文档库 最新最全的文档下载
当前位置:文档库 › 表面粗糙度新国标

表面粗糙度新国标

表面粗糙度新国标
表面粗糙度新国标

§7–4 零件的技术要求

一、表面结构的表示法

1.表面结构的基本概念

(1)概述

为了保证零件的使用性能,在机械图样中需要对零件的表面结构给出要求。表面结构就是由粗糙度轮廓、波纹度轮廓和原始轮廓构成的零件表面特征。

(2)表面结构的评定参数

评定零件表面结构的参数有轮廓参数、图形参数和支承率曲线参数。其中轮廓参数分为三种:R 轮廓参数(粗糙度参数)、W 轮廓参数(波纹度参数)和P 轮廓参数(原始轮廓参数)。机械图样中,常用表面粗糙度参数Ra 和Rz 作为评定表面结构的参数。

① 轮廓算术平均偏差Ra 它是在取样长度lr 内,纵坐标Z(x )(被测轮廓上的各点至基准线x 的距离)绝对值的算术平均值,如图7-14所示。可用下式表示:

dx x Z lr

Ra lr

?

=

)(1

② 轮廓最大高度Rz 它是在一个取样长度内,最大轮廓峰高与最大轮廓谷深之和,如图7-14 所示。

图7-14 Ra 、Rz 参数示意图

国家标准GB/T1031-2009给出的Ra 和Rz 系列值如表7-1所示。

表7-1 Ra 、Rz 系列值 m μ

2.标注表面结构的图形符号

(1)图形符号及其含义

在图样中,可以用不同的图形符号来表示对零件表面结构的不同要求。标注表面结构的图形符号及其含义如表7-2所示。

表7-2 表面结构图形符号及其含义

(2)图形符号的画法及尺寸

图形符号的画法如图7-15所示,表7-3列出了图形符号的尺寸。

图7-15 图形符号的画法

表7-3 图形符号的尺寸 mm

注:H 2取决于标注内容

标注表面结构参数时应使用完整图形符号;在完整图形符号中注写了参数代号、极限值等要求后,称为表面结构代号。表面结构代号示例见表7-4 。

表7-4 表面结构代号示例

3.表面结构要求在图样中的标注

表面结构要求在图样中的标注实例如表7-5所示。

(b) (b)

各国表面粗糙度对照表

时代涂层测厚仪使用介绍 一、原理 磁性测厚原理:当测头与覆层接触时,测头和磁性金属基体构成一闭合磁路,由于非磁性覆盖层的存在,使磁路磁阻变化,通过测量其变化可计算覆盖层的厚度。 涡流测厚原理:利用高频交电流在线圈中产生一个电磁场,当测头与覆盖层接触时,金属基体上产生电涡流,并对测头中的线圈产生反馈作用,通过测量反馈作用的大小可导出覆盖层的厚度。 二、适用行业 1、电镀、喷涂:这个行业是使用我们仪器最多的,占每年销量相当大的比例,是我们主要用户群体,需要花大的精力去不断挖掘。 2、管道防腐:主要以石化方面的用户比较多,一般防腐层比较厚,TT260配F10探头的用户比较多。 3、铝型材:今年以来受国家实施强制标准,型材企业换发许可证的影响,该行业出现前所未有的好势头,主要测型材上面的氧化膜,据了解生产企业每少镀一微米,一吨型材“节约”150元,非常可观,因此国家强制要求配备包括涂层测厚仪在内的相关检测设备。此举也给我们带来了非常好的机会。这个机会也同样受到竞争对手的关注,他们最大限度的调低了价格,而且采取铺货等多种方式迅速在此行业展开攻势,针对于此唐总、石总也多次指示密切关注对手动向时世采取相应策略,宗旨是让利不让市场。希望分公司同仁也能切实利用好这次机会,充分发挥区域优势,使我们的产品更多进入该行业,也为今后在此行业的销售打下基础。另外,也可以扩大我们的产品在整个市场的影响。 4、钢结构:对于我们的产品这类企业也可以单独划为一个行业。涂层测厚仪在此行业也确实有很大的应用,包括铁塔等厂家最近购买信息也比较多。 5、印刷线路版、及丝网印刷等行业,这类企业相对来讲数特殊行业,购买量目前来看只是来自零星一些厂家, 8月份我们就有两家印刷企业购买。可以看出还是有需求的,需要我们不断做工作,挖掘信息资源,多发现一些新的销售机会。 三、各型号产品介绍: TT220:测量磁性金属上非磁性覆盖层的厚度。如钢、铁、非奥氏不锈钢上基体上的铝、铬、铜、珐琅、橡胶、油漆层的厚度。 TT230:测量非磁性基体上非导电层的厚度。如铜、铝、锌、锡基体上的珐琅、橡胶、油漆、铬、搪瓷、铝阳极氧化层的厚度。 TT240:测量非磁性基体上非导电层的厚度。如铜、铝、锌、锡基体上的珐琅、橡胶、油漆、铬、搪瓷、铝阳极氧化层的厚度。蹶 主要特点: 1、外型美观,且带有橡胶护套便于携带与现场操作; 2、存储数据多达300个测量值; 3、探头与主机的分离使操作稳定性增强,适用范围更广,特别是对于管道内壁,空间狭窄 的工件; 4、可以设定上下限,对界外测量值能自动报警,更大限度满足了用户需求; 5、可以配备通讯软件与PC机接口,便于用户对数据进行进一步的处理,仪器本身档次也 得到提高;

表面粗糙度新国标

表面结构的图样表示法 加工零件时,由于刀具在零件表面上留下刀痕和切削分裂时表面金属的塑性变形等影响,使零件表面存在着间距较小的轮廓峰谷。这种表面上具有较小间距的峰谷所组成的微观几何形状特性,称为表面粗糙度。机器设备对零件各个表面的要求不一样,如配合性质、耐磨性、抗腐蚀性、密封性、外观要求等,因此,对零件表面粗糙度的要求也各有不同。一般说来,凡零件上有配合要求或有相对运动的表面,表面粗糙度参数值小。因此,应在满足零件表面功能的前提下,合理选用表面粗糙度参数。 1.评定表面结构常用的轮廓参数 ①算术平均偏差Ra是指在一个取样长度内纵坐标值Z(x)绝对值的算术平均值 ② 轮廓的最大高度Rz是指在同一取样长度内,最大轮廓峰高和最大轮廓谷深之和的高度 图9-27 评定表面结构常用的轮廓参数 2.有关检验规范的基本术语 检验评定表面结构参数值必须在特定条件下进行。国家标准规定,图样中注写参数代号及其数值要求的同时,还应明确其检验规范。有关检验规范方面的基本术语有取样长度、评定长度、滤波器和传输带以及极限值判断规则。本有关检验规范仅介绍取样长度与评定长度和极限值判断规则。 (1)取样长度和评定长度 以粗糙度高度参数的测量为例,由于表面轮廓的不规则性,测量结果与测量段的长度密切相关,当测量段过短,各处的测量结果会产生很大差异,但当测量段过长,则测得的高度值

中将不可避免地包含了波纹度的幅值。因此,在X轴上选取一段适当长度进行测量,这段长度称为取样长度。但是,在每一取样长度内的测得值通常是不等的,为取得表面粗糙度最可靠的值,一般取几个连续的取样长度进行测量,并以各取样长度内测量值的平均值作为测得的参数值。这段在X轴方向上用于评定轮廓的并包含着一个或几个取样长度的测量段称为评定长度。当参数代号后未注明时,评定长度默认为5 个取样长度,否则应注明个数。例如:Rz0.4、Ra30.8、Rz13.2分别表示评定长度为5个(默认)、3个、1个取样长度。 (2)极限值判断规则 完工零件的表面按检验规范测得轮廓参数值后,需与图样上给定的极限比较,以判定其是否合格。极限值判断规则有两种: ① 16%规则运用本规则时,当被检表面测得的全部参数值中,超过极限值的个数不多于总个数的16%时,该表面是合格的。 ②最大规则运用本规则时,被检的整个表面上测得的参数值一个也不应超过给定的极限值。 16%规则是所有表面结构要求标注的默认规则。即当参数代号后未注写“max”字样时,均默认为应用16%规则(例如Ra0.8)。反之,则应用最大规则(例如Ramax0.8)。 3. 标注表面结构的图形符号 标注表面结构要求时的图形符号种类、名称、尺寸及其含义见表9-1。 表9-1 表面结构符号

光洁度对照表

光洁度▽,▽▽,▽▽▽,▽▽▽▽是现在日本和台湾用的。 ▽▽▽▽对应Ra<0.2; ▽▽▽对应Ra=0.2~0.8; ▽▽对应Ra=1.6~6.3; ▽对应Ra=12.5~50。 要求达到▽▽▽▽的表面有:工作时承受较大交变应力作用的重要零件的表面;保证精确定心的锥体表面;液压传动用的孔表面;汽缸套的内表面;活塞销的外表面;仪器导轨面;阀的工作面。 什么加工机械能达到▽▽▽▽,要到达▽▽▽▽至少要研磨,精度更高的话要超级加工。研磨加工是应用较广的一种光整加工。加工后精度可达IT5级,表面粗糙度可达Ra0.1~0.00 6μm。既可加工金属材料,也可以加工非金属材料。研磨加工时,在研具和工件表面间存在分散的细粒度砂粒(磨料和研磨剂)在两者之间施加一定的压力,并使其产生复杂的相对运动,这样经过砂粒的磨削和研磨剂的化学、物理作用,在工件表面上去掉极薄的一层,获得很高的精度和较小的表面粗糙度。 研磨的方法按研磨剂的使用条件分以下三类: 1.干研磨研磨时只需在研具表面涂以少量的润滑附加剂。砂粒在研磨过程中基本固定在研具上,它的磨削作用以滑动磨削为主。这种方法生产率不高,但可达到很高的加工精度和较小的表面粗糙度值(Ra0.02~0.01μm)。 2.湿研磨在研磨过程中将研磨剂涂在研具上,用分散的砂粒进行研磨。研磨剂中除砂粒外还有煤油、机油、油酸、硬脂酸等物质。在研磨过程中,部分砂粒存在于研具与工件之间。此时砂粒以滚动磨削为主,生产率高,表面粗糙度Ra0.04~0.02μm,一般作粗加工用,但加工表面一般无光泽。 3.软磨粒研磨在研磨过程中,用氧化铬作磨料的研磨剂涂在研具的工作表面,由于磨料比研具和工件软,因此研磨过程中磨料悬浮于工件与研具之间,主要利用研磨剂与工件表面的化学作用,产生很软的一层氧化膜,凸点处的薄膜很容易被磨料磨去。此种方法能得到极细的表面粗糙度(Ra0.02~0.01μm)。 我们国家以前也用▽后面加数字表示光洁度(GB1031-1968)有14个等级▽14,▽13,▽12,▽11,▽10,▽9,▽8,▽7,▽6,▽5,▽4,▽3,▽2,▽1,与现在大家用的粗糙度对应(GB1031-1983),*.*,0.012,0.025,0.05,0.10,0.2,0.4,0.8,1.6,3. 2,6.3,12.5,25,50,最后一个没有,请不要将此与日本标准混淆。

各国粗糙度对照表

中美表面粗糙度对照表 中旧标 ( 光洁度 )中新标 ( 粗糙度)Ra美标(微米 ),Ra美国标准 ( 微英寸 ),Ra ▽4 6.3 8.00 3206.30 250 ▽ 5 3.2 5.00 200 4.00 1603.20125 ▽61.62.50 100 2.00 80 1.60 63 ▽ 70.81.25 50 1.00 40 0.8032 ▽ 80.40.63250.50 200.40 16

Ra: 轮廓算术平均偏差在取样长度内轮廓偏距绝对值的算术平均值?Rz:微观不平度十点高度在取样长度内五个最大的轮廓峰高的平均值与五个最大的轮廓谷深的平均值之和。 在设计零件时,表面粗糙度数值的选择,是根据零件在机器中的作用决定的。总的原则是: 在保证满足技术要求的前提下,选用较大的表面粗糙度数值。具体选择时,可以参考下述原则: (1)工作表面比非工作表面的粗糙度数值小。?(2)摩擦表面比不摩擦表面的粗糙度数值小。摩擦表面的摩擦速度愈高,所受的单位压力愈大,则应愈高;滚动磨擦表面比滑动磨擦表面要求粗糙度数值小。 (3)对间隙配合,配合间隙愈小,粗糙度数值应愈小;对过盈配合,为保证连接强度的牢固可靠,?载荷愈大,要求粗糙度数值愈小。一般情况间隙配合比过盈酝合粗糙度数值要小。?(4)配合表面的粗糙度应与其尺寸精度要求相当。配合性质相同时,零件尺寸愈小,则应粗糙度数值愈小;同一精度等级,小尺寸比大尺寸要粗糙度数值小,轴比孔要粗糙度数值小(特别是IT8~IT5的精度)。 (5)受周期性载荷的表面及可能会发生应力集中的内圆角、凹稽处粗糙度数值应较小。 一般零件只要标注Ra(轮廓算术平均偏差)就可以了,对于有密封要求的零件部位,通常须同时标注Ra(轮廓算术平均偏差)和Rz(微观不平度十点高度) 个人认为,通过切削加工的表面标注用Ra,通过抛光等加工方法得到的表面用Rz表示 两者的作用相近, 可相互转化.根据不同国家其使用情况不同. 国内和北美目前采用Ra, 而欧洲国家一般采用R z.? 示意图如下

表面粗糙度新国标

§7–4 零件的技术要求 一、表面结构的表示法 1.表面结构的基本概念 (1)概述 为了保证零件的使用性能,在机械图样中需要对零件的表面结构给出要求。表面结构就是由粗糙度轮廓、波纹度轮廓和原始轮廓构成的零件表面特征。 (2)表面结构的评定参数 评定零件表面结构的参数有轮廓参数、图形参数和支承率曲线参数。其中轮廓参数分为三种:R 轮廓参数(粗糙度参数)、W 轮廓参数(波纹度参数)和P 轮廓参数(原始轮廓参数)。机械图样中,常用表面粗糙度参数Ra 和Rz 作为评定表面结构的参数。 ① 轮廓算术平均偏差Ra 它是在取样长度lr 内,纵坐标Z(x )(被测轮廓上的各点至基准线x 的距离)绝对值的算术平均值,如图7-14所示。可用下式表示: dx x Z lr Ra lr ?=0 )(1 ② 轮廓最大高度Rz 它是在一个取样长度内,最大轮廓峰高与最大轮廓谷深之和,如图7-14 所示。 图7-14 Ra 、Rz 参数示意图 国家标准GB/T1031-2009给出的Ra 和Rz 系列值如表7-1所示。 表7-1 Ra 、Rz 系列值 m μ Ra Rz Ra Rz 0.012 6.3 6.3 0.025 0.025 12.5 12.5 0.05 0.05 25 25 0.1 0.1 50 50 0.2 0.2 100 100 0.4 0.4 200 0.8 0.8 400 1.6 1.6 800 3.2 3.2 1600 2.标注表面结构的图形符号

(1)图形符号及其含义 在图样中,可以用不同的图形符号来表示对零件表面结构的不同要求。标注表面结构的图形符号及其含义如表7-2所示。 表7-2 表面结构图形符号及其含义 符号名称符号样式含义及说明基本图形符号 未指定工艺方法的表面;基本图形符号仅用于简化 代号标注,当通过一个注释解释时可单独使用,没有 补充说明时不能单独使用 扩展图形符号 用去除材料的方法获得表面,如通过车、铣、刨、 磨等机械加工的表面;仅当其含义是“被加工表面”时 可单独使用 用不去除材料的方法获得表面,如铸、锻等;也可 用于保持上道工序形成的表面,不管这种状况是通过 去除材料或不去除材料形成的 完整图形符号 在基本图形符号或扩展图形符号的长边上加一横 线,用于标注表面结构特征的补充信息 工件轮廓各表 面图形符号 当在某个视图上组成封闭轮廓的各表面有相同的 表面结构要求时,应在完整图形符号上加一圆圈,标 注在图样中工件的封闭轮廓线上。 (2)图形符号的画法及尺寸 图形符号的画法如图7-15所示,表7-3列出了图形符号的尺寸。 图7-15 图形符号的画法 表7-3 图形符号的尺寸mm 数字与字母的高度h 2.5 3.5 5 7 10 14 20 高度H1 3.5 5 7 10 14 20 28 高度H2(最小值)7.5 10.5 15 21 30 42 60 注:H2取决于标注内容 标注表面结构参数时应使用完整图形符号;在完整图形符号中注写了参数代号、极限值等要求后,称为表面结构代号。表面结构代号示例见表7-4 。 表7-4 表面结构代号示例 代号含义/说明

表面粗糙度等级对照表

表面粗糙度级别对照及应用国际标注Rz N12 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1200 100 25Ra 50 25 6.3粗糙面表面形状特征 明显可见刀痕 可见刀痕

微见刀痕 可见加工痕迹 微见加工痕迹 看不见加工痕迹 可辨加工痕迹的方向 光面微辨加工痕迹的方向 不可辨加工痕迹的方向 暗光泽面 亮光泽面 镜状光泽面 雾状镜面 镜面精磨、研磨、抛光、超精磨、 镜面磨削等研磨、金刚石车刀的精车、精绞、冷拉、拉刀加工、抛光等加工方法举例锯断、粗车、粗铣、粗刨、钻孔以及用粗纹锉刀、粗砂 轮等加工冷拉、精车、精绞、粗绞、粗磨、刮削、粗拉刀加 工等5012.5 12.53.2半光面 6.31.6 6.30.8 3.20.4 1.60.2

0.80.1 0.40.05 0.20.025最光面 0.10.012 0.05 表面特征 明显可见刀痕 微见刀痕 看不见加工痕迹,微辩加工方向暗光泽面 雾状镜面0.012 镜状光泽面0.025 亮光泽面0.05 暗光泽面0.1 不可见加工痕迹的方向0.2 可见加工痕迹方向0.8 微见加工痕迹方向0.4 看不清加工痕迹方向1.6 微见加工痕迹方向3.2 可见加工痕迹方向6.3 微见刀痕12.5

可见刀痕25 明显可见刀痕50表面粗糙度(Ra)数值 Ra100、Ra50、Ra25、 Ra12.5、Ra6.3、Ra3.2、 Ra1.6、Ra0.8、Ra0.4、 Ra0.2、Ra0.1、Ra0.05、加工方法举例 粗车、粗刨、粗铣、钻孔精车、精刨、精铣、粗铰、粗磨精车、精磨、精铰、研磨研磨、珩磨、超精磨、抛光镜面0.006微米

各国表面粗糙度对照表

時代塗層測厚儀使用介紹 一?原理 磁性測厚原理:當測頭與覆層接觸時,測頭和磁性金屬基體構成一閉合磁路,由於非磁性覆蓋層的存在,使磁路磁阻變化,通過測量其變化可計算覆蓋層的厚度? 渦流測厚原理:利用高頻交電流在線圈中產生一個電磁場,當測頭與覆蓋層接觸時,金屬基體上產生電渦流,並對測頭中的線圈產生回饋作用,通過測量回饋作用的大小可匯出覆蓋層的厚度? 二、適用行業 1?電鍍?噴塗:這個行業是使用我們儀器最多的,占每年銷量相當大的比例,是我們主要使用者群體,需要花大的精力去不斷挖掘? 2?管道防腐:主要以石化方面的用戶比較多,一般防腐層比較厚,TT260配F10探頭的用戶比較多? 3?鋁型材:今年以來受國家實施強制標準,型材企業換發許可證的影響,該行業出現前所未有的好勢頭,主要測型材上面的氧化膜,據瞭解生產企業每少鍍一微米,一噸型材“節約”150元,非常可觀,因此國家強制要求配備包括塗層測厚儀在內的相關檢測設備?此舉也給我們帶來了非常好的機會?這個機會也同樣受到競爭對手的關注,他們最大限度的調低了價格,而且採取鋪貨等多種方式迅速在此行業展開攻勢,針對于此唐總?石總也多次指示密切關注對手動向時世採取相應策略,宗旨是讓利不讓市場?希望分公司同仁也能切實利用好這次機會,充分發揮區域優勢,使我們的產品更多進入該行業,也為今後在此行業的銷售打下基礎?另外,也可以擴大我們的產品在整個市場的影響? 4?鋼結構:對於我們的產品這類企業也可以單獨劃為一個行業?塗層測厚儀在此行業也確實有很大的應用,包括鐵塔等廠家最近購買資訊也比較多? 5?印刷線路版?及絲網印刷等行業,這類企業相對來講數特殊行業,購買量目前來看只是來自零星一些廠家, 8月份我們就有兩家印刷企業購買?可以看出還是有需求的,需要我們不斷做工作,挖掘資訊資源,多發現一些新的銷售機會? 三?各型號產品介紹: TT220:測量磁性金屬上非磁性覆蓋層的厚度?如鋼?鐵?非奧氏不銹鋼上基體上的鋁?鉻?銅?琺瑯?橡膠?油漆層的厚度? TT230:測量非磁性基體上非導電層的厚度?如銅?鋁?鋅?錫基體上的琺瑯?橡膠?油漆?鉻?搪瓷?鋁陽極氧化層的厚度? TT240:測量非磁性基體上非導電層的厚度?如銅?鋁?鋅?錫基體上的琺瑯?橡膠?油漆?鉻?搪瓷?鋁陽極氧化層的厚度?蹶 主要特點: 1、外型美觀,且帶有橡膠護套便於攜帶與現場操作; 2、存儲資料多達300個測量值; 3、探頭與主機的分離使操作穩定性增強,適用範圍更廣,特別是對於管道內壁,空間狹窄的工 件; 4、可以設定上下限,對界外測量值能自動報警,更大限度滿足了用戶需求; 5、可以配備通訊軟體與PC機介面,便於使用者對資料進行進一步的處理,儀器本身檔次也 得到提高; 6、兩節AA型鹼性電池,在使用過程中突然斷電時可以隨時更換無需等待? 7、顯示解析度達到0.1um,尤其對於測量鋁型材氧化膜更有優勢?

表面粗糙度对照表

国内表面光洁度与表面粗糙度Ra、Rz数值换算表(单位:μm)

另附:粗糙度仪新旧标准参数变化对照表现将TR200粗糙度仪依据新标准更改参数的情况列表如下,如有问题,由时代公司负责解释。本表还适用于公司TR1系列粗糙度仪。修改后可测量参数的总数没有变化,仍为13个参数,只是显示在不同的标准中,也就是说:时代粗糙度仪产品参数:涵盖新旧标准参数!(详见表)

另附:表面粗糙度国际标准加工方法 表面粗糙度参数及其数值(Surface Roughness Parameters and their Values)常用的3个分别是:轮廓算数平均偏差(Ra)--arithmetical mean deviation of the profile; 微观不平度十点高度(Rz)--the point height of irregularities; 轮廓最大高度(Ry)--maximum height of the profile。

Ra--在取样长度L内轮廓偏距绝对值的算术平均值。 Rz--在取样长度内5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和。 Ry--在取样长度L内轮廓峰顶线和轮廓谷底线之间的距离。 如果图面没标注粗糙度选用Ra /Rz /Ry 的情况下默认为Ra。 表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。其两波峰或两波谷之间的距离(波距)很小(在

1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面: ①表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 ②表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 ③表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 ④表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 ⑤表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 此外,表面粗糙度对零件的外观、测量精度也有影响。 粗糙度:0.012、0.025、0.050、0.100、0.20、0.40、0.80、1.6、3.2、6.3、12.5、25、50、100 6.3:半精加工表面。用于不生要的零件的非配合表面,如支柱、轴、、支架、外壳、衬套、盖等的端面;螺钉、螺栓各螺母的自由表面;不要求定心和配合特性的表面,如螺栓孔、螺钉通孔、铆钉孔等;飞轮、带轮、离合器、联轴节、凸轮、偏心轮的侧面;平键及键槽上下面、花键非定心表面、齿顶圆表面;所有轴和孔的退刀槽;不重要的连接配合表面;犁铧、犁侧板、深耕铲等零件的摩擦工作面;插秧爪面等。1、外观的光滑与摩擦是一个矛盾问题,总的来说,既要光滑美观,又要有相当的摩擦, 以方便安装,以下是常见的一些粗糙度数值: 2、粗糙度0.8以下:抛光 3、粗糙度0.8:用磨床加工的面 4、粗糙度1.6—3.2:车床、铣床加工面 5、粗糙度3.2—12.5:一般性的常规加工 6、一般而言,既要光滑美观,又要有相当的摩擦,以方便安装的话,粗糙度0.8可以,既显得美观高档,手感也可以的 7、如果手拧部分需要减低等级的话也可以的,建议选择粗糙度1.6—3.2,但是,好看吗?会不会影响外观的美感呢? 8、如果需要重视手拧的功能,最好是做滚花处理,滚花有“直纹”和“网纹”两种,图纸上的标注:网纹0.8(用箭头指明需要滚花的部位,再写上文字) 如有侵权请联系告知删除,感谢你们的配合!

表面粗糙度对照表

表面粗糙度对照表: 高度特征参数 轮廓算术平均偏差Ra:在取样长度(lr)内轮廓偏距绝对值的算术平均值。在实际测量中,测量点的数目越多,Ra越准确。 轮廓最大高度Rz:轮廓峰顶线和谷底线之间的距离。 在幅度参数常用范围内优先选用Ra。在2006年以前国家标准中还有一个评定参数为“微观不平度十点高度”用Rz表示,轮廓最大高度用Ry表示,在2006年以后国家标准中取消了微观不平度十点高度,采用Rz表示轮廓最大高度。 间距特征参数 用轮廓单元的平均宽度Rsm表示。在取样长度内,轮廓微观不平度间距的平均值。微观不平度间距是指轮廓峰和相邻的轮廓谷在中线上的一段长度。 形状特征参数 用轮廓支承长度率Rmr(c)表示,是轮廓支撑长度与取样长度的比值。轮廓支承长度是取样长度内,平行于中线且与轮廓峰顶线相距为c的直线与轮廓相截所得到的各段截线长度之和。 表面粗糙度(surface roughness)是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。

表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。 表面粗糙度与机械零件的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切关系,对机械产品的使用寿命和可靠性有重要影响。一般标注采用Ra。 取样长度 取样长度lr是评定表面粗糙度所规定一段基准线长度。取样长度应根据零件实际表面的形成情况及纹理特征,选取能反映表面粗糙度特征的那一段长度,量取取样长度时应根据实际表面轮廓的总的走向进行。规定和选择取样长度是为了限制和减弱表面波纹度和形状误差对表面粗糙度的测量结果的影响。 评定长度 评定长度ln是评定轮廓所必须的一段长度,它可包括一个或几个取样长度。由于零件表面各部分的表面粗糙度不一定很均匀,在一个取样长度上往往不能合理地反映某一表面粗糙度特征,故需在表面上取几个取样长度来评定表面粗糙度。评定长度ln一般包含5个取样长度lr。 基准线 基准线是用以评定表面粗糙度参数的轮廓中线。基准线有下列两种:

表面粗糙度对照表

表面粗糙度是指加工表面具有较小间距和较小峰谷的粗糙度[1]。两个波峰或波谷之间的距离(波距)很小(小于1毫米),这属于微观几何误差。表面粗糙度越小,表面越光滑。 表面粗糙度通常由加工方法和其他因素形成,例如工具与零件表面之间的摩擦力,分离芯片时表面金属的塑性变形以及加工系统中的高频振动。由于加工方法和工件材料的不同,在加工表面上留下的痕迹的深度,密度,形状和纹理也不同。 表面粗糙度与机械零件的匹配特性,耐磨性,疲劳强度,接触刚度,振动和噪声密切相关,并且对机械产品的使用寿命和可靠性具有重要影响。通常,RA用于标记。 相关规范为“GB / T 1031-2009表面纹理轮廓方法表面粗糙度参数及其值”和“GB / T 131-2006(ISO 1302:2002)”表示的表面纹理。 高度特征参数 轮廓RA的算术平均偏差:采样长度(LR)内轮廓偏移的绝对值的算术平均值。在实际测量中,测量点数越多,RA越准确。[2]

轮廓的最大高度RZ:轮廓的峰线和底线之间的距离。 在幅度参数范围内,RA [1]是首选。在2006年之前,国家标准中还有另一个评估参数,用RZ表示,轮廓的最大高度用ry表示。2006年后,国家标准取消了微观粗糙度的十点高度,并使用RZ表示轮廓的最大高度。 间距特征参数 它由轮廓元素的平均宽度RSM [2]表示。采样长度内轮廓的微不均匀间距的平均值。微观不均匀距离是指轮廓峰和中线上相邻轮廓谷的长度。[1] 形状特征参数 用轮廓支撑长度r MR(c)[2]的比率表示,它是轮廓支撑长度与采样长度的比率。轮廓的支撑长度是线的每个部分的长度的总和,该长度平行于中心线,并且在采样长度内与轮廓的峰线相距C。

相关文档