文档库 最新最全的文档下载
当前位置:文档库 › Digital PI Current Control for Grid

Digital PI Current Control for Grid

Digital PI Current Control for Grid
Digital PI Current Control for Grid

Digital PI Current Control for Grid Connected PV Inverter

J. Selvaraj, N.A. Rahim, C. Krismadinata

Centre for Power Electronics, Drives, Automation and Control

Department of Electrical Engineering, University of Malaya

Malaysia

Abstract –This paper describes a digital Proportional-Integral (PI) control method for single-phase grid-connected Photovoltaic (PV) system. The control algorithm is implemented in Digital Signal Processor (DSP) TMS320F2812. A detail analysis of system control and mathematic formation of digital PI control is presented to show that this control method provides robust current regulation and operates at near to unity power factor. The PI current control method is implemented in a single-phase grid-connected PV inverter to convert DC power from the solar modules into AC power to be transferred to the grid. Simulation and experimental results are provided to demonstrate the effectiveness of the design.

I.I NTRODUCTION

As the world is concerned with fossil fuel exhaustion and environmental problems caused by conventional power generation, renewable energy sources are becoming the alternative. This includes Photovoltaic and Wind Generation systems. PV sources are used today in many applications as they have the advantages of being maintenance and pollution free[1]. PV system that supplies power directly to the utility grid are becoming more popular due to cost reduction from elimination of battery subsystem and high feed in tariff. Furthermore, string inverter topology allows further cost reduction because of more efficient energy extraction than widely used centralized inverters[2].

Various inverter current control method has been discussed in [3]. Among them the PI control method is a common control method in a grid connected PV system. With this control method the frequency of the ripple on inverter output current inv

I is the same as the frequency of triangular waveform, which is constant resulting to a constant switching frequency operation[3].

The PI control method can be implemented digitally or analog to control parameters of inverters such as current, voltage, etc. In analog control, analog components such as resistors, capacitors, inductors and operational-amplifiers is used for implementation of controlling algorithm, while in digital control, microprocessors are used and controlling algorithm can be programmed and feed to microprocessor.

Digital control system offer many advantages over their analog counterparts. An important advantage offered by digital control is in the flexibility of its modification controller characteristics, or of adopting the controller if plant dynamics change with operating conditions. The ability to redesign the controller by changing the software (rather than hardware) is an important feature of digital control as against analog control. Furthermore microprocessors are much less prone to environmental conditions than capacitors, inductors, etc. The programs can scale to the limits of the memory or storage space without extra cost and parameters of the program can be changed with time.

This paper will present analysis and implementation of digital PI current control algorithm for single-phase grid connected PV inverter. The control algorithm is implemented in DSP TMS320F2812.

II.S YSTEM D ESCRIPTION

Fig. 1 gives an overview of the proposed transformerless photovoltaic system. It consists of PV array, DC-DC boost converter, inverter, grid and controller. When avoiding the transformer in the given topology, it is necessary to step up the inverter output voltage V inv to the required RMS grid voltage value of e.g. 240V. Therefore, a high DC bus voltage is necessary to ensure the power flow from PV array to the grid. The system can only operate when the DC bus voltage V DC is greater than the amplitude of the grid voltage [3].

D C-D C B O O S T IN V

E R T E R

Fig 1. Photovoltaic system overview.

To achieve a high DC bus voltage greater than the amplitude of the grid voltage, DC-DC boost converter is used. By varying the duty cycle D of the converters’ switch, a high V DC can be achieved from a given input PV voltage V PV.

D

V

V PV DC ?=1 The DC-DC boost converter can be neglected if more PV modules are connected in series to achieve a high V PV greater than grid voltage. III. S YSTEM C ONTROL

Fig 2. Block diagram of PI current controller.

The feedback controller used in this application utilizes the

PI algorithm. The inverter current I inv is sensed and fed back to a comparator which compares with reference current I ref . I ref is obtained by sensing the grid voltage and converting it to reference current. This is done to ensure I inv is in phase with grid voltage and always at near unity power factor.

The instantaneous current error, e is fed to a proportional-integral controller. The integral term in the PI controller improves the tracking by reducing the instantaneous error between the reference and the actual current. The resulting error signal U is compared with a triangular carrier signal and intersections are sought to produce PWM signals for the inverter switches[4].

IV. M ATHEMATICAL F ORMULATION

The PI algorithm can be expressed in the continuous time domain as:

=+=t

i p d e K t e K t u 0)()()(τττ

Where: )(t u is the control signal )(t e is the error signal

t is the continuous-time domain time variable

τ is the calculus variable of integration

p K is the proportional mode control gain i K is the integral mode control gain

Implementing this algorithm using a DSP requires one to transform it into the discrete time domain. Trapezoidal sum

approximation is used to transform the integral term into the discrete time domain since it is the most straightforward technique. The proportional term is directly used without approximation.

P term: )()(k e K t e K p p = I term: ∑

==?+?k

i i t i i e i e h K d e K 00)]1()([2)(τττ Time relationship : h k t *= Where :

h is the sampling period

k is the discrete-time index: ,......2,1,0=k For simplification purposes, it is convenient to define new controller gains as:

2'h K K i i =

From which one can construct the discrete-time PI control law as: ∑

=?++=k

i i p i e i e K t e K k u 0

')]1()([)()(

To eliminate the need to calculate the full summation each time step (which would require an ever increasing amount of computation as time goes on), the summation is expressed as a running sum:

)

()()()]

1()([)1()('k sum K k e K k u k e k e k sum k sum i p +=?++?=

These two equations represent the discrete-time PI control law utilized in the work[5].

V.

I MPLEMENTATION I SSUES

Control signal saturation and integral mode anti-windup limiting are easily implemented in software. In this work, the

control signal itself takes the form of pulse-width modulated

(PWM) outputs from the DSP. Therefore, the control signal is saturated at the value that corresponds to 100% duty cycle for

the PWM. An undesirable side-effect of saturating the controller output is integral mode windup. When the control output saturates, the integral mode control term (i.e., the

summation) will continue to increase, but will not produce a

corresponding increase in controller output (and hence will not

produce any additional increase in plant response). The integral can become quite large, and it can take a long time before the

controller is able to reduce it once the error signal changes sign. The effect of windup on the closed-loop output is larger

transient overshoot and undershoot, and longer settling times.

One approach to overcome integral-mode windup is to

simply limit in software the maximum absolute value allowed

for the integral, independent of the controller output saturation [5]. This is the method implemented in this work. The flow

chart in Fig. 3 shows steps involved in implementing digital PI current control in DSP TMS320F2812.

windup)

-

(anti

mode

-

I

the

Saturate

signal

control

total

the

Saturate

history

controller

the

Update

Fig. 3 Digital PI current control in DSP TMS320F2812

Fig. 4 Triangular waveform

m

f

Clk

x=

=

x variable

=

Clk Clock frequency (150MHz)

=

m

f modulatin

g frequency

By choosing 20kHz as the modulating frequency, variable

x can be determined:

7500

20

150

=

=

kHz

MHz

x

Therefore 7500

max

(max)

=

=U

U i

Fig. 5 Triangular waveform and PI control signal

1

M

V

U

M

Index,

Modulation

m

<

=

U = amplitude of the PI control signal

m

V= amplitude of triangular waveform

VI.S IMULATION R ESULTS

Simulation has been conducted for a single-phase grid-

connected PV inverter using MATLAB SIMULINK. Fig 6

shows the triangular modulating signal V m. The inverter output

voltage V inv together with the grid current I grid is shown in Fig

7. As predicted V inv is a unipolar square wave voltage resulting

from caparison between the V m and PI control signal U. I grid is a

pure sinusoidal waveform in phase with the grid voltage and at

near to unity power factor. Fig. 8 give the error signal (I ref –

I inv) and the PI control signal U. This PI control signal is

compared with V m to generate switching pulses for the inverter

switches.

x 10

-4

time(ms)

V

m

Fig. 6 Triangular modulating signal

time(ms)

V

I

n

v

e

r

t

e

r

(a)

time (ms)

I g r i d

(b)

time (ms)

V g r i d & I g r i d

(c)

Fig. 7 Modulation Index M

≤ 1 (a) Inverter output voltage V inv (b) Grid Current I grid (c) Grid voltage and grid current

time(ms)

e r r o r

(a)

time(ms)

P I c o n t r o l s i g n a l (U )

(b)

Fig. 8 Modulation Index M ≤ 1 (a) Error signal (I ref – I inv ) (b) PI control

signal (U)

time(ms)

V I n v e r t e r

(a)

time(ms)

I g r i d

(b)

Fig. 9 Modulation Index M > 1 (a) Inverter output voltage V inv (b) Grid Current I grid

time(ms)

e r r o r

(a)

time(ms)

P I c o n t r o l s i g n a l (U )

.

(b)

Fig. 10 Modulation Index M > 1 (a) Error signal (I ref – I inv ) (b) PI control signal (U)

Fig. 9 shows V inv and I grid for Modulation Index M more than 1. This phenomenon is known as over modulation. The saturation at I mode (anti-windup) and saturation at total

control signal comes into effect at this condition. V inv and I grid is prevented from exceeding the maximum and minimum defined values. The resulting error signal and PI control signal U is shown in Fig. 10.

VII. E XPERIMENTAL R ESULTS

The proposed digital PI method is tested with a 1.2kW PV system. Table 1 shows the PV modules characteristic used in this experiment. 2 strings of 8 x 75W panels in series were arranged in order to produce 1.2kW of peak power. The total number of PV panels is 16 pieces.

Model SIEMENS SP75 Max Power 75W

I SC 4.8A I

MPPT 4.4A V OC

21.7V V MPPT

17.0V

Table I. PV Module Characteristic

Fig 11 shows V inv and I grid for Modulation Index M less than 1. V inv is in unipolar voltage waveform while I grid is a pure sinusoidal waveform since it has been filtered. The results for V inv and I grid when the M is more than 1 is shown in Fig 12. The error signal and PI control signal U has been limited by the saturation at I mode (anti-windup) and saturation at total control signal.

Fig. 11 Modulation Index M ≤ 1 (a) Inverter output voltage V inv (b) Grid Current I grid

Fig. 12 Modulation Index M > 1 (a) Inverter output voltage V inv (b) Grid Current I grid

Fig. 13 Grid voltage and grid current

The grid voltage and grid current is shown in Fig 13. The current is in phase with the voltage and near to unity power factor.

VIII.

C ONCLUSION

This paper describes a Digital PI current control method for single-phase grid connected PV inverter. Although many current controlling methods are available, PI current control is among the most sought after method due to its simplicity and ease of implementation. To maintain its reliability, digital method was chosen since it has many advantages compared to analog method. To further enhance the PI controlling method, saturation at I mode (anti-windup) and saturation at total control signal (U) were used. It provides robust controlling method for the inverters as well as protects the PV system. Some mathematical expressions for this method have been presented in order to provide design guidelines for controller design. Experimental waveforms obtained have been used to validate the digital PI current control method and its feasibility using DSP.

A CKNOWLEDGMENT

This work has been supported by UNDP-GEF (Malaysia Building Integrated Photovoltaic Technology Application Project), Pusat Tenaga Malaysia and University of Malaya. The authors would like to thank all the people who are concern.

R EFERENCES

[1] N.A.Rahim,Saad Mekhilef“ Implementation of Three-Phase grid

Connected Inverter for Photovoltaic Solar Power Generation System” Proceedings IEEE. PowerCon 2002. Vol 1, pp. 570 – 573., Oct 2002 [2] Carlos Meza, Domingo Biel, Juan Martinez, Francesc Guinjoan “Boost-

Buck inverter variable structure control for grid-connected photovoltaic systems” Symposium IEEE. ISCAS 2005. Vol 2, pp. 657 – 662. June 2005

[3] Martina Calais, Vassilios G. Agelidis, Michael S. Dymond.: “A cascaded

inverter for transformerless single-phase grid-connected photovoltaic systems” Renewable Energy 22 92001) 255-262 ELSEVIER.

[4] Ali I. Maswood. M.A. Rahman: “Performance parameters of a pulse-width modulation voltage source inverter with proportional-integral controller under non-ideal condition” Electric Power Systems Research 38 (1996) 19-24 ELSEVIER.

[5] David M.Aletr.: “Thermoelectric cooler control using TMS320F2812

DSP and a DRV592 power amplifier” Texas Instruments Application Report.

感觉系统

感觉器官练习题 一、单选题 1.下列哪项不属于感觉器官的是( ) A.耳 B.鼻 C.神经D.皮肤 E.以上均错 2.视器包括( ) A.眼球壁和附属结构 B.眼球壁和屈光装臵 C.眼球及其附属结构 D.眼球及其屈光装臵 E.眼球及其眼睑 3.眼球() A.壁仅由巩膜、脉络膜、视网膜构成 B.折光系统包括角膜、房水、晶状体和玻璃体 C.视神经盘是感光最敏锐的部位 D.房水由虹膜分泌形成 E.角膜中央一圆孔称瞳孔 4.巩膜() A.乳白色,厚而坚韧,是硬脑膜的延伸结构 B.前方与晶状体相连C.占纤维膜的前1/6 D.有屈光作用 E.以上均错 5.瞳孔大小() A.随眼压高低而变化 B.随光线强弱而变化 C.由睫状体收缩来调节D.与三叉神经眼神经的作用有关E.随晶状体突度变化而变化 7.眼前房是指() A.角膜与玻璃体之间腔隙 B.角膜与虹膜之间腔隙 C.虹膜与晶状体之 间腔隙 D.虹膜与玻璃体之间腔隙 E.角膜与晶状体之间腔隙 8.黄斑() A.位于视神经乳头(盘)外侧约3-4mm 处 B.感光作用强,但无辨色能力C.中央有中央凹,该处对光不敏感D.视网膜节细胞轴突由此向后穿出眼 球壁 E.此处无感光细胞,称为生理性盲点 9.上直肌收缩时,瞳孔转向()A.上内方 B.下内方 C.上外方 D.下外方 E.外侧 10.上斜肌可使() A.瞳孔转向上外方 B.瞳孔转向下外方 C.瞳孔转向上方D.瞳孔转向外侧 E.瞳孔 转向下方 11.眼球的折光装臵为() A.晶状体 B.角膜、晶 状体 C.角膜、房水、晶状 体 D.角膜、房水、晶状体、玻璃体 E.角 膜、房水、晶状体、玻璃体、视网膜 12.泪道包括() A.鼻泪管、泪小管 B.泪小管、 泪囊 C.泪小管、泪囊、鼻泪管 D.泪点、泪小管、泪囊、鼻泪管 E.泪腺、结膜囊、泪小管、泪囊、鼻 泪管 13.视网膜中央动脉来源于() A.颈内动脉B.颈外动脉 C.椎动脉 D.脑膜中动脉 E.面 动脉 17. 属于生理性盲点的是 A、脉络膜 B、角膜 C、虹膜 D、视轴 E、视网膜中央凹 14. 眼前房与后房的分界是() A.睫状体 B.虹膜 C.脉 络从 D.晶状体 E.玻璃体 15.关于中耳鼓室壁的描述中,何者是错误的() A.上壁为鼓室盖,分隔鼓室与颅中 窝 B.内壁为乳突窦壁 C.下壁为颈静脉壁,将鼓室与颅内 静脉起始部隔开 D.外侧壁为鼓膜 E.前壁为颈动脉壁,此壁上部有咽 鼓管鼓口 16. 位于鼓室内的结构是() A.球囊 B.面神经 C.听 小骨 D.螺旋器(Corti器) E.半规管 17.耳蜗( ) A.由软骨构成B.由蜗管围绕蜗轴约两周半形成的 C.仅分为前庭阶和鼓阶两部分D.前庭阶和鼓阶充满内淋巴 E.以上均不对 18.不属于位觉感受器的是() A.椭圆囊斑 B.球囊斑 C.壶 腹嵴 D.螺旋器 E.以上均不对 19.前庭阶和鼓阶借何结构相通 () A.蜗孔 B.蜗管 C.蜗 窗 D.前庭窗 E.联合管 20.将声波的振动传人内耳的是 () A.听小骨 B.前庭 C.耳

(完整版)感觉系统检查--浅感觉

感觉系统检查--浅感觉 1.痛觉:用大头针的针尖轻刺被检者皮肤以检查痛觉,左右远近对比并记录感觉障碍类型(过敏、减退或消失)与范围。 2.触觉:用棉签或软纸片轻触被检者的皮肤或粘膜。 3.温度觉:用盛有热水(40 ℃~50 ℃)或冷水(5~10 ℃)的试管接触皮肤,辨别冷热感觉。深感觉 1、运动觉:被检者闭目,检查者轻轻夹住被检者的手指或足趾两侧,上下移动5°左右,令被检者说出“向上”或“向下”。如感觉不明显可加大活动幅度或测试较大的关节。 2、位置觉:被检者闭目,检查者将其肢体摆成某一姿势,请患者描述该姿势或用对侧肢体模仿。 3、振动觉:用振动着的音叉柄置于骨隆起处(如内、外踝,手指、桡尺骨茎突、胫骨、膝盖等),询问有无振动感觉和持续时间,并两侧对比。 .腹壁反射(abdominal reflex):被检者仰卧,下肢稍屈曲,使腹壁松弛,然后用钝头竹签分别沿肋弓下缘(T7~8)、脐孔水平(T9 ~10)及腹股沟上(T11 ~12)的平行方向,由外向内轻划腹壁皮肤。正常反应是该侧腹肌收缩,脐孔向刺激部分偏移。 .提睾反射(cremasteric reflex)反射中心L1 ~2。 与检查腹壁反射相同,竹签由下而上轻划大腿上部内侧皮肤,反应为该侧提睾肌收缩使睾丸上提。 跖反射(plantar reflex) :反射中心S1~2。被检者仰卧、下肢伸直,医生手持被检者踝部。用钝头竹签划足底外侧,由足根向前至小趾根部足掌时转向内侧,正常反应为足趾跖屈(即Babinski征阴性)。 肛门反射:反射中心S4~5。用竹签轻划肛门周围皮肤,可引起肛门外括约肌收缩。 膝反射(k nee reflex)(L2~4) 坐位检查时,患者小腿完全松弛下垂,与大腿成直角,卧位检查则患者仰卧,检查者以左手托起其膝关节使之屈曲约120°,用右手持叩诊锤叩击膝盖髌骨下方股四头肌腱,可引起小腿伸展。 踝反射(ankle reflex) (S1~2) 又称跟腱反射。患者仰卧,屈膝约90°,检查者左手将其足部背屈成直角,以叩诊锤叩击跟腱,反应为腓肠肌收缩,足跖屈;或俯卧位,屈膝90°,检查者用左手按足跖,再扣击跟腱;或患者跪于床边,足悬于床外,扣击跟腱。 .Babinski巴宾斯基征取位与检查跖反射一样,用竹签沿患者足底外侧缘,由后向前至小趾跟部并转向内侧,阳性反应为踇趾背屈,其余各趾呈扇形展开。

第八章、感觉系统

感觉器:感受器:机体接受内、外环境各种刺激的结构。 副器:辅助装置 功能:感受器(接受刺激)神经冲动感觉神经→中枢→大脑皮质(产生相应的感觉) 视器:眼球角膜(无色透明)角膜和巩膜之间有巩膜静脉窦 纤维膜巩膜(白色) 眼球壁血管膜:虹膜,睫状体,脉络膜含大量血管和色素细胞 视网膜 房水 眼球内容物晶状体眼的屈光系统或屈光装置 玻璃体 角膜:占眼球纤维膜的前1/6,无色透明,曲度较大,有屈光作用,无血管(移植纤维膜不需配型),感觉神经末梢丰富,感觉极为敏锐。 巩膜:占纤维膜的前5/6,白色不透明,厚而坚韧,保护眼球内容物,后方有视神经穿出,并与视神经的鞘膜相延续。 巩膜与角膜相接处深面有一环形的巩膜静脉窦,是房水回流的通道。 虹膜:血管膜的最前部,呈圆盘状,中央为瞳孔。颜色与所含色素细胞多少有关,有明显种族差异。(黄色人色素较多,呈棕色) 瞳孔括约肌(环形)→副交感神经支配→缩瞳 瞳孔开大肌(放射状)→交感神经支配→扩瞳 血管膜睫状体:巩膜与角膜移行部的内侧,虹膜后外方的环形增厚部分。 后部:平坦光滑,称睫状环 前部:有许多向内突出的皱襞,称睫状窦。借睫状小带与晶状体相连 睫状体(内有睫状肌)→受副交感神经支配→产生房水,调节晶状体脉络膜:占眼球血管膜的后2/3,前端连于睫状体,后方有视神经通过。富有血管(营养作用)、色素细胞(暗室作用) 虹膜部 盲部睫状体部最内层:神经节细胞 视网膜内层:神经细胞层中层:传递神经冲动的双核细胞 视部外层:接受光刺激的感光细胞(视杆细胞、视锥细胞) “日锥夜杆” 外层:色素上皮层,紧贴脉络膜。 神经节细胞的轴突在视网膜后部集结成束,并形成圆盘状的隆起,称视神经盘(视神经乳头),之后穿过脉络膜和巩膜构成视神经。视神经盘在活体上呈淡红色,正常时边缘清楚,有视网膜中央血管出入眼球,无感光作用,故又称生理盲点。在视神经盘的颞侧约0.35cm处,有一黄色小区,称黄斑。其中央凹陷称中央凹,是感觉最敏锐的地方。 视网膜内、外两层之间连接疏松,在病理情况下两层分离,形成视网膜脱落。 房水:睫状体产生房水→后房→瞳孔→虹膜角膜角隙→巩膜静脉窦→眼静脉 眼球房:眼球内角膜和晶状体之间的空隙,被虹膜分为眼球前房和眼球后房,两房借瞳孔相通。 虹膜与角膜交界处的环形间隙称虹膜角膜角,又称前房角。其前外侧壁是由小梁构成的栅状壁,栅的空隙称虹膜角膜角隙,房水经此隙渗入静脉窦,是房水回流的通道。 房水:屈光作用。营养角膜和晶状体,维持眼内压。若房水产生过多或回流受阻,可造成眼内压增高,压迫视网膜,影响视力,临床上称青光眼。

感觉系统

感觉系统 一.感觉分类 1.浅感觉 一般感觉 2.深感觉 3.复合感觉:又称为皮质感觉,指大脑顶叶皮质对深浅感觉的分析,比较整 合而形成的实体觉,图形觉,两点辨别觉和定位觉和重量觉等特殊感觉: 视觉, 听觉味觉嗅觉 二.解剖生理 (一)感觉通路 痛温觉通路 皮肤、粘膜痛温感受器→脊N→脊N节●→脊髓上升1~2节段→后角●→前联合交叉→脊髓丘脑侧束→丘脑后腹外侧核●→丘脑皮质束→→内囊后肢后1/3→大脑中央后回上2/3、顶叶 精细触觉通路 皮肤、粘膜触感受器→脊N→脊N节●→ ①大部分→脊髓后索→延髓薄束核楔束核●→交叉→内侧丘系 ②小部分→脊髓内上升1~2节段→后角●→前联合交叉→脊髓丘脑前束 ①②→丘脑腹后外侧核●→丘脑皮质束→内囊后肢→大脑中央后回 躯体深感觉通路 本体感受器→脊N→脊N节●→脊髓后索→延髓薄束核楔束核●→交叉 →内侧丘系→丘脑腹后外侧核●→丘脑皮质束→内囊后肢→大脑中央后回 (二)节段性感觉支配 上肢:(外→内) C5、6、7→8、T1、2; 下肢:(前→后) L1~3、L4~5→S1~2; 躯干:腋窝T2~3;乳头T4;剑突T6;肋弓T8;脐T10; 腹股沟T12~L1;鞍区:S3、4、5; (三)髓内示意图

三.损害表现及定位 (一)感觉障碍的分类▲▲▲▲ 感觉过敏:轻微刺激引起强烈感觉 感觉倒错:非疼痛性刺激引发疼痛 感觉过度:感觉刺激阀↑,不立即产生疼痛(潜伏期) ,达到阀值时 可产生一种定位不明确的强烈不适感、持续一段时间才 消失(后作用) 。见于丘脑、周围N损害。 定义:无外界刺激情况下出现异常自发性感觉 麻木感 刺激性症状肿胀感 感觉异常分类痒感 蚁走感 针刺感 电击感 局部性疼痛 放射性疼痛:由局部扩展到受累感觉N支配区 疼痛扩散性疼痛:由一个N分支与扩散到另一分支 牵涉性疼痛:内脏疼痛扩散到相应体表节段 感觉减退 分离性感觉障碍:同一部位痛温觉缺失触觉及深感抑制症状感觉缺失保存 完全性感觉障碍同一部位各种感觉均缺失 (二)感觉障碍定位▲▲▲ 单一周围神经型(神经干型): 受损害的某一神经干分布区,各种感觉均消失. 末梢型: 表现为四肢对称型的末端各种感觉障碍,呈手套,袜套分布,远端重于近端见于多发性神经病等 后根型:感觉分布障碍范围和神经根的分布一致,为节段性感觉障碍,伴有剧烈疼痛.如椎间盘脱出,髓外肿瘤等 脊髓型传导型: 1)横贯性: 病变平面以下所有感觉均缺失或减弱 2)半切型: 病变损伤平面以下深感经障碍和上运动N元瘫痪和对侧损 伤平面以下痛觉缺失,为Brown—Sequard征见于髓外占位病变,外 伤等 3)前联合和后角型:前联合病变时,受损部位出现双侧对称性节段性感 觉分离,即痛温觉消失而触觉存在.后角损害表现为损伤侧节段性感 觉解离. 见于髓鞘空洞症,脊髓内肿瘤等 脑干型: 交叉型.同侧面部和对侧半身感觉障碍 丘脑型:对侧偏身型完全性感觉缺失或减退、丘脑痛(患侧肢体自发痛)见于脑血管病内囊型:对侧偏身感觉缺失或减退,常伴有偏瘫和偏盲,称为三偏综合征,见于脑血管病皮质型:顶叶皮质损害,可出现病灶对侧的复合感觉障碍,而痛温觉较轻.部分区域损害时,则出现对侧单肢的感觉障碍,如为刺激病灶,则出现局限性感觉性癫痫.

《生理复习重点及习题-中南大学》9-2感觉系统功能.doc

神经系统功能(三〉NS的感觉分析功能 掌握内容: 特异和非特异性投射系统的功能和特点,大脑皮质的体感投射区和特点,痛觉产生机制(致痛物质和相关机制)和外周传入神经,皮肤痛和内脏痛特点,牵涉痛及其产生原理,以及其临床意义。 熟悉内容 躯体感觉传入上行通路及特点,丘脑核团分类、体腔壁痛、内脏感觉投射区域。 了解内容:本体、触压和温度感觉 (-)名称解释 感觉、感受器、感觉器官、特异性和非特异性感觉传导系统.痛觉与伤害感受、牵涉痛 列表比较 特异性和非特异性感觉传导系统的异、同点 (起源、中继核、上行传导路径、换神经元次数、投射特点、功能) (二)选择题 【Ai型题】 1.在骨骼肌标本浸液中加入筒箭毒碱后,刺激支配该肌的运动神经纤维,肌细胞终板电位的变化是 A.去极化加大 B.维持原水平 C.去极化减小 D.暴 发动作电位 E.发生超极化 2.含去甲肾上腺素的神经元胞体主要集屮的部位是 A.脊髓前角 B.低位脑干C?中脑黑质D.纹状体E.大脑皮层 3.下列神经递质中,未见于周围神经系统中的是 A.多巴胺 B.肾上腺素 C.腺昔 D. ATP E. 5-症色胺 4.下列神经纤维中,属于肾上腺素能纤维的是 A.支配肾上腺髓质的神经 B.骨骼肌交感舒血管神经 C.交感缩血管神经 D.骨骼肌运动神经 E.支配多数小汗腺的神经 5.激活后通过升高效应细胞内IP3和DG浓度而产生生物效应的受体是 A.山受体 B.血受体 C.卩|受体 D.卩2受体 E.卩3受体 6.由a受体介导的生理效应是

A.传入侧支负反馈抑制自身胞体 C.通过交互性突触而形成交互抑制 E.意义在于协调不同屮枢的活动下列关于冋返性抑制的描述,正确的是A.经自身受体抑制递质释放而实现 C.细胞内共存兴奋性和抑制性递质 E.能使兴奋神经元周边的神经元抑制产生突触前抑制的机制是 A.突触前膜阈电位水平抬高 B.传入纤维主干与侧支释放不同递质D.通过抑制一兴奋性中间神经元实现 B.通过串联性突触而起抑制作用 D.能使同一中枢神经元同步活动 B.突触前末梢递质释放减少 D.糖酵解加强 E.脂肪分解加强 去甲肾上腺素与a受体结合后引起舒张效应的平滑肌是 A.血管平滑肌 B.子宫平滑肌 C.虹膜辐射状肌 D.胃肠括约肌 E.小肠平滑肌 由卩受体介导的生理效应是 A.骨骼肌血管收缩 B.胃肠括约肌收缩 C.膀胱逼尿肌收缩 D.竖毛肌收缩 E.糖酵解加强 去甲肾上腺素与卩受体结合后引起收缩或收缩加强的肌组织是 A.心房肌 B.子宫平滑肌 C.小肠平滑肌 D.血管平滑肌 E.支气管平滑肌 卩3受体被激活后的生理效应是 A.睫状体肌舒张 B.心肌收缩力增强 C.肾球旁细胞分泌肾素 D.肝糖原分解 E.脂肪分解 下列关于非条件反射的描述,正确的是 A.是学习的简单形式 B.多属单突触反射 C.形式较为固定 D.可建立,可消退 E.大脑皮层参与其形成 下列生理活动中,属于条件反射的是 A.喝呛水而咳嗽 B.风沙入眼而流泪 C.入赛场而心跳加快 D.脚踩图钉而抬腿 E.食物入口而唾液分泌 下列关于条件反射的叙述,错误的是 A.数量无限 B.形成的基本条件是强化 C.使机体具有更大的适应性 D. 一旦建立就会终身保留 E.是经过后天学习训练形成的 在反射活动中,最易发生疲劳的部位是 A.感受器 B.传入神经 C.反射中枢 D.传出神经 E.效应器关于中枢兴奋传播的特征,正确的描述是 A.双向传布 B.对内环境变化敏感 C.不衰减传递 D.兴奋节律不变 E.不易疲劳 突触后抑制的产生机制是 A.进入突触前末梢Ca"量减少 B.突触前末梢递质释放量减少 C.抑制一兴奋性中间神经元 D.兴奋一抑制性中间神经元 E.突触后膜去极化程度减小 下列关于传入侧支性抑制的描述,正确的是 A.瞳孔扩大 B.心率加快 C.支气管扩张

人体解剖学——感觉系统

人体解剖学——感觉系统名词解释 1. 感受器 2. 眼轴 3. 巩膜静脉窦 4. 虹膜角膜角 5. 盲点 6. 黄斑 7. 眼房 8. 结膜穹窿 9. 光锥 10. 第二鼓膜 11. 螺旋器 12. 壶腹嵴 选择题 A型题 1.眼球壁 A. 由角膜、脉络膜和视网膜构成 B.由外膜、脉络膜和内膜构成 C.由纤维膜、血管膜和视网膜构成 D.由巩膜、脉络膜和内膜构成

E.以上都不对 2.下列结构中由致密结缔组织构成的是A.视网膜 B.巩膜 C.脉络膜 D.睫状体 E.以上都不是 3.下列说法错误的是 A.角膜神经末梢丰富 B.脉络膜血管丰富 C.巩膜不含血管,故呈乳白色 D.角膜不含血管 E.虹膜内含平滑肌 4.虹膜 A.位居眼球血管膜的中部 B.可以调节晶状体的曲度 C.依赖房水获得营养 D.分隔眼的前房和后房 E.以上都不对 5.关于瞳孔大小的描述正确的是

A.随眼压的高低而变化 B.随光线的强弱而变化 C.取决于睫状肌的舒缩状况 D.取决于房水循环的通畅与否 E.以上都不正确 6.眼球壁的中膜中最肥厚的部分是 A.虹膜 B.睫状体 C.脉络膜前部 D.脉络膜后部 E.以上都不是 7.视网膜 A. 仅贴于脉络膜内面 B.由视锥和视杆细胞、双极细胞和节细胞三层构成C.全层均有感光功能 D.紧邻眼球壁内腔的是视锥、视杆细胞层 E.以上都不对 8.视神经乳头 A.为调节视力的重要结构 B.为视锥和视杆细胞集中之处 C.为视网膜节细胞的轴突集中之处

D.为感光最敏感的部位 E.以上都不对 9.视神经盘 A.位于黄斑的内上方 B.位于黄斑的内下方 C.位于黄斑的外上方 D.位于黄斑的外下方 E.以上都不对 10.有关视神经乳头的描述错误的是 A.位于视网膜后部的偏内侧 B.无辨色能力 C.位于黄斑的鼻侧 D.中央凹陷处称中央凹 E.视网膜中央动、静脉由此出入 11.关于黄斑的描述正确的是 A. 位于视神经乳头鼻侧3.5 mm 处 B.中央由视网膜中央动脉穿出 C.感光作用强,但无辨色能力 D.视网膜节细胞的轴突由此向后穿出眼球壁E.以上都不正确

学习发展的五大阶段

学习发展的五大阶段 第一阶段:感觉通路的建立 具备接受外界刺激的能力,是孩子学习的大前提。这种能力虽然有赖于视觉、听觉、触觉、前庭平衡觉、动觉、嗅觉及味觉等感觉系统的正常运作,但光靠这些仍然不够。因为要传送刺激到大脑,促使脑部发展的感觉神经通路若不正常,个体仍然无法正确了解外界的事物。例如,视力正常而视觉神经通路有问题的孩子,虽能看到外界的事物,却无法将所看到的事物正确的传送到脑部。所以有些孩子会把“9”看成“6”或“P”,把“朋友”看成“友朋”等。再者,感觉神经通路应具有选择刺激的能力,也就是有过滤或扩大刺激的能力。例如:在嘈杂的教室里,能专心听老师的讲课,在安静的夜晚,能听到家人蹑手蹑脚回家的脚步声。 第二阶段:感觉动作的发展 婴儿刚出生时,手脚只是无意义地乱动,尚无法取物或移动身体。直到3、4个月后,神经反射动作出现,肌肉张力逐渐形成,才慢慢具有自主活动的能力。约6个月后,待神经反射动作成熟,婴儿的手脚就能做有意识的活动,例如:看到玩具会用手去抓等。另一方面,抗拒地心引力的能力也逐渐增强,能由爬至坐,最后由站而走。平衡感、

韵律感亦逐渐形成,可随着音乐舞动身体,做一些有节奏的活动。唯有在感觉动作成熟后,孩子才能对外界的刺激作出有意义的反应,所以感觉动作是学习不可或缺的要素。 第三阶段:身体形象的认识 孩子通过感觉动作的发展,虽可对外界的刺激做有意识的反应,但动作要能更加协调灵活,仍有赖于孩子对自己身体形象认识的程度。当孩子认清自己的眼睛、嘴巴、手、脚等位置及功能,并知道加以活用后,再配合已逐渐开始的身体双侧动作协调发展,才能进一步学习新的动作技巧,如穿脱衣服或鞋袜、滑滑梯和荡秋千等。反之,如对自己身体形象认识不足,身体各部位的动作无法良好的协调,则行动笨拙、反应迟钝,会经常摔跤或碰伤自己,同时也学不会荡秋千、扣纽扣或拿筷子等动作。 第四阶段:知觉运动的形成 孩子通过感觉通路、感觉动作以及对自我身体形象的认识,已获得相当多的经验,累积储存在脑部而形成知觉。因此,孩子不仅可以听懂别人说话的意思,而且会照着别人的指示做事,模仿别人的语句与人对话。同时,也可辨认物体的形状、大小,记得看过的图片,辨识图画的主题与背景,会玩走迷宫、拼图等益智玩具。反之,孩子如果听

相关文档
相关文档 最新文档