文档库 最新最全的文档下载
当前位置:文档库 › 水静压强实验

水静压强实验

水静压强实验
水静压强实验

实验三 水静压强实验

一、实验目的

1、加深理解静力学基本方程式及等压面的概念;

2、理解封闭容器内静止液体表面压力及其液体内部某空间点的压力;

3、观察压力传递现象。

二、实验仪器

装置如图

三、实验原理

对密封容器的液体表面加压时,设其压力为o P ,即o a P P >。从U 形管可以看到有压差产生,U 形管与密封容器上部连通的一面,液面下降,而与大气相通的一面,液面上升,由此可知液面下降的表面压力即是密闭容器内液体表面压力o P ,即o a P P g h ρ=+,h 是U 形管液面上升的高度。当密闭容器内压力P 0下降时,U 形管内的液面呈现相反的现象,即o a P P <,这时密闭容器内液面压力o a P P g h ρ=- 。H 为液面下降高度。

四、实验步骤

1、向水箱内注水至2/3处,拧紧加压器并打开排气阀门,关闭与烧杯相连的导管上的阀门,打开与U 形管相连的阀门;

2、用加压器缓慢加压,关闭排气阀门及与U 形管相连的阀门,读取1Z (靠近水箱一侧液柱的高度)、2Z (同一个U 形管另一侧的液柱高度),同时观察A 、B 管内液柱变化情况并重复三次;

3、打开与烧杯相连的导管上的阀门,不再有气泡冒出后,关闭该阀门;

4、关闭排气阀门,打开水箱下端排水阀门,放出少量水,读取1Z 、2Z ,同时观察A 、B 管内液柱变化情况,并重复三次。

五、数据处理

实验数据填入表1中

六、演示步骤

如果对密闭容器的液体表面加压时,其容器内部的压力向各个方向传递,在右侧的测压管中,可以看到由于A、B两点在容器内的淹没深度h不同,在压力向各点传递时,先到A 点后到B点。在测压管中反应出的是A管的液柱先上升而B管的液柱滞后一点也在上升,当停止加压时,A、B两点在同一水平面上。

1、关闭排气阀,用加压器缓慢加压,U形管出现压差h

?,在加压的同时,观察右侧

A、B管的液柱上升情况;

2、打开排气阀,使液面恢复到同一水平面上,关闭排气阀,打开密闭容器底部的水门,放出一部分水,造成容器内压力下降。

七、思考题

1、用该设备是否可以测出其他液体的重度?为什么?

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

人教版九年级化学学生分组 实验报告单

化学实验报告 上册 实验名称1:对蜡烛及其燃烧的探究 实验目的:1、培养观察和描述的能力。2、学习科学探究的方法。 实验器材:蜡烛、小木条、烧杯2个、澄清石灰水 实验过程:1、点燃前,观察蜡烛的颜色、状态、形状和硬度;观察把蜡烛投入水中的情况。 2、燃着时,火焰分几层,用小木条比较火焰不同部分温度的高低,用烧杯推测燃烧后的生成物。 3、燃灭后,用火柴去点白烟,蜡烛能否重新燃烧。 实验现象:1、蜡烛是乳白色,柱状固体、无味,能被轻易切成处,放于水中飘浮于水面上。 2、火焰分为三层。小木条上外焰接触的部分被烧焦得最厉害,干燥的烧杯内壁有水珠,涂有石灰水的烧杯变浑浊。 3、白烟能被点燃。分析及结论:1、蜡烛难溶于水、质软。2、外焰温度最高,蜡烛燃烧有水和CO2生成。3、吹灭蜡烛后的白烟是可燃物。 实验名称:对人体吸入的空气和呼出的气体的探究 实验目的:探究人体吸入的空气和呼出的气体有何不同 实验器材:水槽、集气瓶4个、玻璃片4块、滴管、石灰水、饮料管、小木条 实验过程:1、用吹气排水法收集两瓶呼出的气体。2、收集两瓶空气。 3、在1瓶空气和1瓶呼出气中滴入石灰水、振荡。 4、将燃着的木条分别插入空气和呼出气中。 5、对着干燥的玻璃片呼气。 实验现象:1、滴入石灰水后,充满呼出气的集气瓶更浑浊一些; 2、插入呼出气中的木条立即熄灭,插入空气中的木条正常燃烧过了一会儿才熄灭; 3、呼气后干燥的玻璃片上有较多的水珠。 分析及结论:人体呼出的气体中有CO2含量较高,吸入的空气中O2含量较高,呼出气中H2O含量较高。 实验名称2:化学实验的基本操作 实验目的:熟练掌握药品的取用,给物质的加热,仪器洗涤的操作 实验器材:镊子、药匙、试管、量筒、滴管、酒精灯、试管夹、试管

烧杯试验作业指导书修订稿

烧杯试验作业指导书公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

饮用水处理厂: 昆明通用水务自来水有限公司第五水厂DRINKING WATER TREATMENT PLANT: ,KMCGE 设备或工艺单元混凝烧杯试验操作 操作和控制 OPERATION AND CONTROL 使用的设备和原料 : 絮凝设备 混凝试验搅拌机: 带调速功能(15到1000转/分钟) 定时器 1升方形(更适合)或园柱形的玻璃大口杯。 原水采集设备 10到15升的水桶 1升的量杯 沉淀水采集设备 干净的采集水样和分析用收集瓶(250到300毫升)

分析设备 浊度计 — pH计 定时器 温度计 蒸馏水洗瓶 10毫升吸管 配制混凝剂溶液的设备 -电子天平 -8个100ml容量瓶 -2个250ml广口瓶 -取药勺 其它 液体混凝剂 柔软纸巾 当出现下列情况,应当做烧杯试验 原水水质发生下列参数变化 -温度 p H 浊度和碱度 有机物 原水切换 每周必须一次 对在处理过程中或在水厂运行中每种重要的改变 当分析检查(实验室或在线)指出在原水和/或已处理水水质出现较大变化。 比较各种混凝剂的效果。 根据要处理水的水质确定混凝剂投加量。 确定最适宜的絮凝pH值(例如为了提高净化或把铝的残留量降到最低) 评估添加助凝剂的好处,并确定正确的剂量。

将要进行的分析 原水 水样温度:在采样时,在混凝开始时和在实验期间 PH值 浊度 气浮水 温度 浊度 PH值 铁、铝和锰依据所遇到的问题。如果使用聚合铝作为混凝剂,就要测量出水的铝含量。这是一个好的指标来评定混凝过程的好坏。 结果分析 目的是根据下面的参数决定混凝剂投加量: 气浮出水浊度 气浮出水有机物含量 气浮出水铁、铝和锰的含量 絮凝pH变化评估 注意:用下面的烧杯试验表来填写所有数据

排水管道作业指导书

室内排水系统作业指导书 编制 审核 中铁十二局集团建安公司广州大学城机电安装项目部 2004年10月25日

排水管道安装工艺 本标段设计所采用的UPVC排水管(包括UPVC芯层发泡排水管)(粘接连接)、ABS排水塑钢管、内涂塑镀锌钢管(沟槽式连接)、HDPE塑料管(电熔连接)、卡箍式离心排水铸铁管(卡箍连接)等排水管道详见排水管道安装工艺流程图8.3.2.5。 1、室内UPVC排水管(包括UPVC 芯层发泡排水管)安装方法 (1)主要施工要点 干净。如有油污需用丙酮除掉。用毛刷涂抹粘接剂,先涂抹承口再涂抹插口,随即用力垂直插入,插入粘接时将插口稍作转动,粘接剂分布均匀,约30~60S即可粘接牢固。粘牢后立即将溢出的粘接剂 擦拭干净。多口粘接时应注意预留口方向,图5 排水管道安装工艺流程图

②蹲便器的安装做法详见图10。 (2)质量标准 1)隐蔽或埋地的排水管和雨水管道在隐蔽前必须做灌水试验,其灌水高度应比低于地层卫生器具的上边缘或底层地面高度,结果必须符合设计和施工规范规定。 2)管道的坡度必须符合设计要求或施工规范规定,详见生活污水管道坡度表132)干管安装:将预制加工好的管段,按编号运至安装部位进行安装。各管段粘连时必须按粘接工艺依次进行。全部粘连后,管道要直,坡度均匀,各预留口 皂液,套上锁母及U形橡胶圈。安装时先将立管上端伸入上一层洞口内,垂直用力插入至标记为止(一般预留胀缩量为20~30mm)。合适后即用抱卡紧固于伸缩节上沿。然后找正找直,并测量顶板距三通口中心是否符合要求。穿楼板的管段须做防水处理,无误后即可堵洞,并将上层预留伸缩节封严。 4)立管在底层和在楼层转弯处应设置立管检查口,其安装高度距地面1m,

化工大学精馏实验报告

北京化工大学学生实验报告 姓名: 学号: 专业: 班级: 同组人员: 课程名称:化工原理实验 实验名称:精馏实验 实验日期: 2016.5.13 北京化工大学

实验五精馏实验 摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。 关键词:精馏,图解法,理论板数,全塔效率,单板效率。 一、目的及任务 ①熟悉精馏的工艺流程,掌握精馏实验的操作方法。 ②了解板式塔的结构,观察塔板上汽-液接触状况。 ③测定全回流时的全塔效率及单塔效率。 ④测定部分回流时的全塔效率。 ⑤测定全塔的浓度(或温度)分布。 ⑥测定塔釜再沸器的沸腾给热系数。 二、基本原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。 实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。

分析实验室用水检测作业指导书

1.目的 为了规范实验室用水,保证分析测定结果的准确可靠,确保实验数据的科学性和公证性,特制订此管理规定。 2.适用范围 本规定适用于检测中心分析实验用水的管理。 3. 责任 3.1 试剂管理员负责实验室用水的制备、检查分析、参与检验和贮存管理。 3.2 技术员在使用纯水的过程中应保证器皿或容器等的清洁,避免水的污染。 4. 内容 4.1 实验室用水的要求 4.1.1 外观:实验室用水目视观察应为无色透明的液体; 4.1.2 实验室用水分类、用途和检验标准: 表1 实验室用水的技术指标与检验频率

4.2 实验室超纯水的制备及检验检测(参照GB/T6682“一级水”检测) 4.2.1 按照超纯水机的说明书要求制备超纯水; 4.2.2电导率检验:Arium 611超纯水机具有电阻率的“在线”监测功能,并按校准周期要求进行校准。4.2.3吸光度检验:将水样分别注入1cm和2cm的石英比色皿中,在紫外分光光度计上,于254nm处,以1cm比色皿中水为参比,测定2cm比色皿中水的吸光度。 4.2.4可溶性硅检验:量取520mL超纯水,注入铂皿中,在防尘条件下,用亚沸蒸发至约20mL,停止加热,冷却至室温,加 1.0mL钼酸铵溶液(50g/L),摇匀,放置5min后,加 1.0mL草酸溶液(50g/L),摇匀,放置1min后,加1.0mL对甲氨基酚硫酸盐溶液(2g/L),摇匀。移入比色管中,稀释至25mL,摇匀,于60℃水浴中保温10min。溶液所呈蓝色不得深于标准比色溶液。 标准比色溶液的制备是取0.50mL二氧化硅标准溶液(10mg/L),用水样稀释至20mL后,与同体积试液同时同样处理。 4.3实验室纯化水的检验检测(按《中国药典》二部“纯化水”项下检测)

污水作业指导书

****朝霞路污水管道施工技术交底资料 朝霞路工程污水管道设计为DN400-500内径系列HDPE塑钢缠绕管,接口采用卡箍式弹性接口,砂垫层基础,污水检查井采用φ1000圆形砖砌收口式污水检查井。 为规范朝霞路污水管道施工作业,提高市政排水管道施工质量,根据《给水排水管道工程施工及验收规范》(GB50268-2008)和《市政排水管道工程及附属设施》(国家建筑标准设计图集06MS201)的要求,特将以下施工作业方法进行交底,望各基层单位遵照执行。 一、沟槽开挖 1、准备开挖 (1)沟槽开挖之前,必须查清与施工相关的地下情况。根据施工图纸及相关资料,采用现场开挖探坑的方法,查明地下情况。 (2)测设管道中心和检查井的中心位臵,设臵中心控制桩,并报监理复核校验。 (3)根据管径大小、挖深,计算出沟槽上口宽度,用白灰划出边线。 2、沟槽开挖 (1)开挖采用机械方式进行,开挖前应向机械司机详细交底,交底内容一般应包括设计挖槽断面(对于南段沟槽深度较大的地段,可采用分层开挖)、堆土位臵,现有地下构筑物情况及施工技术、安全要求等,并应指定专人与司机配合。配合人员应

熟悉机械挖土有关安全操作规程,并及时量测槽底高程和宽度,防止超挖。 (2)机械挖槽应确保槽底土壤结构不被扰动或破坏,开挖时应在设计槽底高程以上保留20cm左右一层不挖,用人工清底。清底后,应在沟槽底的一侧设臵断面为30cm*30cm的排水沟,沿沟槽每20m设一集水坑,以收集雨水,防止雨水浸泡全部沟槽。沟槽上口两侧应设土垅,防止雨水流入沟槽。 (3)沟槽开挖要注意预留检查井位臵尺寸及工作宽度,以保证浇筑井基础一次成型,同时避免回填时边削土边夯实。 (4)根据土质情况,限定坡顶两侧堆臵土方高度和距离,一般距边坡3-5m,(最少不小于1m),高度不大于1.5m。堆土时还应预留足够宽度施工运输道路以及进料口。 (5)沟槽开挖后,应在沟槽施工两端设立警告标志,沟槽边侧设护栏,夜间悬挂红灯,间距约为20m/对。 二、砂垫层 根据施工设计图的要求,聚乙烯塑钢缠绕管道基础采用砂垫层基础,其厚度为100mm。基础宽度与槽底同宽, 用水撼法处理,应夯实紧密,表面平整。基础的接口部位应予留凹槽以便接口操作,接口完成后,随即用相同材料填筑密实。 三、管道安装 1、聚乙烯塑钢缠绕管使用前应出具产品合格证和产品性能说明书,并应表明产品规格和生产日期。管材要求外观一致,

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

实验用水监控作业指导书

实验用水监控作业指导书 1 目的 为了规范实验室用水的质量监控,确保实验用水的质量满足标准的要求,特制订本规程。 2 适用范围 适用于实验室检测化学分析、无机及有机实验和微生物检测等实验用水的水质监控。 3 职责 3.1 检测员负责实验室纯水出水口水质的监控。 3.2 质量管理员负责纯水系统的前端水的周期监控。 4 工作程序 4.1 实验室用水的分级及其指标要求。 4.1.1 实验室用水一般分为三级: (1)一级水用于有严格要求的分析试验,包括对颗粒有要求的实验,如高压液相色谱分析用水。 (2)二级水用于无痕量分析等实验,如原子吸收光谱及原子荧光分析用水。 (3)三级水用于一般化学分析实验及微生物检测。 4.1.2 不同级别实验室用水的指标要求

4.1.3 实验室应根据工作需要选用不同级别的水,并在纯水出水口标识相应的实验室用水级别。 4.1.4 检测方法中有特殊要求的其他实验用水,实验室应进行相

应指标的水质监控及记录。如有必要,应制订相应的作业指导书。 4.2 实验室用水的保存 4.2.1 一级水不可储存、使用前制备。二级水、三级水可适量制备,分别储存在预先经同级水清洗过的相应容器中。 4.2.2 各级用水均使用密闭的、专用聚乙烯容器。三级水也可使用密闭的、专用玻璃仪器。 4.2.3 新容器在使用前需用盐酸溶液(20%)浸泡2~3d,再用待测水反复冲洗,并注满待测水浸泡6h以上。 4.3 实验室用水监控频次要求 4.3.1 实验室用水日常监控要求 4.3.1.1 实验室自动化制水设备生产的实验室用水 4.3.1.2 实验室用水的日常监控记录《实验室用水日常监控记录表》,如有异常情况及时向实验室负责人或技术负责人汇报。4.3.2 实验室用水的周期监控要求 4.3.2.1 中心纯水系统前端水应至少每半年一次按4.1.2要求的指标进行全检。 4.3.3 在水质监控过程中,如发现有异常情况,相关人员应及时向实验室负责人或技术负责人汇报。

闭水、淋水施工专项方案

万荣商务中心 闭水、淋水施工专项施工方案 ; 编制: 审核: 批准: 年月日

目录 一、工程概况 (3) 二、编制依据 (3) 三、施工准备 (4) # 四、闭水、淋水要求 (4) 五、施工部署 (5) (一)外墙淋水的部位及淋水范围 (5) (二)外墙淋水试验实施时间 (5) (三)劳动力组织与职责分工 (6) 六、施工准备 (6) (一)技术准备 (6) (二)材料准备 (6) , (三)施工机具计划 (7) 七、主要施工方法和施工要点 (7) (一)布管和淋水一般要求 (7) (二)建筑布管淋水要求 (8) (三)外墙淋水试验记录和问题处理 (8) 八、淋水试验质量要求 (9) 九、成品保护 (10) 十、安全文明施工保证措施 (10) .

十一、外墙渗漏的常用处理方法 (11) 十二、附表 (11)

闭水、淋水施工专项方案 一、工程概况 本工程位于郑州市大学南路与芦庄路交叉口东南角,现浇钢筋混凝土剪力墙结构,地下2层、地上21层。地上1层层高,2层层高,3~20层层高均为,21层层高为,电梯间层高, 建筑物总高度为,女儿墙高度为;建筑面积为㎡,抗震设防烈度为七度,结构安全等级为II级,耐火等级为I级,地下室防水等级为II级,屋面防水等级为I级。 2、各责任主体名称 \ 二、编制依据 1、万科作业指导书; 2、《屋面工程质量验收规范》GB50207-2011; 3、《地下工程防水技术规范》GB50108-2011; 4、《地下防水工程施工质量验收规范》GB50208-2011; 5、《建筑外墙防水工程技术规程》JGJ/T235—2011; 6、《万科防水防裂体系》2011版。

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

水泥性能试验作业指导书

水泥性能试验作业指导书 (NTJCZ-TG09) 1.适用范围 本作业指导书适用于普通硅酸盐水泥、硅酸盐水泥、复合硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥性能试验。 2.执行标准 《硅酸盐水泥、普通硅酸盐水泥》GB175—1999 《复合硅酸盐水泥》GB12958—1999 《矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥》GB1344—1999 《水泥胶砂强度检验方法(ISO法)》GB/T17671—1999 《水泥细度检验方法(80um筛筛析法)》GB1345—1991 《水泥标准稠度用水量、凝结时间、安定性检验方法》GB/T1346—2001 3.细度 3.1方法原理 是采用80um筛对水泥试样进行筛析试验,用筛网上所得筛余物的质量占试样原始质量的百分数来表示水泥样品的细度。 3.2取样 水泥试样应充分拌匀,通过0.9mm方孔筛,记录筛余物情况; 3.3试验步骤 1)把负压筛放在筛座上,盖上筛盖,接通电源。调节负压至4000—6000Pa范围内; 2)称取试样25g置于洁净的负压筛上,盖上筛盖,放在筛座上,开动筛析仪,连续筛2min,在此期间如有试样粘附在筛盖上,可轻轻敲打,使试样落下,筛毕,用天平称量筛余物; 3)当工作负压小于4000Pa时,应清理吸尘器内水泥,使负压恢复正常。 结果计算:F=Rs/W×100%(精确至0.1%) 3.4试验筛修正法: 用一种已知80um标准筛筛余百分数的粉状式样,作为标准样,测试方法同筛析法。 计算修正系数C=Fn/Ft(精确至0.01);修正后:Fo=C×F;修正系数C超出0.08~1.20的试验筛不能用作水泥细度检验。 4.水泥标准稠度用水量、凝结时间、安定性测定 4.1原理 1)水泥标准稠度净浆对标准试杆(或试锥)的沉入具有一定阻力。通

室内排水管道安装作业指导书

室内排水管道及配件安装施工作业指导书 编制: 审核: 审批: 编制日期:

室内排水管道及配件安装施工作业指导书 适用范围 本作业指导书适用于本标段地铁室内排水管道及配件安装施工。 技术准备 施工管理技术人员熟悉图纸,对图纸进行自审,熟悉和掌握施工设计图纸的全部内容和设计意图,参加设计交底与图纸会审。根据综合管线图纸,结合现场实际情况确定管线走向、标高,标高测量均以装修专业一米标线为基准。 施工技术人员根据现场实际情况认真审核设计施工图,对有疑问或与实际不符地方以书面形式(工作联系单、技术核定单)呈报监理工程师,由监理工程师组织与设计联系,提出解决方案。 技术人员对施工人员进行施工前的技术交底,交待清楚每道工序的施工质量要求、技术标准、规范和安全文明施工。对参加施工的工人进行岗前质量、安全、技术培训并考核,考核合格后持证上岗。 管材标准 室内重力流排水管采用阻燃型硬聚氯乙烯(UPVC)排水管,胶粘式连接。 所有压力排水管采用外镀锌内涂塑复合管,螺纹连接或沟槽式连接。 常用的技术规程和规范 在施工及竣工验收中应遵守国家、部颁的现行相关规程规范,当规范和检验标准、工程文件、施工图、设备说明书等技术文件之间有矛盾时,原则上应执行较高标准。常执行得标准规范如下: 《建筑给水排水设计规范》(GB 50015); 《综合布线工程验收规范》(GB 50312); 《建筑给水排水及采暖工程施工质量验收规范》(GB 50242); 《给水排水构筑物工程施工验收规范》(GB 50141); 施工程序与工艺流程 施工工艺流程见下图

施工要求 支吊架制作安装 支架是支撑管道重量和走向的重要构件,也是衡量安装质量检查关键内容,而且各种不同要求的管线,其支架也不尽相同,因此支架制作安装非常重要。 支架结构合理,位置正确,安装牢固,外型排列整齐美观,油漆色泽与总体协调。非金属管道与金属支架间应有隔垫,防止磨擦造成损伤。承插接口连接的管道除直线支架外在转角、终端等处,还应有防止承插位移的水平方向支撑。 管径(mm)20 25 32 40 50 70 80 100 125 150 200 支架的保温管 2.5 2.5 2.5 3 3 4 4 4.5 6 7 7 最大间 距(m)不保温管 3 3.5 4 4.5 5 6 6 6.5 7 8 9.5 塑料管及复合管管道支架的最大间距 管径(mm)16 20 25 32 40 50 63 75 90 110 立管0.7 0.9 1.0 1.1 1.3 1.6 1.8 2.0 2.2 2.4 最大间 水冷水管0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.35 1.55 距(m) 平 管 热水管0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8

精馏实验实验报告

精馏实验实验报告 姓名 班级 学号

1.实验前,请想象并尝试描述气速与整塔压降的关系? 依照教材P228页,当液体喷淋量为零时,压降与空塔气速呈直线关系,与气体以湍流形式流过管道的关系类似;有一定喷淋量时,压降因管道变窄增大,但几乎与无喷淋量时平行;过截点以后,气体对液体产生阻滞作用,填料表面持液量增多,压降随气速较快增长;过了泛点之后,液体变为连续相而气体变为分散相,阻力猛增。 2.实验前,请同学们回顾精馏塔的塔板与填料的发展历程? 舌形塔板 斜孔塔板 鼓泡式塔板 散堆填料 规整填料

3.实验前,请尝试回答精馏操作过程中,使混合物较彻底分离的基本条件? 1、相对挥发度差异较大; 2、每一块板能使气液充分接触; 3、塔高足够高; 4、再沸器与冷凝器温度稳定; 5、混合物不形成共沸物; 6、运行规范稳定,不出现漏液、烨沫夹带、气泡夹带、液泛等非规范操作; 7、加料不反混; 二、实验记录 包括操作条件、实验现象、原始数据表,要求数据的有效数字、单位格式规范。 【原始数据表】 6 77.9 87.8 35.1 24.0 127 瓦数/kw 次数塔顶组成/% 塔釜组成/% 3 1 18.75 81.25 86.30 13.70 2 15.5 3 84.47 88.83 13.17 5 1 12.52 88.48 88.20 11.80 2 13.12 86.88 89.10 10.90 6 1 11.91 88.09 88.35 11.65 2 11.71 88.29 88.14 11.86

【数据处理】 ※空塔气速 首先根据测得的回流液流量求空塔气速。由于实验中采取全回流的方式,回流液质量流量与蒸气质量流量相同。 实验中转子流量计已经将实际溶液的流量转换为水的流量,由公式 2 1 s s V V = (1) 将读数转换为实际回流夜的流量。其中: f ρ取转子密度,近似为铁质,取密度7900kg/m3,1ρ取20 o C 水的密度,2ρ取回流温度下 混合液体的密度。水取998kg/m 3,乙醇取789 kg/m 3。 塔顶、塔釜的溶液组成取两次实验的平均值,并依据公式1 1 n wi m i x ρρ=∑ 计算不同温度下回 流液密度,得到数据如下: 表一、不同功率下的回流液密度 瓦数/kw 塔顶组成/%水 回流液密度kg/m^3 3 17.1 4 818.3751 5 12.82 810.7671 6 11.81 809.008 7 7 23.92 830.6076 7 13.07 811.2035 将所得到的回流液密度带入公式(1),即可得到回流液体积,体积和密度均已知,则可以得到回流液质量。因为全回流,所以根据物料守恒,上升蒸汽的质量与回流液质量相等。 表二、不同功率下的回流液质量流量 瓦数/kw 回流液体积流量L/h 回流液质量流量kg/h 3 7.3 5.9791 5 21.6 17.4929 6 27. 4 22.1651 7 20. 5 17.067 6 7 32.0 25.9294

采暖上水打压、下水闭水试验作业指导书

采暖打压、闭水试验作业指导书 1、目的/适用范围 为确保采暖管路符合设计及规范要求,为顾客提供满意产品,制订本作用指导书。 本作业指导书适用于房建工程采暖管道打压、闭水试验。 2、编制依据 《建筑采暖卫生与煤气工程质量检验评定标准(GBJ302-88)》、 《建筑安装工程质量检验评定统一标准(GBJ300-88)》 《采暖与卫生工程施工及验收规范(GBJ242-82)》 《建筑安工程质量通病防治手册》 3、施工前的准备 3.1人员:经过培训取得相应资格的人员。 3.2材料:饮用水水等。 3.3机具:打压机、管钳等。 3.4作业条件: 3.4.1采暖材料按设计要求核验规格、型号和质量,符合要求。 3.4.2采暖管道及散热器安装完毕并且外观检查合格。管子的螺纹应规整,如 有断丝或缺丝,不得大于螺纹全扣数的10%。管道支、吊、托架的安装符合规范要求。 3.4.3所用阀门耐压强度试验合格(查看试验记录:强度和严密性试验压力应 为阀门出厂规定的压力)。 3.4.4用水冲洗采暖系统直至污物冲净为止。 3.4.5明确本工序的责任人,并对操作人员进行技术、安全交底。 4、操作要点 4.1试验压力:工作压力不大于0.7千克力/厘米2(表压力,下同)的蒸汽采暖系统,应以系统顶点工作压力的2倍作水压试验,同时在系统低点,不得小于2.5千克力/厘米2。热水采暖或工作压力超过0.7千克力/厘米2的蒸汽采暖系统,应以系统顶点工作压力加1千克力/厘米2做水压试验,同时,在系统顶点的试验压力不得小于3千克力/厘米2。 4.1.1采暖系统作水压试验,其系统低点如大于散热器所能承受的最大试验压力,则应分层作水压试验 4.1.2在5分钟内压力降不大于0.2千克力/厘米2为合格 4.2、热水供应系统的试验压力,应按下列规定执行。 4.2.1敷设 a、聚乙烯软管在大膜板混凝土墙内敷设时,管路中间不得有接头;凡穿过盒子敷设的管路,能先不断开的则先不断开,待拆模后修盒子时再断开,保证浇注混凝土时管口不从盒子内脱掉。 b、若聚乙烯软管必须有接头时,一定要用大一号的管(长度6cm)做套管。接管时要对齐套管各边套进3cm 。硬塑料管接头时,可将一头加热胀出承插口,将另一管口插入承插口。在接口处涂抹塑料粘合剂,则防水效果更好。 c、硬塑料管煨弯时可根据塑料管的可塑性,在需煨弯处局部加热,即可以手工操作煨成所需度数成型。较小的管径可用一只1000w的电炉加热一盘沙子,将管埋入砂中,掌握火候操作;较大规格的塑料管煨弯时,可采用甘油加热法,用

精馏实验报告

本科实验报告 过程工程原理实验(乙) 课程名称: 实验名称:筛板塔精馏操作及效率测定 姓名: 学院係): 学号: 指导教师: 同组同学: 一、实验目的和要求 1、了解板式塔的结构和流程,并掌握其操作方法; 2、测定筛板塔在全回流和部分回流时的全塔效率及全回流时的单板效率; 3、改变操作条件(回流比、加热功率等)观察塔内温度变化,从而了解回流的作用和操作条件 对精馏分离效果的影响。 要求:已知原料液中乙醇的质量浓度为15~20%,要求产品中乙醇的质量浓度在85%以上。二、实验内容和原理 板式精馏塔的塔板是气液两相接触的场所,塔釜产生的上升蒸汽与从塔顶下降的下降液 逐级接触进行传热和传质,下降液经过多次部分气化,重组分含量逐渐增加,上升蒸汽经多 次部分冷凝,轻组分含量逐渐增加,从而使混合物达到一定程度的分离。 (一)全回流操作时的全塔效率E T和单板效率E mV(4)的测定 1、全塔效率(总板效率)E T N T 1 E T T 100% (1) N P 式中:N T—为完成一定分离任务所需的理论板数,包括蒸馏釜;

N P—为完成一定分离任务所需的实际板数,本装置■ =7块。 在全回流操作中,操作线在x-y图上为对角线。根据实验中所测定的塔顶组成X D、塔底组成X W(均为摩尔百分数)在操作线和平衡线间作梯级,即可得到理论板数N T。

2、部分回流时全塔效率 Er 的测定 2.1精馏段操作线方程: yn+i ——精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; x n ——精馏段第n 块塔板下流的液体组成,摩尔分数; R----回流比 R=L/D X D ----塔顶产品液相组成,摩尔分数; 实验中回流量由回流转子流量计 8测量,但实验操作中一般作冷液回流,故实际回流量 需进行校正 式中:L o ——回流转子流量计上的读数值 ,ml/min L ——实际回流量,ml/min tD-----塔顶液相温度,C tR-----回流液温度,C O?-_-塔顶回流液在平均温度(t D +t R )/2 下的比热,KJ/kg ? K r D -----塔顶回流液组成下的汽化潜热, KJ/kg 产品量D 可由产品转子流量计测量,由于产品量 D 和回流量L 的组成和温度相同,故回流 比R 可直接用两者的比值来得到: R - (4) D 式中:D-----产品转子流量计上的读数值,ml/min 实验中根据塔顶取样分析可得 X D ,并测量回流和产品转子流量计读数 L0和D 以及回流温度 tR 和塔顶液相温度tD ,再查附表可得 C P D , rD ,由式(3)( 4)可求得回流比 R ,代入式(2) 即可得精馏段操作 线方程。 2.2加料线(q 线)方程 X F q 1 式中:q------进料的液相分率 y nl R X D (2) 式中 L °[1 C pD (t D 毁] (5)

含水率试验作业指导书(烘干法)

作业指导书 (含水率) 编写:日期: 审核:日期: 批准:日期: 受控状态:持有者姓名: 分发号:持有者部门:

目录 1. 主要设备及开展项目 2. 试验工作程序及样品处置 3. 样品及清洁整理

1、主要设备及开展项目 2、试验工作程序及样品处置 现场取样(委托送样)填写委托单→对委托单编号→填写样品收样单→样品区→下放委托单→从样品待检样品区取样品→试验室进行样品试验/检测→样品试验/检测完毕→对试验数据进行处理→填写仪器使用记录→对试验卫生进行清理→剩余样品放入已检样品区按规定集中处理→出具报告→报告审核、批准→报告盖章、发送 2.1试验操作过程 2.1.1收样方法 对样品进行外观检查,应观查样品外观颜色、有无杂质。核对样品与委托单信息是否一致是否有信息缺失,填写样品收样单,并在“未检”一栏划“√”,并存放至指定位置择期进行试验。 2.1.2试验步骤 具有代表性试样,细粒土15-30g,砂类土、有机土为50g,放入称量盒(称量盒质量定期3-6个月调整为恒质量值)内,立即盖好盒盖,称质量。结果即为湿土质量。 2.1.3打开盒盖,将试样和盒放入烘箱内,在温压105-110℃恒温下烘干。烘干时间对细粒土不得少于8h,对砂类土不得少于6h。对含有机质超过5%的土,应将

温度控制在65~70℃的恒温下烘干。 2.1.4将烘干后的试样和盒取出,放入干燥器内冷却(一般只需0.5h-1h 即可)。冷却后盖好盒盖,称量,准确至0.01g 。 2.1.5 结果计算 : 下式计算含水量: 100?-=s s m m m ω 式中: ω—含水量,%; m —湿土质量,g ; m s —干土质量,g 。 2.2结果整理 本试验须进行二次平行测定,取其算数平均值,允许平行差值应符合表1的规定。 表1 2.3出具报告 试验报告应包括以下内容: ⑴土的鉴别和分类; ⑵土的含水量ω值; 3、样品及清洁整理 试验完成后清理工作台及天平,将玻璃器皿清洗擦拭干净放至指定位置。 将样品标签上“已检”一栏划“√”,然后将样品移至样品室已检留样区。 附表: 附表1 含水率试验报告(JT/BG01-01)

精馏实验报告

实验名称:精馏实验 一、 实验目的 ① 测定精馏塔在全回流及部分回流条件下的全塔效率。 ② 测定精馏塔在全回流条件下的单板效率。 ③ 测定精馏塔在全回流条件下塔体浓度(温度)分布。 ④ 测定再沸器的传热膜系数。 二、 实验器材 精馏实验装置(北京化工大学制) 三、 实验原理 在精馏过程中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液在塔板上多次部分汽化部分冷凝,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作的必要条件,塔顶的回流量与采出量之比称为回流比。回流比是精馏操作的主要参数,它的大小直接影响精馏操作的分离效果和能耗。若塔在最小回流比下操作,要完成分离任务,则需要无穷多块塔板,在工业上是不可行的。若在全回流下操作,既无任何产品的采出,也无任何原料的加入,塔顶的冷凝液全部返回到塔中,这在生产中无任何意义。但是,由于此时所需理论板数最少,易于达到稳定,故常在科学研究及工业装置的开停车及排除故障时采用。通常回流比取最小回流比的1.2~2.0倍。 1. 塔板效率 板式精馏塔中汽液两相在各塔板上相互接触而发生传质作用,由于接触时间短暂和不够充分,并且汽相上升也有一些雾沫夹带,因此其传质效率总不会达到理论板效果。通常用塔板效率来表示塔板上传质的完善程度。 塔板效率是体现塔板性能及操作状况的主要参数。影响塔板效率的因素很多,大致归纳为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)塔板结构以及操作条件等,由于影响塔板效率的因素相当复杂,目前仍以实验的方法测定。 (1)总板效率E (或全塔的效率):反映全塔中各层塔板的平均分离效果,常用于板式塔的设计。 e N N E 式中 E ——总板效率 N ——理论板数 e N ——实际板数 (2)单板效率 ,反映单独的一块板上传质的效果,是评价塔板式性能 优劣的重要数据,常有于塔板的研究。

水的净化实验报告

水的净化实验报告 实验者姓名: ,同组实验者: ,实验时间: 实验目的 练习利用简易方法净化天然水。 实验用品 仪器: 。 药品: 。 实验步骤 一.浑浊天然水的澄清 在两个小烧杯中,各加入100mL 浑浊的河水(或湖水、江水、井水等)。一份搅拌,静置,观察现象,此种水的净化方法叫______________;向第二份水样中加入少量经研磨的__________粉末,搅拌,静置,此种水的净化方法叫_______________。观察现象,两份水样进行比较:较澄清的是第___________份净化过的水。 二.过滤 1、过滤适用于分离_________性与_________性物质组成的混合物 其操作要点是: 一贴:_________________________________________________; 二低:①_______________________________________________; ②_______________________________________________; 三靠:①_______________________________________________; ②_______________________________________________; ③_______________________________________________。 2、右图是某同学用来除去水中难溶性杂质时 所采用的过滤装置图。试回答: (1)该图中存在的三处明显错误是: ① ; ② ; ③____________________ 。 (2)在过滤时,若经过两次过滤后滤液仍然浑浊,其原因可能是 (要求写出两个方面的原因)。 ① ; ② ③____________________ _____________。 3、某同学用空塑料饮料瓶做简易净水器,设计图如右。 请你帮他继续设计:小卵石、活性炭、石英沙三种材 料的位置,为获得较好的净水效果请写出对应③所需 的材料名称为 ,其在简易净水器中的作 用主要是 。 三.消毒 向过滤后的水中滴加几滴新配制的漂白粉溶液,或通入一定量的氯气,此过程为 变化。

含水率试验作业指导书烘干法修订版

含水率试验作业指导书 烘干法修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

作业指导书 (含水率) 编写:日期: 审核:日期: 批准:日期: 受控状态:持有者姓名: 分发号:持有者部门: 目录 1. 主要设备及开展项目 2. 试验工作程序及样品处置 3. 样品及清洁整理 1、主要设备及开展项目 表1 主要仪器设备

表2 开展检测项目 2、试验工作程序及样品处置 现场取样(委托送样)填写委托单→对委托单编号→填写样品收样单→样品区→下放委托单→从样品待检样品区取样品→试验室进行样品试验/检测→样品试验/检测完毕→对试验数据进行处理→填写仪器使用记录→对试验卫生进行清理→剩余样品放入已检样品区按规定集中处理→出具报告→报告审核、批准→报告盖章、发送 2.1试验操作过程

2.1.1收样方法 对样品进行外观检查,应观查样品外观颜色、有无杂质。核对样品与委托单信息是否一致是否有信息缺失,填写样品收样单,并在“未检”一栏划“√”,并存放至指定位置择期进行试验。 2.1.2试验步骤 具有代表性试样,细粒土15-30g,砂类土、有机土为50g,放入称量盒(称量盒质量定期3-6个月调整为恒质量值)内,立即盖好盒盖,称质量。结果即为湿土质量。 2.1.3打开盒盖,将试样和盒放入烘箱内,在温压105-110℃恒温下烘干。烘干时间对细粒土不得少于8h,对砂类土不得少于6h。对含有机质超过5%的土,应将温度控制在65~70℃的恒温下烘干。 2.1.4将烘干后的试样和盒取出,放入干燥器内冷却(一般只需0.5h-1h即可)。冷却后盖好盒盖,称量,准确至0.01g。 2.1.5 结果计算: 下式计算含水量: 式中:ω—含水量,%; m—湿土质量,g; m —干土质量,g。 s 2.2结果整理

相关文档
相关文档 最新文档