文档库 最新最全的文档下载
当前位置:文档库 › 基于FPGA的神经网络硬件实现方法

基于FPGA的神经网络硬件实现方法

基于FPGA的神经网络硬件实现方法
基于FPGA的神经网络硬件实现方法

一种递归神经网络在FPGA平台上的实现方案详解

一种递归神经网络在FPGA平台上的实现方案详解 近十年来,人工智能又到了一个快速发展的阶段。深度学习在其发展中起到了中流砥柱的作用,尽管拥有强大的模拟预测能力,深度学习还面临着超大计算量的问题。在硬件层面上,GPU,ASIC,FPGA都是解决庞大计算量的方案。本文将阐释深度学习和FPGA各自的结构特点以及为什么用FPGA加速深度学习是有效的,并且将介绍一种递归神经网络(RNN)在FPGA平台上的实现方案。 揭开深度学习的面纱深度学习是机器学习的一个领域,都属于人工智能的范畴。深度学习主要研究的是人工神经网络的算法、理论、应用。自从2006年Hinton等人提出来之后,深度学习高速发展,在自然语言处理、图像处理、语音处理等领域都取得了非凡的成就,受到了巨大的关注。在互联网概念被人们普遍关注的时代,深度学习给人工智能带来的影响是巨大的,人们会为它隐含的巨大潜能以及广泛的应用价值感到不可思议。 事实上,人工智能是上世纪就提出来的概念。1957年,Rosenblatt提出了感知机模型(Perception),即两层的线性网络;1986年,Rumelhart等人提出了后向传播算法(Back PropagaTIon),用于三层的神经网络的训练,使得训练优化参数庞大的神经网络成为可能;1995年,Vapnik等人发明了支持向量机(Support Vector Machines),在分类问题中展现了其强大的能力。以上都是人工智能历史上比较有代表性的事件,然而受限于当时计算能力,AI总是在一段高光之后便要陷入灰暗时光——称为:“AI寒冬”。 然而,随着计算机硬件能力和存储能力的提升,加上庞大的数据集,现在正是人AI发展的最好时机。自Hinton提出DBN(深度置信网络)以来,人工智能就在不断的高速发展。在图像处理领域,CNN(卷积神经网络)发挥了不可替代的作用,在语音识别领域,RNN (递归神经网络)也表现的可圈可点。而科技巨头也在加紧自己的脚步,谷歌的领军人物是Hinton,其重头戏是Google brain,并且在去年还收购了利用AI在游戏中击败人类的DeepMind;Facebook的领军人物是Yann LeCun,另外还组建了Facebook的AI实验室,Deepface在人脸识别的准确率更达到了惊人的97.35%;而国内的巨头当属百度,在挖来了斯坦福大学教授Andrew Ng(Coursera的联合创始人)并成立了百度大脑项目之后,百

神经网络C语言实现

#i n c l u d e"" #include <> const double e = ; //设置一个神经网络 //有一个隐藏层(含有两个节点) //输出层有一个节点 //输入数据是二维(两个节点) //一个样本数据为:x = , 标签为 //初始权值输入节点1到隐藏层:, //输入节点2到隐藏层:, //隐藏层到输出层初始权值为:, //学习速率为1 double changeWeightFromHiddenToOutput(double cost,double output,double hiddenLayerCode) { double result=0; result = cost*output*(1-output)*hiddenLayerCode; return result; } double changeWeightFromInputToHidden(double cost,double output,double weightOfHiddenCodeToOutput,double weightOfHiddenCode,double inputNum)

double result=0; result = cost*output*(1-output)*weightOfHiddenCodeToOutput*weightOfHiddenC ode*(1-weightOfHiddenCode)*inputNum; return result; } double sigmoidFunction(double x) { double result=0; result = 1/(1+pow(e,-x)); return result; } double costFunction(double originalSignal,double outputOfOurCalculation) { //此处采取的损失函数是最小二乘法 double cost=0; cost = (1/*(originalSignal-outputOfOurCalculation)*(originalSignal-outpu tOfOurCalculation); return cost;

【CN110110851A】一种LSTM神经网络的FPGA加速器及其加速方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910359395.7 (22)申请日 2019.04.30 (71)申请人 南京大学 地址 210046 江苏省南京市栖霞区仙林大 道163号 (72)发明人 潘红兵 查羿 郭良蛟 秦子迪  苏岩 朱杏伟  (74)专利代理机构 江苏法德东恒律师事务所 32305 代理人 李媛媛 (51)Int.Cl. G06N 3/063(2006.01) G06N 3/04(2006.01) G06N 3/08(2006.01) (54)发明名称一种LSTM神经网络的FPGA加速器及其加速方法(57)摘要本发明提供了一种LSTM神经网络的FPGA加速器及其加速方法。加速器包括数据分发单元、运算单元、控制单元和存储单元;运算单元包括稀疏矩阵向量乘模块、非线性激活函数模块和按元素乘加计算模块;控制单元发出控制信号给数据分发单元,数据分发单元从存储单元中读取输入激励值和神经网络权重参数,并输入到运算单元进行运算。本发明按非零权重值的个数均匀地分配给每个运算单元,这样不会造成运算资源的闲置,从而提高整个网络的运算性能。同时,采用稀疏网络的形式存储剪枝后的神经网络,每一列的权重值存储在同一个地址空间,并根据行索引对其进行编码,在保证精度的情况下,提高了运 算性能和数据吞吐率。权利要求书1页 说明书3页 附图2页CN 110110851 A 2019.08.09 C N 110110851 A

权 利 要 求 书1/1页CN 110110851 A 1.一种LSTM神经网络的FPGA加速器,其特征在于,包括数据分发单元、运算单元、控制单元和存储单元; 所述运算单元包括:稀疏矩阵向量乘模块,用于权重与激励向量的点乘运算;非线性激活函数模块,用于获得最终的输入门、侯选门、遗忘门和输出门;以及按元素乘加计算模块,用于计算t时刻的状态和t时刻的隐藏层的值; 所述存储单元用于缓存输入激励值、神经网络权重参数值、LSTM神经网络当前时刻状态值以及当前时刻的输出值; 所述控制单元发出控制信号给数据分发单元,所述数据分发单元从存储单元中读取输入激励值和神经网络权重参数,并输入到运算单元进行运算。 2.根据权利要求1所述的一种LSTM神经网络的FPGA加速器,其特征在于,稀疏矩阵向量乘模块包括非零检测模块和多个计算单元,每一个计算单元包括激励值存储模块、权重解码模块和运算模块;所述非零检测模块用于检索激励数据的非零激励值和相对索引值;所述激励值存储模块用于存储非零激励值和相对索引值;所述权重解压缩模块用于根据激励数据的相对索引值进行权重的寻址,找出相对应的整列权重值;所述运算模块用于对非零激励值和整列权重值进行乘加运算。 3.如权利要求1所述一种LSTM神经网络的FPGA加速器的加速方法,其特征在于,具体步骤如下: 采用剪枝量化的方式对LSTM神经网络模型进行压缩,使得神经网络模型的权重矩阵稀疏化;对压缩后的稀疏矩阵按行进行重排,由上至下,每一行的非零权重个数逐渐递减;将重排后的矩阵内的非零元素值进行编码,即对每一个非零元素值标出其数值以及行索引值;将所有的非零权重的数值按列进行存储,即每一列的非零值的数值存到一个地址空间,用标识符将其间隔开来,并标明其行索引指针。 2

1BP神经网络实现(JAVA代码)

BP神经网络实现(Java代码) 神经网络的原理虽然理解起来不难,但是要是想实现它,还是需要做一些工作的,并且有很多细节性的东西需要注意。通过参阅各种相关资料,以及参考网络上已有的资源,自己写了一个含有一个隐含层,且只能有一个输出单元的简单的BP网络,经过测试,达到了预期的效果。 需要说明的是,神经网络的每个输入都在[0,1]中,输出也在[0,1]中,在使用神经网络解决实际问题的时候,还需要对实际问题的输入输出进行归一化处理。另外,尽量不要使得神经网络的输入或输出接近于0或1,这样会影响拟合效果。 我用正弦函数进行了一次测试,效果如图所示: 以下是相关的代码: 1.神经网络代码 [java]view plaincopy 1.package pkg1; 2. 3.import java.util.Scanner; 4. 5./* 6.* 7.*/ 8.public class TestNeuro{

9. 10.private int INPUT_DIM=1; 11.private int HIDDEN_DIM=20; 12.private double LEARNING_RATE=0.05; 13.double[][]input_hidden_weights=new double[INPUT_DIM][HIDDEN_DIM]; 14.double[]hidden_output_weights=new double[HIDDEN_DIM]; 15.double[]hidden_thresholds=new double[HIDDEN_DIM]; 16.double output_threshold; 17. 18.public static void main(String[]args){ 19.Scanner in=new Scanner(System.in); 20.TestNeuro neuro=new TestNeuro(1,5); 21.neuro.initialize(); 22.for(int i=0;i<10000;i++){ 23.double[]input=new double[1]; 24.input[0]=Math.random(); 25.double expectedOutput=input[0]*input[0]; 26.//System.out.println("input:"+input[0]+"\t\texpectedOutput: "+expectedOutput); 27.//System.out.println("predict before training:"+neuro.predict (input)); 28.neuro.trainOnce(input,expectedOutput); 29.//System.out.println("predict after training:"+neuro.predict( input)); 30.//in.next(); 31.} 32.while(true){ 33.//neuro.printLinks(); 34.double[]input=new double[1]; 35.input[0]=in.nextDouble(); 36.double expectedOutput=in.nextDouble(); 37.System.out.println("predict before training:"+neuro.predict(i nput)); 38.neuro.trainOnce(input,expectedOutput); 39.System.out.println("predict after training:"+neuro.predict(in put)); 40. 41.} 42.} 43. 44.public TestNeuro(int input_dimension,int hidden_dimension){ 45.this.INPUT_DIM=input_dimension; 46.this.HIDDEN_DIM=hidden_dimension; 47.this.initialize();

(完整版)卷积神经网络CNN原理、改进及应用

卷积神经网络(CNN) 一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网

络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet 是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该

网络硬件加速器在自动驾驶计算平台的作用

网络硬件加速器在自动驾驶计算平台的作用 近几十年来,图形处理器(GPU)已从最初作为大型电玩的视频显示适配器演进为一个强大的计算中心,并且正在推动人工智能和机器学习的发展,包括从石油和天然气勘探到自然语言处理等众多领域的计算工作。如今,GPU正在自动驾驶和先进驾驶辅助系统(ADAS)技术的发展中扮演着越来越重要的作用。 在本文中,我们将介绍神经网络硬件加速器在自动驾驶计算平台的重要作用,他可以将极高性能和极低功耗完美结合在一起。 你或许想知道GPU是如何从电子游乐场走向前沿科学研究和自动驾驶汽车的?GPU作为处理大数据工作负载的首选处理器而逐渐崛起,归因于传统中央处理器(CPU)和GPU之间存在一些基本的架构差异。GPU是一种专用的微处理器,最初是为渲染游戏中的视觉效果和3D图形而设计,这些游戏需要强大的计算能力来显示实时动作效果。为了提供这种能力,GPU使用数千个小型高效的内核来实现可同时处理大量数据的大规模并行架构。 相比之下,典型的CPU仅由几个内核和大量高速缓存组成,通常设计为一次只处理几个软件线程。CPU针对顺序串行处理进行了优化,更适合于通用的计算工作。然而,当涉及同时处理大量数据时,GPU则更胜一筹。 GPU凭借数百个内核能够并行处理数千个线程,与典型CPU的性能相比,GPU 可以将某些软件的性能提高20倍以上。越来越多出现的情况是,我们期望计算机为我们解决那些具有挑战性的计算问题都具有固有的并行结构——可以想想 大量的视频处理、图像分析、信号处理和机器学习等流程,它们都必须能可靠、实时地运行才可以确保实现汽车自动驾驶。在诸如电池供电的电动汽车等功率受限的系统中,GPU往往能够在实现这种处理速度的同时提供比CPU更高的能效和成本效益,这一点也很重要。 GPU是为ADAS量身定制的 GPU非常适合汽车自动驾驶和ADAS技术对处理能力的要求,尤其是在图像分析和并行信号处理方面。对于起初为游戏而开发的GPU而言,图像处理是其最擅长的领域。事实上,就计算方面来讲,几乎任何密集并行计算都适合用GPU来处理。 ADAS平台可以利用GPU ai服务器的图形计算能力去实时处理和分析传感器数据。 这些离散传感器包括: ?光探测和测距(激光雷达),用脉冲激光测量到目标的距离。 ?无线电探测和测距(雷达),与激光雷达类似,但使用无线电波代替激光。 ?红外(IR)摄像系统,使用热成像技术在黑暗中进行感知。 所有这些使ADAS能够更好地解析环境,并且可提升系统辅助驾驶员和维护自动驾驶汽车安全性的能力。自动驾驶汽车分为6个级别,从完全没有自动化的0

神经网络学习笔记及R实现

神经网络 一、神经网络简介 人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式物理结构:人工神经元将模拟生物神经元的功能 计算模拟:人脑的神经元有局部计算和存储的功能,通过连接构成一个系统。人工神经网络中也有大量有局部处理能力的神经元,也能够将信息进行大规模并行处理存储与操作:人脑和人工神经网络都是通过神经元的连接强度来实现记忆存储功能,同时为概括、类比、推广提供有力的支持 训练:同人脑一样,人工神经网络将根据自己的结构特性,使用不同的训练、学习过程,自动从实践中获得相关知识 神经网络是一种运算模型,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 二、BP神经网络算法描述 1、sigmoid函数分类 回顾我们前面提到的感知器,它使用示性函数作为分类的办法。然而示性函数作为分类器它的跳点让人觉得很难处理,幸好sigmoid函数y=1/(1+e^-x)有类似的性质,且有着光滑性这一优良性质。我们通过下图可以看见sigmoid函数的图像: 错误!

卷积神经网络CNN从入门到精通

卷积神经网络CNN从入门到精通 卷积神经网络算法的一个实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: 局部区域感知 权重共享 空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map 的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与

一种基于FPGA的神经网络硬件实现方案详解

一种基于FPGA的神经网络硬件实现方案详解 人工神经网络在智能控制、模式识别、图像处理等领域中应用广泛。在进行神经网络的应用研究时,人们可以将神经网络模型或算法在通用的计算机上软件编程实现,但很多时间浪费在分析指令、读出写入数据等,其实现效率并不高。软件实现的缺点是并行程度较低,因此利用软件实现神经网络的方法无法满足某些对数据实时处理要求较高的场合(如工业控制等领域)。 目前实现大规模、实时性要求高的神经网络,传统的软件算法实现方法显示出其难以满足速度等要求的不足。此外,在构建神经网络时必然需要考虑硬件实现问题。由于神经网络具有并行计算的特点和功能,可以有效发掘算法本身的并行特性,提出高效的硬件电路结构,从而完成神经网络的硬件实现。 脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)是新一代的神经网络,在研究猫等哺乳动物的视觉神经元时,根据其脉冲同步发放的工作原理所提出的。目前,P CNN 理论仍在发展中,由于其独特的并行性能,在图像分割与平滑、边缘检测与细化、决策与优化等领域应用广泛。当前的研究重点在于模型的优化和软件的实现,而相关的硬件实现在国内并不多见,PCNN并行结构的特性为硬件实现提供了可能。 1 PCNN的基本原理 脉冲耦合神经网络是一种单层模式的两维神经网络,它的基本单元是脉冲耦合网络的神经元。图1为PCNN的单个神经元模型框图,它由输入部分、连接调制部分、脉冲发生器部分3部分构成。 输入部分即接收域,其接收信号来源有两部分:邻近神经元产生的信号和外部的输入激励。这两部分信号通过两个不同的路径进行传递,其中一个路径传递反馈输入信号,其包含外部输入激励,该路径即为F路径;另一个路径传递连接输入信号,其包含来自邻近神经元产生的信号,该路径即为L路径。 连接调制部分完成上述两个路径信号的耦合,经过一定的信号处理,产生神经元的内部活

如何用MATLAB的神经网络工具箱实现三层BP网络

如何用MA TLAB的神经网络工具箱实现三层BP网络? % 读入训练数据和测试数据 Input = []; Output = []; str = {'Test','Check'}; Data = textread([str{1},'.txt']); % 读训练数据 Input = Data(:,1:end-1); % 取数据表的前五列(主从成分) Output = Data(:,end); % 取数据表的最后一列(输出值) Data = textread([str{2},'.txt']); % 读测试数据 CheckIn = Data(:,1:end-1); % 取数据表的前五列(主从成分) CheckOut = Data(:,end); % 取数据表的最后一列(输出值) Input = Input'; Output = Output'; CheckIn = CheckIn'; CheckOut = CheckOut'; % 矩阵赚置 [Input,minp,maxp,Output,mint,maxt] = premnmx(Input,Output); % 标准化数据 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% % 神经网络参数设置 %====可以修正处 Para.Goal = 0.0001; % 网络训练目标误差 Para.Epochs = 800; % 网络训练代数 Para.LearnRate = 0.1; % 网络学习速率 %==== Para.Show = 5; % 网络训练显示间隔 Para.InRange = repmat([-1 1],size(Input,1),1); % 网络的输入变量区间 Para.Neurons = [size(Input,1)*2+1 1]; % 网络后两层神经元配置

卷积神经网络总结

卷积神经网络总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1 卷积神经网络 卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。这个优点在网络的输入是多维图像时表现得更为明显, 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性. 在典型的CNN 中,开始几层通常是卷积层和下采样层的交替, 在靠近输出层的最后几层网络通常是全连接网络。卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数, 预测过程主要是基于输入图像和网络参数计算类别标签。卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等) 和反向传播算法等。在本节中, 我们先介绍典型CNN 的网络结构和反向传播算法, 然后概述常用的其他CNN 网络结构和方法。神经网络参数的中文名称主要参考文献[18] 卷积神经网络的结构和反向传播算法主要参考文献[17] 。 1.1 网络结构 1.1.1 卷积层 在卷积层, 上一层的特征图(Feature map) 被一个可学习的卷积核进行卷积, 然后通过一个激活函数(Activation function), 就可以得到输出特征图. 每个输出特征图可以组合卷积多个特征图的值[17] : ()l l j j x f u = 1j l l l l j j ij j i M u x k b -∈= *+∑ 其中, l j u 称为卷积层l 的第j 个通道的净激活(Netactivation), 它通过对前一层 输出特征图1l j x -进行卷积求和与偏置后得到的, l j x 是卷积层l 的第j 个通道的输 出。()f 称为激活函数, 通常可使用sigmoid 和tanh 等函数。j M 表示用于计算l j u 的输入特征图子集, l ij k 是卷积核矩阵, l j b 是对卷积后特征图的偏置。对于一个输 出特征图l j x ,每个输入特征图1l j x -对应的卷积核l ij k 可能不同,“*”是卷积符号。 1.1.2 下采样层 下采样层将每个输入特征图通过下面的公式下采样输出特征图[17]: ()l l j j x f u = 1()l l l l j j j j u down x b β-=+ 其中, l j u 称为下采样层l 的第j 通道的净激活, 它由前一层输出特征图1l j x -进行 下采样加权、偏置后得到, β是下采样层的权重系数, l j b 是下采样层的偏置项. 符

介绍一款基于FPGA的CNN硬件加速器IP

介绍一款基于FPGA的CNN硬件加速器IP 随着人工智能(AI)的不断发展,它已经从早期的人工特征工程进化到现在 可以从海量数据中学习,机器视觉、语音识别以及自然语言处理等领域都取得 了重大突破。 CNN(Convolutional Neural Network,卷积神经网络)在人工智能领域受到越来越多的青睐,它是深度学习技术中极具代表性的网络结构之一,尤其在图像处 理领域取得了很大的成功。随着网络变得越来越大、越来越复杂,我们需要大 量的计算资源来对其进行训练,因此人们纷纷将注意力转向FPGA(Field Programmable Gate Array,现场可编程门阵列)器件,FPGA 不仅具有软件的可编程性和灵活性,同时又有ASIC 高吞吐和低延迟的特性,而且由于具有丰富 的I/O 接口,FPGA 还非常适合用作协议和接口转换的芯片。 近日KORTIQ 公司推出了一款Xilinx FPGA 的CNN 加速器IP——AIScale, 它能够利用实现训练好的CNN 网络,比如行业标准的ResNet、AlexNet、Tiny Yolo 和VGG-16 等,并将它们进行压缩输出二进制描述文件,可以部署到 Xilinx 全系列可编程逻辑器件上。Zynq SoC 和Zynq UltraScale+ MPSoC 器件PS 可以提供数据给AIScale CNN 加速器(PL),经过分类处理将输出数据给PS。压缩后的CNN 网络占用资源相对小很多,可以部署在片上存储器中,可 以更快更灵活的切换CNN 网络。 图1:AIScale 在计算机视觉应用案例示意图 AIScale 加速器的核心是AIScale RCC(Re-configurable Compute Core),用户根据需求可以灵活自定义AIScale RCC 模块的数量,AIScale RCC 支持卷积预处理、池化/采样、加权和全连接层等处理。资源更丰富的Zynq SoC 和UltraScale+ MPSoC 可以集成更多的AIScale RCC 模块,这会给AIScale 加速器

神经网络实现非线性系统设计范本

神经网络实现非线性系统设计

毕业设计(论文) 中文题目神经网络实现非线性系统设计英文题目 Neural Network Nonlinear System 院系: 年级专业: 姓名: 学号: 指导教师: 职称: 月日

【摘要】神经网络具有极强的非线性及自适应自学习的特性,常被用来模拟判断、拟合和控制等智能行为,成功渗透了几乎所有的工程应用领域,是一个在人工智能方向迅速发展的具有重大研究意义的前沿课题。 本文前两章主要介绍了神经网络的发展背景和研究现状,还有BP 网络的结构原理及相关功能。然后,对如何利用GUI工具和神经网络原理设计非线性系统的基本流程进行了详细的阐述。最后,经过利用Matlab软件进行编程,以及是经过对BP神经网络算法及函数的运用,研究其在函数逼近和数据拟合方面的应用,并分析了相关参数对运行结果的影响。 【关键词】BP网络,GUI,非线性系统 【ABSTRACT】Neural network has a strong nonlinear and adaptive self-organizing properties, often used to simulate the behavior of intelligent decision-making, cognitive control, and the successful penetration of almost all engineering applications, is a rapid development in the direction of artificial intelligence

什么是DNN_如何使用硬件加速DNN运算

什么是DNN_如何使用硬件加速DNN运算 深度神经网络(DNN)目前是许多现代AI应用的基础。自从DNN在语音识别和图像识别任务中展现出突破性的成果,使用DNN的应用数量呈爆炸式增加。这些DNN 方法被大量应用在无人驾驶汽车,癌症检测,游戏AI等方面。在许多领域中,DNN目前的准确性已经超过人类。与早期的专家手动提取特征或制定规则不同,DNN的优越性能来自于在大量数据上使用统计学习方法,从原始数据中提取高级特征的能力,从而对输入空间进行有效的表示。 然而,DNN超高的准确性是以超高的计算复杂度为代价的。通常意义下的计算引擎,尤其是GPU,是DNN的基础。因此,能够在不牺牲准确性和增加硬件成本的前提下,提高深度神经网络的能量效率和吞吐量的方法,对于DNN在AI系统中更广泛的应用是至关重要的。研究人员目前已经更多的将关注点放在针对DNN计算开发专用的加速方法。 近日,一篇名为《Efficient Processing of Deep Neural Networks:A Tutorial and Survey》的论文横空出世,这篇来自MIT的论文详细介绍了DNN高效运算的最新进展,提供了DNN 的综述,以及加速DNN计算的方法。 鉴于篇幅,本文主要针对论文中的如下几部分详细介绍: DNN的背景,历史和应用 DNN的组成部分,以及常见的DNN模型 简介如何使用硬件加速DNN运算 DNN的背景人工智能与深度神经网络 深度神经网络,也被称为深度学习,是人工智能领域的重要分支,根据麦卡锡(人工智能之父)的定义,人工智能是创造像人一样的智能机械的科学工程。深度学习与人工智能的关系如图1所示: 图1:深度神经网络与人工智能的关系

卷积神经网络 论文版

卷积神经网络 摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。在此基础上以卷积神经网络在人脸检测和形状识别方面的应用为例,简单介绍了卷积神经网络在工程上的应用,并给出了设计思路和网络结构。 关键字:模型;结构;训练算法;人脸检测;形状识别 Convolution Neural Network Abstract:Convolution neural network is an efficient recognition algorithm which is widely used in pattern recognition, image processing and other fields recent years.It has a simple structure, few training parameters and good adaptability and other advantages. In this paper, begin with the history of convolutional neural networks,describes the structure of convolutional neural network,neuron models and training algorithms in detail. On this basis,uses the applications of convolutional neural network in face detection and shape recognition as examples, introduces the applications of convolution neural network in engineering, and gives design ideas and network structure. Keywords:Model; Training Algorithm; Advantage; Face detection; Shape recognition 0 引言 卷积神经网络是人工神经网络的一种已成为当前语音分析和图像识别领域的研究热点,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 1 卷积神经网络的发展历史 1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形,在其后的应用研究中,Fukushima将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别和人脸识别方面得到了大规模的应用。 通常神经认知机包含两类神经元,即承担特征抽取的S-元和抗变形的C-元。S-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个S-元的感光区中由C-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,S-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,Fukushima提出了带双C-元层的改进型神经

神经网络应用实例

神经网络 在石灰窑炉的建模与控制中的应用神经网络应用广泛,尤其在系统建模与控制方面,都有很好应用。下面简要介绍神经网络在石灰窑炉的建模与控制中的应用,以便更具体地了解神经网络在实际应用中的具体问题和应用效果。 1 石灰窑炉的生产过程和数学模型 石灰窑炉是造纸厂中一个回收设备,它可以使生产过程中所用的化工原料循环使用,从而降低生产成本并减少环境污染。其工作原理和过程如图1所示,它是一个长长的金属圆柱体,其轴线和水平面稍稍倾斜,并能绕轴线旋转,所以又 CaCO(碳酸钙)泥桨由左端输入迴转窑,称为迴转窑。含有大约30%水分的 3 由于窑的坡度和旋转作用,泥桨在炉内从左向右慢慢下滑。而燃料油和空气由右端喷入燃烧,形成气流由右向左流动,以使泥桨干燥、加热并发生分解反应。迴转窑从左到右可分为干燥段、加热段、煅烧段和泠却段。最终生成的石灰由右端输出,而废气由左端排出。 图1石灰窑炉示意图 这是一个连续的生产过程,原料和燃料不断输入,而产品和废气不断输出。在生产过程中首先要保证产品质量,包括CaO的含量、粒度和多孔性等指标,因此必须使炉内有合适的温度分布,温度太低碳酸钙不能完全分解,会残留在产品中,温度过高又会造成生灰的多孔性能不好,费燃料又易损坏窑壁。但是在生产过程中原料成分、含水量、进料速度、燃油成分和炉窑转速等生产条件经常会发生变化,而且有些量和变化是无法实时量测的。在这种条件下,要做到稳定生产、高质量、低消耗和低污染,对自动控制提出了很高的要求。 以前曾有人分析窑炉内发生的物理-化学变化,并根据传热和传质过程来建立窑炉的数学模型,认为窑炉是一个分布参数的非线性动态系统,可以用二组偏

bp神经网络及matlab实现

bp神经网络及matlab实现 分类:算法学习2012-06-20 20:56 66399人阅读评论(28) 收藏举报网络matlab算法functionnetworkinput 本文主要内容包括:(1) 介绍神经网络基本原理,(2) https://www.wendangku.net/doc/e65842888.html,实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法。 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.wendangku.net/doc/e65842888.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

相关文档