1.如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是42m ,∠BAC=45?,∠ACB=?75。求A 、B 两点的距离. 变式1.为了开凿隧道,要测量隧道上D 、E 间的距离,为此在山的一侧选取适当点C ,如图,测得CA=400m ,CB=600m , ∠ACB=60°,又测得A 、B 两点到隧道口的距离AD=80m ,BE=40m(A 、D 、E 、B 在一条直线上),计算隧道DE 的长. 探究二:测量高度问题 例2、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,H 、G 、B 三点在同一条水平直线上。在H 、G 两点用测角仪器测得A 的仰角分别是030ADE ∠=、045ACE ∠=、20CD m =,测角仪器的高是1h m =,求建筑物高度

解三角形-解三角形的应用

解三角形的实际应用 知识点 仰角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线____方;俯角:目标视线在水平线____方时叫俯角.(如图所示) 正余弦定理应用类型 已知条件定理选用一般解法三边(,, a b c) 两边和夹角 (如,, a b C) 两边和其中一边的对角 正弦定理 (如,, a b A) 两边和其中一边的对角 余弦定理 (如,, a b A) 一边和二角 (如,, a B C) 总结:单角用余弦,两角用正弦

题型一 测量距离的问题 【例1】. 某地出土一块类似三角形刀状的古代玉佩如图,其一角已破损,现测得如下数据:BC=2.57cm ,CE=3.57cm ,BD=4.38cm ,B=45°,C=120°.为了复原,请计算原玉佩两边的长(结果精确到0.01cm). 【例2】. 在某次军事演习中,红方为了准确分析战场形势,在两个相距为 2 3a 的军事基地C 和D 测得蓝方两支精锐部队分别在A 处和B 处,且∠ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,求蓝方这两支精锐部队的距离. 【巩固练习】 1.一蜘蛛向北爬行xcm 捕捉到一只小虫,然后向右转105?,爬行10cm 捕捉到另一只小虫,这时它向右转135?爬行回它的出发点,那么x = . 2.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15?的方向上,且此时货轮与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔S 在货轮的东北方向,则货轮的速度为 ( ). A .()2062+海里/小时 B.()2062-海里/小时 C.()2063+海里/小时 D.()2063-海里/小时

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

(完整版)高中数学解三角形方法大全

解三角形 1.解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。 以下若无特殊说明,均设ABC ?的三个内角C B A 、、的对边分别为c b a 、、,则有以下关系成立: (1)边的关系:c b a >+,b c a >+,a c b >+(或满足:两条较短的边长之和大于较长边) (2)角的关系:π=++C B A ,π<A , C B A sin )sin(=+,C B A cos )cos(-=+,2 cos 2sin C B A =+ (3)边角关系:正弦定理、余弦定理以及它们的变形 板块一:正弦定理及其应用 1.正弦定理: R C c B b A a 2sin sin sin ===,其中R 为AB C ?的外接圆半径 2.正弦定理适用于两类解三角形问题: (1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边; (2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解 【例1】考查正弦定理的应用 (1)ABC ?中,若ο 60=B ,4 2 tan = A ,2=BC ,则=AC _____; (2)ABC ?中,若ο 30=A ,2= b ,1=a ,则=C ____; (3)ABC ?中,若ο 45=A ,24=b ,8=a ,则=C ____; (4)ABC ?中,若A c a sin =,则c b a +的最大值为_____。

总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在ABC ?中,已知a、b、A (1)若A为钝角或直角,则当b a>时,ABC ?有唯一解;否则无解。 (2)若A为锐角,则当A b a sin <时,三角形无解; 当A b a sin =时,三角形有唯一解; 当b a A b< < sin时,三角形有两解; 当b a≥时,三角形有唯一解 实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式 1.余弦定理:在ABC ?中,角C B A、 、的对边分别为c b a、 、,则有 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ,其变式为: ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2.余弦定理及其变式可用来解决以下两类三角形问题: (1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; (2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角; 说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决 3.三角形的面积公式 (1) c b a ABC ch bh ah S 2 1 2 1 2 1 = = = ? ( a h、 b h、 c h分别表示a、b、c上的高); (2)B ac A bc C ab S ABC sin 2 1 sin 2 1 sin 2 1 = = = ? (3)= ?ABC S C B A R sin sin sin 22(R为外接圆半径) (4) R abc S ABC4 = ? ; (5)) )( )( (c p b p a p p S ABC - - - = ? 其中) ( 2 1 c b a p+ + = (6)l r S ABC ? = ?2 1 (r是内切圆的半径,l是三角形的周长)

解三角形在实际生活中的应用

解三角形在实际生活中的应用 高一数学教研组冯一波 一、背景说明: 在我国古代就有嫦娥奔月的神话故事。明月高悬,我们仰望星空,会有无限遐想。不禁会问,遥不可及的月球离地球到底有多远?1671年,两个法国天文学家测出大约距离为385400千米。他们是怎样测出的呢?在数学发展史上,受到天文测量、航海测量和地理测量等方面实践活动的推动。解三角形的理论不断发展,并被用于解决许多测量问题方面。 二、课题目的和意义: 三角形是基本的几何图形,三角形中的数量关系是基本的数量关系,有着极其广泛的应用。我们将在以前学习的有关三角形、三角函数和解直角三角形的知识基础上,通过对于任意三角形边角关系的研究,发现并掌握三角形中的变长与角度之间的数量关系,并解决一些实际问题。学而不思则罔,只有通过自己的独立思考才能真正学会数学,同时应当掌握科学的思维方法,特别是学习类比、推广等数学思考方法,提高我们的数学思维能力。三、设计思想 本节重点利用解斜三角形解决相关实际问题.解斜三角形知识在生产实践中有着广泛的应用,解斜三角形有关的实际问题过程,贯穿了数学建模的思想.这种思想就是从实际出发,经过抽象概括,把它转化为具体问题中的数学建模,然后通过推理演算,得出数学模型的解,再还原成实际问题的解.强化上述思维过程,既是本节的重点,

又是本节难点. 解三角形应用题的另一个难点是运算问题,由于将正弦定理、余弦定理看成几个“方程“,那么解三角形的应用题实质上就是把已知信息按方程的思想进行处理,解题时应根据已知和未知合理选择一个“容易解”的方程,从而是解题过程简洁.同时,由于具体问题中给出的数据通常是近似值,故运算过程一般较为复杂,必须借助于计算器计算,因此要加强训练,达到“算法简炼,算式工整,计算准确”的要求. 知识结构: 四、实际应用 1.测量中正、余弦定理的应用 例1 某观测站C 在目标A 南偏西25?方向,从A 出发有一条南偏东35?走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ?,求角B .再解ABC ?,求出AC ,再求出AB ,从而求出AD (即为所求). 解:由图知,60CAD ∠=?. 22222231202123cos 22312031 BD BC CD B BC BD +-+-===???, sin 31B =. 在ABC ?中,sin 24sin BC B AC A ?==. 由余弦定理,得2222cos BC AC AB AC AB A =+-??. 即2223124224cos60AB AB =+-????. 整理,得2 243850AB AB --=,解得35AB =或11AB =-(舍). A C D 31 21 20 35? 25? 东 北

人教版必修五“解三角形”精选难题及其答案

人教版必修五“解三角形”精选难题及其答案 一、选择题(本大题共12小题,共60.0分) 1.锐角中,已知,,则的取值范围是 A. , B. , C. , D. , 2.在中,角,,的对边分别为,,,且满足,则 的形状为 A. 等腰三角形 B. 直角三角形 C. 等边三角形 D. 等腰直角三角形 3.在中,,,,则的值等于 A. B. C. D. 4.在中,有正弦定理:定值,这个定值就是的外接圆 的直径如图2所示,中,已知,点M在直线EF上从左到右运动点M不与E、F重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么 A. 先变小再变大 B. 仅当M为线段EF的中点时,取得最大值 C. 先变大再变小 D. 是一个定值 5.已知三角形ABC中,,边上的中线长为3,当三角形ABC的面积最大 时,AB的长为 A. B. C. D. 6.在中,,,分别为内角,,所对的边,,且满足若 点O是外一点,,,平面四边形OACB 面积的最大值是 A. B. C. 3 D. 7.在中,,, ,则使有两解的x的范围是 A. , B. , C. , D. , 8.的外接圆的圆心为O,半径为1,若,且,则 的面积为 A. B. C. D. 1 9.在中,若,则是

A. 等边三角形 B. 等腰三角形 C. 直角三角形 D. 等腰直角三角形 10.在中,已知,,分别为, , 的对边,则为 A. B. 1 C. 或1 D. 11.设锐角的三内角A、B、C所对边的边长分别为a、b、c,且,,则b 的取值范围为 A. , B. , C. , D. , 12.在中,内角,,所对边的长分别为,,,且满足 ,若,则的最大值为 A. B. 3 C. D. 9 二、填空题(本大题共7小题,共35.0分) 13.设的内角,,所对的边分别为,,且,则角A的大 小为______ ;若,则的周长l的取值范围为______ . 14.在中,, , 所对边的长分别为,,已知 ,,则______ . 15.已知中,角A、B、C的对边分别是a、b、c,若,则 的形状是______ . 16.在中,若,则的形状为______ . 17.在中,角,,的对边分别为,,,若, 且,则______ .18.如果满足,,的三角形恰有一个,那么k的取值范围 是______ . 19.已知的三个内角,,的对边依次为,,,外接圆半径为1,且满足 ,则面积的最大值为______ . 三、解答题(本大题共11小题,共132.0分) 20.在锐角中,,,是角,,的对边,且. 求角C的大小; 若,且的面积为,求c的值. 21.在中,角,,的对边分别为,,已知. 求角A的大小; 若,,求的面积.

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

(word完整版)高中数学解三角形练习题

解三角形卷一 一.选择题 1.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为 A .23 B .-23 C .14 D .-14 2、在ABC △中,已知4,6a b ==,60B =o ,则sin A 的值为 A 、3 B 、2 C 、3 D 、2 3、在ABC △中,::1:2:3A B C =,则sin :sin :sin A B C = A 、1:2:3 B 、 C 、 D 、2 4、在ABC △中,sin :sin :sin 4:3:2A B C =,那么cos C 的值为 A 、14 B 、14- C 、78 D 、1116 5、在ABC △中,13,34,7===c b a ,则最小角为 A 、3π B 、6π C 、4 π D 、12π 6、在ABC △中,60,16,A b ==o 面积3220=S ,则c = A 、610 B 、75 C 、55 D 、49 7、在ABC △中,()()()a c a c b b c +-=+,则A = A 、30o B 、60o C 、120o D 、150o 8、在ABC △中,根据下列条件解三角形,则其中有二个解的是 A 、10,45,70b A C ===o o B 、60,48,60a c B ===o C 、7,5,80a b A ===o D 、14,16,45a b A ===o 二、填空题。 9.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =3,b =1,∠B =30°,则∠A 的值是 . 10.在△ABC 中,已知sin B sin C =cos 22 A ,则此三角形是__________三角形. 11. 在△ABC 中,∠A 最大,∠C 最小,且∠A =2∠C ,a +c =2b ,求此三角形三边之比为 .

解三角形应用

解三角形应用举例(1)教学目标 (a)知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 (b)过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正 (c)情感与价值:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 (2)教学重点、难点 教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图 (3)学法与教学用具 让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型

的三角形,让学生尝试绘制知识纲目图。生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。 直角板、投影仪(多媒体教室) (4)教学设想 1、复习旧知 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、设置情境 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实

相关文档
相关文档 最新文档