文档库 最新最全的文档下载
当前位置:文档库 › 机组启停中胀差的控制

机组启停中胀差的控制

机组启停中胀差的控制
机组启停中胀差的控制

机组启停中胀差的控制

所谓胀差,就是指转子与汽缸的膨胀差值,若转子的膨胀值大于汽缸的膨胀值,则胀差值为正。反之为负。

由于机组在正常运行时,处于准稳态运行状态,此时机组各部分的膨胀和胀差均达到了最大值,同时机组的各部分的膨胀和胀差的变化不大。

在机组的启停过程中,由于影响胀差的因素较多,且每次汽启停时机组所处条件不同,使得胀差实际变化的差值较大。因此,对运行人员在实际操作中的要求较高。在实际运行中要控制胀差值在润许范围内变化。从以下几点入手:1、在启停机的过程中,主汽温度应分阶段、缓慢的升高

或降低,以达到汽缸被均匀的加热和冷却的目的,同时应避免主汽温度大幅波动,以免给胀差的调整带来困难。

2、轴封一、二漏对胀差的影响较大,在启机时,当汽轮

机的高、低压缸胀差向正向增长较快时,应及时开启一、二漏手动门,以使胀差在较小的数值内变化。当机组热态启动时,由于汽缸温度较高,胀差一般为负值,当胀差开始向正值变化时,可以开启轴封一、二漏手动门,使胀差在较小范围内变化。当汽轮机停机时,汽轮机的各部件受到冷却,转子冷却速度大于汽缸,因此胀差数值显示为负值,此时应及时关闭轴封一、二漏,以防止胀差值负向值过大,延长机组停机时间。

3、当汽轮机冲动后,若胀差正值增长较快时,应及时投

入法兰螺栓加热装置,以减少汽缸与法兰螺栓之间的温差,加快汽缸的膨胀速度,减小胀差正值的增长速度加快启机速度。在停机时,当胀差减小速度过快时,也应及时投入法兰螺栓加热装置,防止机组胀差负向值过大,影响机组停机速度。

4、在机组启动时,应根据缸温选择合适的轴封汽源。在

机组热态启动时,应选择三抽母管来的高温汽源,以达到较好的控制胀差的目的。另外轴封供汽的时间也影响着胀差的变化,在机组启动过程中,为防止机组正向胀差数值过大,应尽量缩短轴封供汽时间。

5、尤其是在机组热态启动时,本体疏水门应全开,使汽

缸内凝结的水及时疏出,减少上下缸温差,加快汽缸的膨胀速度,同时应监视汽缸的膨胀数值的变化,检查滑销系统是否卡涩。

6、发电机并网后,要缓慢开大调速汽门,控制主汽的温

升速度,避免主蒸汽的温度大幅的波动。当高、低压缸胀差数值正向较大时,可适当关小调速汽门,同时联系锅炉保持主汽温度不变,提高主蒸汽的压力。另外,机组并网后要及时投入低加运行,当负荷达到30MW时,及时高加运行,这样可以有效的减小高压缸胀差。

7、在机组启动过程中,当排汽温度低于80度时,尽量不

投用汽缸喷水。如果投入了汽缸喷水,投入时间也要适当,尽可能缩短机组空转和低负荷运行时间。

《三相交流异步电动机单按钮启停控制》教学案例

《三相交流异步电动机单按钮启停控制》教学课例 常州刘国钧高等职业技术学校杨欢一、项目名称确定: 《三相交流异步电动机单按钮启停控制》4课时 二、课例背景介绍: 可编程序控制器(PLC)技术是一门实用性很强的专业课,注重实践教学环节的学习演练,是掌握PLC技术的根本。本课程是以三菱FX2N系列PLC为核心,采用“项目导向、任务驱动"的课程模式,来实施和引领课堂教学。在PLC项目课程的实践中,分别通过项目教学、理实一体、任务驱动、行动导向等多种教学方法,起到了很好的效果,大大提高了学生学习的积极性。 本课例是项目一《三相交流异步电动机的PLC控制》中的任务四《三相交流异步电动机单按钮启停控制》。课程的实施是在可编程控制器实验室进行的,学生通过理论学习与实践操作一体化的综合训练方式,逐步学会三菱可编程序控制器的相关知识和技能,并为后续课程打下了扎实的基础。 三、学习目标的设定: 课程的总目标: 1、通过对本课程的学习和训练,使学生进一步熟悉PLC的基础知识,掌握PLC梯形图、指令语句以及SFC图三种方式的编程方法,并能够应用三菱FX2N 系列PLC完成实际控制系统的设计、安装、调试及监控。 2、通过该项目课程的学习,努力培养学生分析、解决生产实际问题的能力,提高学生的职业技能和专业素质。提高学生学习的能力,养成良好的思维和学习习惯。 3、积极发展好奇心和求知欲,培养坚持真理、勇于创新、实事求是的科学态度与科学精神,形成科学的价值观。培养学生的团队合作精神。 本课例的目标: 1、知道什么是时序图,会画出单按钮控制电动机启停的时序图。 2、能运用微分脉冲输出指令(PLS、PLF)、置位/复位指令(SET/RST)进 行简单的编程。 3、会根据控制要求熟练分配PLC输入/输出点,并能画出PLC电路原理图 和安装接线图。 4、能利用梯形图和指令语句两种方式完成该项目程序的编写。 5、能独立完成三相交流异步电动机单按钮启停PLC控制的安装、调试和监 控。 6、努力培养学生勤于思考、善于动手的良好习惯以及团队合作、理论联系 实际的能力。 四、学习任务描述: 本课例的学习任务是应用三菱FX2N-48MR PLC来实现三相交流异步电动机单按钮启停的控制。在传统控制系统中通常需要使用一个启动、一个停止按钮分别控制电动机的启动和停止,在PLC的控制系统中这就要占用两个输入点,而在PLC系统设计时,设法减少使用的输入/输出点数就可以降低控制系统的成本,提高经济效益。因此本项目是利用PLC技术来实现单按钮控制电动机的启

电厂汽轮机运行优化措施探讨

电厂汽轮机运行优化措施探讨 随着社会经济的发展,电力企业自身的规模和效益也在不断发生着变化,这就意味著电力企业将会因此而迎来更多的经济和社会利益空间。所以,企业在发电过程中虽然有所损耗,但也能在控制损耗的过程中提升效率。 标签:电厂汽轮机;运行优化;措施 一、电厂汽轮机运行能耗分析 (一)汽轮机的配气方式 目前我厂汽轮机的配汽和运行方式:主汽门和调门各自均有独立的执行机构和调节回路,高压调节阀有两种控制方式,第一为单阀控制,所有高压调节阀同时同行程开关,节流调节全周进汽,有利于对汽轮机进行暖机。规定机组每次冷态、温态启动后,单阀状态下运行24小时,以减少固体粒子的腐蚀。第二为顺序阀控制,高压调门按一定顺序依次开启,节流损失少,效率高。两种方式可无扰切换。 (二)汽轮机启动与停止产生的耗损 汽轮机的启动与停止简单来说就是汽轮机转子应力变化。汽轮机运行时,转子表明的蒸汽参数会发生升降变化,促使转子内部的温度不稳定,当转子长时间在这种状况下工作,若是没有合理有效地处理好参数,那么汽轮机启动与停止中产生的损耗就很大,进而导致汽轮机运行效率下降,使用寿命缩短。 (三)汽轮机组运行损耗 在电厂生产运行中,汽轮机的主要作用就是为能量转化提供动力支持。汽轮机运行复杂,汽配方式也较为复杂,进而导致汽轮机组运行能耗较大。汽轮机组中的汽阀表现较为明显,而汽阀的调节主要分为两种,一种是单阀调节,另一种是顺序阀调节,其中单阀调节就是指直接利用汽轮机表面蒸汽参数进行控制,而顺序阀调节是指利用喷嘴对蒸汽阀门开关进行控制。在汽轮机运行中汽阀压力很大,喷嘴室、外缸非常容易发生变形,密封性降低等情况都会导致汽轮机运行能耗增加。 (四)汽轮机空冷凝汽器损耗 汽轮机中的空冷凝汽器直接影响着汽轮机的热传递效率,若是空气冷凝器出现问题就必定会降低热效率,进而导致整个汽轮机热传递效率被降低。另外,影响热传递效率的还有凝结水溶氧因素,若是溶氧发生问题,不仅会影响热传递效率,还会对设备和管道造成氧化腐蚀。在气温低的状况下,空冷凝汽器还容易出现流量不均衡现象,从而造成汽轮机工作效率被降低。

机组自启停APS系统说明

十、机组自启停APS系统专题 机组自启停控制系统APS是热工自动化技术的最新发展方向之一。APS是实现机组启动和停止过程自动化的系统,其优势在于可以提高机组启停的正确性、规范性,大大减轻运行人员的工作强度,缩短机组启停时间,从整体上提高机组的自动化水平。 FOXBORO公司根据应用经验,做如下说明: APS功能设计 APS功能包括机组自动启动与自动停止。其中自动启动有冷态、温态、热态和极热态四种启动方式,对于汽机来说,其区别主要在于汽轮机自动开始冲转时对主蒸汽参数的要求不同,因而汽轮机冲转前锅炉升压时间不同。 ●冷态方式:第一级金属温度≤120℃ ●温态方式:第二级金属温度>120℃,且≤300℃ ●热态方式:第一级金属温度>300℃,且≤380℃ ●极热态方式:第一级金属温度>380℃ 对于锅炉来说,区分以上4种启动方式,主要由汽包壁温、汽包压力和停炉时间来决定。 四种启动方式都可分为九步,每步设计为1个断点。只有在前一步完成的条件下,通过所提供的按钮确认启动下一步,APS才会开始下一步,在每一步的执行过程中,均设计“GO/HOLD”逻辑,这九步为: 1)启动准备 2)汽机抽真空 3)锅炉初始清洗 4)锅炉冷态清洗 5)锅炉点火 6)热态清洗 7)汽机冲转 8)并网、带初负荷 9)升至目标负荷(40%BMCR) 第九个断点即加负荷断点中进行到由APS设定负荷指令为40%MCR并实现后,发出由CCS进行负荷控制并投入协调方式的命令,断点完成后,APS退出,此时机组的启动已完成,机组负荷由CCS 系统控制升至操作员的设定值或由中调(AGC)给出的设定值方式。为了适应随后整个生产过程的全程自动控制,CCS必须能根据负荷指令要求自动地投切燃烧器,适应不同的负荷要求。 投入APS前,必须具备启动允许条件,如锅炉加药系统、汽水采样系统、锅炉排污系统、灰处理系统、锅炉补水系统具备投入条件,凝结水、给水系统上水,循环水系统上水,开闭式冷却水系统上水、压缩空气系统、化学精处理系统、凝汽器胶球清洗系统、凝汽器铜管造膜系统具备投入条件,启动密封油系统,发电机充氢等已准备好。 机组自动停止也可设6步,也设计“GO/HOLD”逻辑,这6步分别为: ①减负荷 ②最小负荷 ③解列 ④汽机跳闸 ⑤真空破坏及燃烧器退出

基于S7-200 PLC的电动机单按钮启停控制

提示: 1.控制要求要求用1个控制按钮控制1台电动机的启动和停止。第1次操作按钮电动机启动,第2次操作 按钮电动机停车,第3次操作按钮电动机启动,如此循环。2.任务分析PLC在工作时采用顺序循环扫描 的工作方式来执行主循环程序OB1及子程序中的用户程序,在一个扫描周期的开始CPU对所有的输入端 子上的信号进行集中采集,并将采 1.控制要求 要求用1个控制按钮控制1台电动机的启动和停止。第1次操作按钮电动机启动,第2 次操作按钮电动机停车,第3次操作按钮电动机启动,如此循环。 2.任务分析 PLC在工作时采用顺序循环扫描的工作方式来执行主循环程序OB1及子程序中的用户程序,在一个扫描周期的开始CPU对所有的输入端子上的信号进行集中采集,并将采集结果 保存在过程映像输入寄存器(I),在程序执行期间不再考虑输入端子上信号的变化,而程序 执行过程中所产生的中间结果则直接保存在存储器(M)或过程映像输出寄存器(Q)中,并不立即送到输出端子,而只有在当前扫描周期结束前才将程序执行的最终结果集中送到输出端子,对输出端子进行刷新。如果对这种扫描方式理解不清楚,在编程时就会出现意想不到的结果。 以电动机的单按钮启停控制为例,如果用如图3-11所示的逻辑来实现看起来似乎可行- 但是,如果仔细分析会发现当按一次按钮时,首先扫描到第一个程序段,会使KM变为1- 并写入过程映像输出寄存器;当扫描到第二个程序段时,由于KM的过程映像输出寄存器已经为1,所以又会使KM变为0,结果无论如何都无法启动电动机。 由于PLC循环扫描的工作特殊性,不能直接用简单的逻辑实现电动机的单按钮控制,必须考虑在同一扫描周期内是否会出现运行状态的多次切换。 3.实施方案 [方案1]用边沿指令及异或逻辑实现 首先根据控制按钮SB_1信号状态设置状态标志,使用上升沿检测指令,保证每按动一次控制按钮,状态标志F1的状态只在当前扫描周期内起作用。然后用状态标志F1与电动机(KM)当前的状态进行逻辑异或运算,由于按动控制按钮当前周期内F1=1,用F1与KM相异或,就可以实现对电动机状态的转换,如果直接用KM来代替F1,将无法实现要求的功能。控

集控运行机组优化运行管理技术措施(120503)

机组优化运行管理技术措施 编制:王毅薛德仁张喜来赵志良吴焕清审核:支国庆 批准:杨邺张忠 北方联合电力临河热电厂

机组优化运行管理技术措施 1、主机运行优化 1.1机组启停阶段 1.1.1机组启动阶段 1.1.1.1恢复待启动机组循环水系统时,如另一台机组运行,则启动初期,循环水系统由运行机组串带。 1.1.1.2恢复待启动机组开式水系统时,如另一台机组运行,则启动初期(接带负荷50MW前),由运行机组循环水系统串带,开式水系统保持静压供水。 1.1.1.3恢复待启动机组闭式水系统时,如另一台机组运行,则启动初期(接带负荷50MW前),由运行机组串带。注意:串带时,注意监视机组闭式水箱水位。 1.1.1.4系统冲洗 系统冲洗阶段,采用采用纯汽泵方式,电泵停转备用。当汽包压力达0.8Mpa 左右时,利用辅汽冲转汽泵。启停机中若电泵运行应尽量减少阀门的节流损失;用调节给水泵转速来调节给水流量和给水压力,以提高效率。并且再循环阀关至10-20%,减小电动给水泵电耗。 锅炉点火前3小时左右,辅汽至汽泵汽源管道暖备至主汽门前。如主汽门、调速汽门严密性差,应暖备至电动主汽门前。 1.1.1.4.1通过凝补泵(除盐水泵)给除氧器上水至 2.0米,放水至凝汽器进行冲洗。 1.1.1.4.2凝汽器放水至-4米高悬浮废水坑。 1.1.1.4.3当凝结水及除氧器出口水含铁量大于1000微克/升时,应采取排放冲洗方式。 1.1.1.4.4当冲洗至凝结水及除氧器出口含铁量小于300微克/升时,启动变频凝结泵,凝结水系统投入运行,采取循环冲洗方式,并投入凝结水精处理装置,使水在凝汽器与除氧器间循环。投入凝结水系统加氨处理设备,控制冲洗水PH 值位9.0-9.3,以形成钝化体系,减少冲洗腐蚀。 1.1.1.4.5当除氧器出口含铁量小于200微克/升时,凝结水系统、低压给水系统冲洗结束。无凝结水精处理装置时,应采用换水方式,冲洗至出水含铁量小于100微克/升。

燃气蒸汽联合循环机组自启停控制系统(APS)研究及应用

燃气蒸汽联合循环机组自启停控制系统(APS)研究及应用 发表时间:2018-12-18T10:32:49.603Z 来源:《基层建设》2018年第31期作者:秦晓洁 [导读] 摘要:APS是电厂热工自动控制技术的研究热点之一,本文论述了APS基本概念、体系框架及其重点技术,并结合燃气蒸汽联合循环机组控制特点,对APS应用在联合循环机组中提出了规划方案,并提出了在APS建设中应注意的问题和建议。 中国电力工程顾问集团中南电力设计院有限公司湖北武汉 430071 摘要:APS是电厂热工自动控制技术的研究热点之一,本文论述了APS基本概念、体系框架及其重点技术,并结合燃气蒸汽联合循环机组控制特点,对APS应用在联合循环机组中提出了规划方案,并提出了在APS建设中应注意的问题和建议。 关键词:APS;自启停控制;燃气蒸汽联合循环 1 概述 联合循环机组启动过程中,通过控制燃机的负荷即控制燃机的排气量和排气温度,使其按合理的温度梯度加热锅炉蒸汽,满足进入汽轮机的主蒸汽的流量和温度及压力的参数要求,在安全的前提下尽可能的缩短联合循环机组的启动时间,以获得良好的经济效益。 APS可以使机组按照预先设定好的程序完成机组的自动启停,这不仅大大简化了运行人员的操作强度,还可使机组的启停做到标准化、规范化,提高机组的安全可靠性,避免误操作;另外APS也缩短了机组的启动时间,提高了机组的经济效益。因此,对于联合循环机组,设置APS将为电厂以后的运行带来极大的便利。 2 APS的主要研究内容 2.1 APS的体系框架 APS采用4 层金字塔形结构,由上至下分别为机组级控制层、功能组级控制层、子功能组级、驱动级,该结构采用合理的层控制方式,APS的体系框架如图1所示。 图1 APS体系框架示意图 采用上述分层控制方式,每层任务明确,层与层之间接口界限分明,同时,各层之间联系密切可靠。将整个机组控制化大为小,将复杂的控制系统分成若干个功能相对独立和完善的功能组,减轻了机组控制级统筹全厂控制的压力,简化了控制系统的设计。 2.2 APS的断点设计 断点方式将APS启动和停止这个大顺控分为若干个顺控来完成,每个断点的执行均需人为确认才能开始。采用断点控制方式,各断点既相互联系又相互独立,只要条件满足,各断点均可独立执行,符合电厂生产过程的工艺要求。 断点设计是APS的核心技术之一,断点设计的合理与否关系到APS应用和实施的成败,APS的断点设计要结合机组设备实际情况和运行人员的经验和需求(控制断点一般不多于10个),要按机组自启停的过程来设计。各断点既相互联系又相互独立,要适合机组各种的运行方式,符合电厂生产过程的工艺要求,既可给APS 系统提供支持,又可满足对各单独运行设备及过程的操作要求。 3 联合循环机组工程设想 3.1 总体设计思想: (1)项目逻辑模块化:根据阶段单元、步骤单元、信号单元、状态显示等各种完成特定功能的控制逻辑设计成模块化。 (2)步骤阶段化:通过合理而有效的设备控制程序的阶段和步骤,以及对危及机组安全的反向判据的连续监控,使机组的启停程序综合考虑安全性和经济性。 (3)判据条理化:一次判据、二次判据、反向判据、指令时间、允许时间、等待时间、判据的有效区及其对程序重定位的影响,都是APS的充分考虑因素。 (4)运行经验化:注重实际操作指导的功能。 3.2 框架设计方案 按照APS的分级原则,将热力系统工艺流程分解成若干局部的独立过程。由设备级控制设备实现相对独立的启停阶段;再由功能组级联系设备级完成单系统启停和自动控制;最终由机组级协调功能组级、相对独立的设备和控制系统等,来共同实现机组的全程启停控制。 机组级:机组自启停主控程序(APS)。 功能组级:余热锅炉系统(给水系统等),机组SCS系统(凝结水系统、疏放水系统、工业水系统、除氧给水系统、润滑油系统、循环水系统等),燃机控制系统(燃机自启停),高低压厂用电系统(励磁系统、自动准同期等)。 子功能组级:高压给水、中压给水、凝结水泵、给水泵、工业水泵、低压厂用电备用自投、高压厂用电备用自投子组等。 驱动级:单台电动机,电动门,电磁阀,断路器等控制系统。 3.3 断点设计方案

用一个按钮实现控制电机启动与停止的几种编程方法介绍

用一个按钮实现控制电机启动与停止的几种编程方法介绍 网上看到有好多网友提出用一个按钮实现控制电机的启动与停车的求助帖,这里,用S7-200编程,用不同的思路编写出5种可控制电机启停的梯形图,供大家分析参考 1、第一种设计方案:用SR触发器指令构成的控制电路,见下图: 程序解析:按钮接 I1.0 输入点,按下按钮,使 I1.0=1,断电延时定时器 T101 得电吸合,按钮抬起,I1.0=0 ,T101 并不立即释放,要延时0.4S,才释放断开,用此T101的目的,防止按钮在按下的瞬间产生抖动而出现的打连发的现象,即确保按钮动作的可靠无误。此条可以不用,如不用时,将下一条中的T101改为 I1.0 即可。 第二条是用SR触发器指令配合其他指令构成双稳态电路,其编程要点是,用SR 输出的Q1.0位信号的常开与常闭点串接在R、S触发输入口中,这样处理可确保双稳态电路的动作可靠性。加”SM0.1”并接在R输入端上的目的是确保开机时,Q1.0=0,即确保输出口为断开状态。 2、第二种设计方案:

同第一种构思是一样的,是利用PLC周期性的逐条询检的特点编写的,只是语句用的不一样。该图的第一条的作用原理同上,第二条,T101(或 I1.0)的后沿到来,如果M1.0=0,就使Q1.0=1(输出接通),否则(即M1.0=1)Q1.0=0(即输出断开)。第三条为将Q1.0 --> M1.0,这一条的作用就是利用时间差,即第二条动作完成后,才将Q1.0 --> M1.0,从而确保第二条动作的可靠性。 3、第三种设计方案:用加1计数器实现。见下图:

该程序是利用二进制加法计数器的个位数,在进行加1运算时,总是0、1变化的特点编写的,第一条是初始化,即将MB1清0,确保开机后Q1.0的输出状态为断开,第二条防抖动,第3条 T101的后沿使MB1内容加1,第4条为将M1.0 --> Q1.0。 分析一下动作:开机使 MB1=0,即M1.0=0,也是 Q1.0=0 输出为断开状态。按一下I1.0,使 MB1加1,其MB1=1,即M1.0=1,使Q1.0=1,输出为通导状态。再按I1.0,使 MB1又加1,其MB1=2,但M1.0=0,使Q1.0=0,输出为断开状态。。。。 4、第4中编程方案:利用字节循环左移(或右移)移位的方法实现功能,见下图:

和利时优化控制方案6--HOLLiAS APS机组自启停控制系统

机组自启停控制系统APS(Automatic Power Plant Startup and Shutdown System)是机组自动启动和停运的信息控制中心,它按规定好的程序发出各个设备/系统的启动或停运命令,并由以下系统协调完成:协调控制系统(CCS)、模拟量自动调节控制系统(MCS)、锅炉炉膛安全监视系统(FSSS)、汽轮机数字电液调节系统(DEH)、锅炉汽机顺序控制系统(SCS)、给水全程控制系统、燃烧器负荷程控系统及其它控制系统(如ECS电气控制系统、A VR电压自动调节系统等),以最终实现发电机组的自动启动或自动停运。 【概述】 在设计有APS功能的机组时,CCS、MCS、FSSS、DEH等系统均要围绕APS进行设计,协调APS完成机组自启动功能。APS的控制多采用断点控制方式。各断点下设计相关功能组完成特定的功能。 断点方式是将APS启动过程根据既定的控制策略分为若干个系统来完成,每个断点的执行均需人为确认才能开始。采用断点控制方式,各断点既相互联系又相互独立,只要条件满足,各断点均可独立执行,适合火电机组多样的运行方式,符合电厂生产过程的工艺要求。有关APS断点的设置,应根据现场设备的实际情况,满足各常规控制系统的运行要求,从而实现机组的自启停控制,也可满足对各单独运行工况及过程的操作要求。 断点下的各功能组的不是单纯的顺控,而是一个能自动完成一定功能的系统组,功能组具有很强的管理功能,作为中间的连接环节,向下协调有关的控制系统(如MCS)按自启停系统的要求控制相关

的设备,向上尽量减少和APS的接口,成为功能较为独立的一块,这样就减轻了上一级管理级APS的负担,同时也提高了机组的自动化水平。即使在APS不投运的情况下,运行人员仍然可调用该功能组,实现某些可以自动控制自动管理的功能。例如在给水全程自动控制中,APS与MEH、SCS等系统相互协调,自动完成汽泵之间的启动、停止、并泵等功能,以满足全程给水自动控制功能。 【功能】 分为机组启动顺序控制和机组停止顺序控制两组; 实现对各设备系统子组顺控功能组的调度工作; APS控制系统状态控制及显示; 机组APS控制系统设置为按需使用,不投入时不影响机组的正常控制; 采用断点的形式,将机组各种系统按机组启动或停止要求进行分类控制; 具有对系统子组状态的监控功能; 具有一定超驰控制能力,例如断点自动选择以及并行系统的跳步运行; 每个断点顺控组应具有中断及恢复功能。按设备的运行情况选择执行步序; 操作员站上具有根据系统控制逻辑的操作画面及指导。 【逻辑结构】 机组自启停系统可分为三层管理结构:

在PLC中实现单按钮控制启动_停止的方

在PLC中实现单按钮控制启动/停止的方法 彭增良沧州炼油厂渤海五公司 摘要:本文介绍在PLC中实现单按钮控制启动/停止的几种方法,程序已在F1系列PLC上运行通过。这有助于减少所需要的PLC输入点数,有实用价值。 关键词:PLC;单按钮控制启动/停止实现方法 由于PLC具有可靠性很高、编程简单、使用和维护方便等一系列优点,所以应用越来越广泛。在设计采用PLC控制方案时,应考虑如何减少所需PLC的输入点数问题,为了减少(简化)所需PLC的输入点数,区别不同情况,其实现方法有多种,其中一种实现方法就是采用单按钮控制启动/停止。这种方法和彩色电视机的开关大都采用单个按钮控制电视机的开机和关机的情形一样,但它是由机械结构来实现,而在PLC 中通过程序使一个普通的按钮具有启动/停止的控制功能,这样不仅能节约所需PLC的输入点数一个,而且控制方便。以下介绍几种实现方法。 一、采用PLS指令实现的方法 1、方法之一 图1 采用PLS指令实现方法之一 PLC输入/输出接线示意图如图1a所示,梯形图如图1b所示,输入/输出时序关系波形图如图1c所示,指令程序如图1d所示。工作过程如下: 当第一次按下按钮SB,输入继电器X400常开接点短时闭合,在微分脉冲指令PLS的作用下,使辅助继电器M100接通一个扫描周期,其一对常开接点接通输出继电器Y430的线圈回路,且Y430一对常开接点闭合使Y430自锁(保持),Y430输出驱动外部负载的控制信号,启动外部负载开始工作运行。同时Y430 另一对常开接点闭合,为M101接通作准备。当第2次按下按钮SB时,在PLS指令作用下,M100一对常开接点接通M101的线圈回路,M101的PLC的输入点。 2、方法之二

机组自启停系统应用策略与调试

机组自启停系统应用策略与调试 Application Strategy and Experiment about Autom atic Pow er Plant Start2up and Shut2dow n System 余振华 YU Zhen2hua (广东湛江电力有限公司,广东 湛江 524099) 摘要:机组自启停系统(APS)是大型机组自动控制的潮流和方向,文章结合工程应用实例,介绍了奥里油电厂APS的逻辑框架及相关的断点设置原则,及APS调试中所遇到的技术难题的解决办法。 关键词:APS;应用;调试 中图分类号:T K323 文献标识码:B 文章编号:1671-8380(2007)05-0027-03 1 概述 湛江奥里油发电厂2×600MW机组锅炉系东方锅炉厂生产的D G2030/17.4-I1型亚临界一次中间再热自然循环汽包炉,单炉膛平衡通风,燃烧器分三层奥里油,三层轻油,采取前后墙对冲燃烧方式;汽机是由哈尔滨汽轮机厂生产的N600-16.7/ 537/537、亚临界、一次中间再热、四缸四排汽、高中压分缸、双流低压缸、单轴冲动凝汽式机型;发电机为哈尔滨电机厂生产的QFSN-600-2,水—氢—氢冷却方式机型;机组DCS系统采用北京ABB公司的SYMPHON Y系列分散控制系统,机组自启停控制系统(APS)作为DCS系统的一个重要组成部分,要求达到从机组启动准备到机组带满负荷以及机组满负荷到机组停机全过程自动控制。 机组自启停控制系统(APS)是机组自动启动和停运的信息控制中心,它按规定好的程序发出各个设备/系统的启动或停运命令,并由以下系统协调完成:机组自动控制系统(APS)、模拟量自动调节控制系统(MCS)、协调控制系统(CCS)、锅炉炉膛安全监视系统(FSSS)、汽轮机数字电液调节系统(DEH)、锅炉给水泵小汽机调节系统(M EH)、汽轮机旁路控制系统(BPC)、锅炉汽机顺序控制系统(SCS)、给水全程控制系统、燃烧器负荷程控系统及其它控制系统(如ECS电气控制系统、AVR电压自动调节系统等),以最终实现发电机组的自动启动或自动停运。2 机组自启停控制系统的架构及应用 2.1 APS总体架构 机组自启停系统总体架构分为3层: ①第一层为操作管理逻辑。其作用为选择和判断APS是否投入,是选择启动模式还是停止模式,选择哪个断点及判断该断点允许进行条件是否成立。如果条件成立则产生一信号使断点进行。可以直接选择最后1个断点(如升负荷断点),其产生的指令会判断前面的5个断点是否已完成,如没有完成则先启动最前面的未完成断点,具有判断选择断点功能,从而实现机组的整机启动。 ②第二层为步进程序。其是APS的构成核心内容,每个断点都具有逻辑结构大致相同的步进程序,步进程序结构分为允许条件判断(与门),步复位条件产生(或门)及步进计时。当该断点启动命令发出而且该断点无结束信号,则步进程序开始进行,每一步需确认条件是否成立,当该步开始进行时同时使上一步复位。如果发生步进时间超时,则发出该断点不正常的报警。 ③第三层为各步进行产生的指令。指令送到各个顺序控制功能组实现各个功能组的启动/停止,各个组启动/停止完毕后,均返回一完毕信号到APS。APS的总体策略框图如图1所示。 收稿日期:2007-05-1072 2007年第5期 广西电力

几个单按钮启停线路

几个单按钮启停线路 以下是我找到的几个单按钮启停电机的控制回路电路图,每个电路图我都进行了图纸分析和用实际元件接线(图纸中的KA与KM都是用SIMENS的3TF4022接触器代替,安装方式是水平放置),电路图中没有画出控制回路中的断路器、热继等元件。 第一个电路图:

经典线路,结构清晰,布局合理,电路分析和实际接线都可以通过,没有误动作现象。 我们往往以为单按钮启停线路只有课题意义没有实际使用价值,请看下面的工程技术要求:有一个气体压力罐,两个系统送气电磁阀KV1和KV2,当压力罐中的压力第一次达到预设压力时电磁阀KV1得电,向一号系统送气,第二次达到预设压力时电磁阀KV2得电,向二号系统送气,第三次到达压力时电磁阀KV1又得电……如此循环。 怎样才能用最简单的线路完成这个要求呢?这就用到了上面的线路了,不过要把元件的符号变一下。 KA是中继,KM1和KM2分别控制电磁阀KV1和KV2。 第二个电路图:

这其实是一个PLC的梯形图,要把它转换成电路图就成了:

在分析这个图的时候是行不通的,(KM吸合以后再按下SB,KM就会释放一下重新吸合),但它的实际接线却没问题,按按钮100次没有出现过误动作(当用手慢慢的按下“接触器”KA1上那个突起的塑料块时,KM就会释放一下又重新吸合,与电路分析的结果一样)。PLC接线也没问题,同样按按钮100次没有误动作(PLC用的是国产嘉华的)。 这个梯形图用在以输入输出点决定价格的PLC上我觉得倒是挺合适的。 第三个电路图:

电路分析和实际接线都可以通过,没有误动作现象。 你在接好线时会发现这是个有趣的电路,因为你在按下SB时KM并不会动作,但是一松开SB那么KM就会立刻得电吸合,再按下SB时KM不会动作,一松开SB那么KM 就会立刻失电释放。这个电路的应用基本上和第一个电路一样。

火电机组运行优化指导意见

附件: 中国大唐集团公司 火电机组运行优化指导意见 (试行) 安全生产部 二○一二年九月

目录 1 总则 (1) 2 机组启停方式优化 (2) 3 汽机运行优化 (6) 4.锅炉运行优化 (12) 5 电气设备运行优化 (18) 6 热工控制系统优化 (21) 7 辅助系统方式优化 (23) 8 供热优化 (28) 9 空冷系统运行优化 (29) 10 运行参数优化 (30) 11 负荷经济调度 (31)

前言 为深入贯彻落实集团公司“优化运行、确保安全、降本增效”专项活动部署,充分发挥设备能力,深入挖掘设备潜力,全面优化机组运行方式,降低运行消耗,提高火电机组运行的经济性水平,制定本指导意见。 本指导意见明确了火电机组运行优化的围、容、基本要求、方法以及需要注意的事项等,为运行优化工作提供指导。 本指导意见由中国大唐集团公司安全生产部组织起草。 主要起草单位:大唐国际发电股份。 主要起草人:大唐国际祝宪、博生、德勇、黄俊峰、黄治军、王军、彦鹏、冬、郝晨亮,发电公司利平,分公司董志勇、艾秋菊、马清贵,发电公司满辉、杜俊鸿,分公司陆元湖,发电公司业盛。 本指导意见由中国大唐集团公司安全生产部负责解释。

1 总则 1.1 运行优化是根据机组主、辅机设备运行状况,在与设计值、行业标准值同类型机组标杆值对标的基础上,通过开展性能试验及综合分析,建立一整套科学、合理的运行调整方法和控制程序,使机组始终保持最安全、最经济的运行方式和最佳的参数控制,降低机组运行消耗。 1.2 运行优化必须坚持“保人身、保电网、保设备”基本原则,任何系统、设备、操作的优化方案均不准违反“两措”的要求。 1.3 运行优化要以机组设计值和行业标准值为基础,对每台机组及公用系统开展对标分析、性能试验,全面分析查找影响机组节能降耗的问题;通过加强操作调整、设备治理和改造,实现机组运行指标达到设计值的目标。 1.4 运行优化的主要容包括机组启停过程优化,汽轮机、锅炉、电气、除尘脱硫、燃料输送、热工控制、辅助系统、供热、空冷系统、运行参数、负荷经济调度优化等。各火电企业要结合设备、系统和运行人员积累的宝贵经济调整经验,不断完善优化方案,有针对性地开展运行优化工作,杜绝生搬硬套。 1.5 运行优化要以机组耗差分析系统为参考依据,以绩效考核为保障,深入开展指标竞赛活动,充分调动全体员工的积极性、主动性和创造性,强化全员的节能降耗意识,实现机组参数压红线运行。 1.6 运行优化不是简单的运行方式和参数的调整,而是一

火电机组启动和深度调峰期间 环保达标排放的运行优化措施

火电机组启动和深度调峰期间环保达标排放的运行优化措施摘要:环保设施中,基于设备工作原理及特性,脱硫和除尘器系统均可实现随 机启停,能够保证并网后二氧化硫和烟尘的达标排放。但是,脱硝系统的投运受SCR区入口烟气温度限制,不能随机启动,运行中因负荷低被迫多次退出,造成 氮氧化物超标而被环保考核或不能获得环保补偿电价,因此确保氮氧化物达标排 放是环保达标的木桶短板,及时、合理投入脱硝装置是保证氮氧化物达标排放的 主要因素,也是保证机组环保达标排放的关键。 关键词:火电机组;环保;脱硝;运行优化。 Operational optimization measures for environmentally-friendly discharge during start-up and deep peak shaving of thermal power units Jianzhong Liu Qingtongxia Aluminium Power Generation Co.,Ltd.;Qingtongxia,Wuzhong,Ningxia;751600 ABSTRACT:In the environmental protection facilities,based on the working principle and characteristics of the equipment,the desulfurization and dust collector systems can achieve random start and stop,which can ensure the emission of sulfur dioxide and soot after the grid connection.However,the operation of the denitration system is limited by the inlet flue gas temperature in the SCR,and it cannot be started randomly.During the operation,it is forced to exit several times due to low load,resulting in excessive nitrogen oxides and being environmentally assessed or unable to obtain environmental compensation electricity price.Therefore,to ensure the nitrogen oxide discharge is the environmental protection standard of wooden barrel short board.The timely and reasonable input of denitration device is the main factor to ensure the emission of nitrogen oxides,and it is also the key to ensure the environmental protection of the unit. KEY WORD:Thermal Power Unit;environmental protection;desulfurization;operation optimization. 1 问题研究及优化策略 1.1 问题研究 目前,很多煤电企业通过设备改造以适应深度调峰和机组启停期间的环保考核,尚未从运行优化调整方面进行深入探讨和试验,设备改造不但投资成本较高,而且不一定达到预期效果,且又增加了系统的复杂程度和运行操作的难度。因此,我们提出:立足现有生产设备,深入挖潜、合理利用环保政策、硫酸氢氨、锅炉 和环保设施的特性,通过开展设备综合治理、锅炉燃烧调整试验、喷氨优化试验 等工作,从运行优化调整方面确定合理方案,实现准确控制喷氨量,减少氨逃逸 和氨消耗量,全负荷环保达标排放,从而低成本解决机组全负荷达标排放的问题。 1.2 优化策略 1.2.1机组启停: 锅炉不能产生爆燃等隐患;减少受热面吸热和快速增加负荷提高脱硝装置入 口烟气温度,尽快投运脱硝装置;充分利用环保考核值采用小时均值。 1.2.2深度调峰: 减少炉膛出口氮氧化物浓度;维持烟气温度,保证脱硝装置正常运行。 2 控制措施 2.1 启动过程中优化措施

基于S7-200 PLC的电动机单按钮启停控制

1.控制要求要求用1个控制按钮控制1台电动机的启动和停止。第1次操作按钮电动机启动,第2次操作按钮电动机停车,第3次操作按钮电动机启动,如此循环。 2.任务分析 PLC在工作时采用顺序循环扫描的工作方式来执行主循环程序OB1及子程序中的用户程序,在一个扫描周期的开始CPU对所有的输入端子上的信号进行集中采集,并将采 1.控制要求 要求用1个控制按钮控制1台电动机的启动和停止。第1次操作按钮电动机启动,第2次操作按钮电动机停车,第3次操作按钮电动机启动,如此循环。 2.任务分析 PLC在工作时采用顺序循环扫描的工作方式来执行主循环程序OB1及子程序中的用户程序,在一个扫描周期的开始CPU对所有的输入端子上的信号进行集中采集,并将采集结果保存在过程映像输入寄存器(I),在程序执行期间不再考虑输入端子上信号的变化,而程序执行过程中所产生的中间结果则直接保存在存储器(M)或过程映像输出寄存器(Q)中,并不立即送到输出端子,而只有在当前扫描周期结束前才将程序执行的最终结果集中送到输出端子,对输出端子进行刷新。如果对这种扫描方式理解不清楚,在编程时就会出现意想不到的结果。 以电动机的单按钮启停控制为例,如果用如图3-11所示的逻辑来实现看起来似乎可行-但是,如果仔细分析会发现当按一次按钮时,首先扫描到第一个程序段,会使KM变为1-并写入过程映像输出寄存器;当扫描到第二个程序段时,由于KM的过程映像输出寄存器已经为1,所以又会使KM变为0,结果无论如何都无法启动电动机。 由于PLC循环扫描的工作特殊性,不能直接用简单的逻辑实现电动机的单按钮控制,必须考虑在同一扫描周期内是否会出现运行状态的多次切换。 3.实施方案 [方案1]用边沿指令及异或逻辑实现 首先根据控制按钮SB_1信号状态设置状态标志,使用上升沿检测指令,保证每按动一次控制按钮,状态标志F1的状态只在当前扫描周期内起作用。然后用状态标志F1与电动机(KM)当前的状态进行逻辑异或运算,由于按动控制按钮当前周期内F1=1,用F1与KM 相异或,就可以实现对电动机状态的转换,如果直接用KM来代替F1,将无法实现要求的功能。控制程序如图3-12所示。 图3-11 电动机的单按钮启停控制(错误方案) 图3-12 用边沿指令及异或逻辑实现电动机的单按钮启停控制 [方案2] 用异或逻辑实现

机组启停优化运行措施

运行管理部技术管理措施 运行〔2015〕011号 机组启、停节能优化措施 为了积极开展“节能双提升”工作,进一步适应电力发展的形势,按照“完善节能管理工作”的工作要求,通过优化机组启、停方案,从而优化启、停操作,降低发电成本,实现全厂机组的整体经济运行,提高我厂整体经济效益,特制订本方案。 一、机组启、停操作原则 1、服从电网调度机构的指令,满足调度负荷曲线和机组性能、辅助服务要求。 2、充分考虑到各台机组的实际情况,按机组性能合理操作,不超参数、不牺牲机组和公用系统运行安全性,确保机组安全启、停。 3、服从值长调度,值长对各专业之间的操作必须有一个超前意识,有一个时间的估算。在上一步操作即将完成之际进行下一项操作,减少相互等工况的过程,延长启动时间也就增加能量的消耗。 二、机组启、停节能操作措施 锅炉方面 1、锅炉启动时,采用等离子点火系统。在锅炉启动前应检查等离子点火系统处于良好的备用状态,及时消除缺陷,保证点火时正常使用。

2、控制好锅炉进水时间与速度,与汽机除氧器加热协调进行,控制进水温度与汽包壁温差不大于40℃,上水完毕后,投入锅炉底部加热系统,逐步提高汽包壁温≥100℃后即进行点火,减少锅炉为提高给水温度而消耗的燃料量。 3、省煤器再循环门在锅炉进水时应关闭,点火前再打开,以利于对汽包金属的加热。 4、控制好风烟系统启动时间,炉膛吹扫后即进行点火。风机启动前,必须使各项工作都具备点火要求,吹扫条件满足。锅炉启动初期可采用单风机启动,即先启动一组吸、送风机进行点火,待并网前再并另一组吸、送风机,以降低启动时风机电耗。 5、启动中总风量选择必须即安全又经济,最好控制在40%总风量左右,低了会造成未完全燃烧,在尾部烟道死角沉积,高了造成送吸风电量的浪费,并且降低炉膛温度影响着火效果,同时增加排烟损失。 6、锅炉启动时采用电泵启动,待负荷达80MW时暖泵,负荷大于120MW切换炉水泵运行,降低炉水泵电耗。 7、上水水位适当放低,避免点火后汽水膨胀引起水位高而放水。 8、启动中应合理地使用各种旁路,旁路实际上是一种利用一定的能量损失来满足启动参数要求的方法,应将这种损失控制在最小范围。 10、启动过程中按规程规定升温升压速度达上限,从而保证主,再热蒸汽参数尽快符合冲转条件,根据汽机冲转参数要求合理调整5%旁路疏水开度,减少工质排放损失。 11、发电机并网后锅炉应及时关闭5%旁路及以减少工质排放造成的补水和热能损失。

机组自启停APS系统说明

机组自启停A P S系统 说明 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

十、机组自启停APS系统专题 机组自启停控制系统APS是热工自动化技术的最新发展方向之一。APS是实现机组启动和停止过程自动化的系统,其优势在于可以提高机组启停的正确性、规范性,大大减轻运行人员的工作强度,缩短机组启停时间,从整体上提高机组的自动化水平。 FOXBORO公司根据应用经验,做如下说明: APS功能设计 APS功能包括机组自动启动与自动停止。其中自动启动有冷态、温态、热态和极热态四种启动方式,对于汽机来说,其区别主要在于汽轮机自动开始冲转时对主蒸汽参数的要求不同,因而汽轮机冲转前锅炉升压时间不同。 冷态方式:第一级金属温度?120℃ 温态方式:第二级金属温度>120℃,且?300℃ 热态方式:第一级金属温度>300℃,且?380℃ 极热态方式:第一级金属温度>380℃ 对于锅炉来说,区分以上4种启动方式,主要由汽包壁温、汽包压力和停炉时间来决定。 四种启动方式都可分为九步,每步设计为1个断点。只有在前一步完成的条件下,通过所提供的按钮确认启动下一步,APS才会开始下一步,在每一步的执行过程中,均设计“GO/HOLD”逻辑,这九步为: 1)启动准备 2)汽机抽真空 3)锅炉初始清洗 4)锅炉冷态清洗 5)锅炉点火 6)热态清洗 7)汽机冲转 8)并网、带初负荷 9)升至目标负荷(40%BMCR) 第九个断点即加负荷断点中进行到由APS设定负荷指令为40%MCR并实现后,发出由CCS进行负荷控制并投入协调方式的命令,断点完成后,APS退出,此时机组的启动已完成,机组负荷由CCS系统控制升至操作员的设定值或由中调(AGC)给出的设定值方式。为了适应随后整个生产过程的全程自动控制,CCS必须能根据负荷指令要求自动地投切燃烧器,适应不同的负荷要求。 投入APS前,必须具备启动允许条件,如锅炉加药系统、汽水采样系统、锅炉排污系统、灰处理系统、锅炉补水系统具备投入条件,凝结水、给水系统上水,循环水系统上水,开闭式冷却水系统上水、压缩空气系统、化学精处理系统、凝汽器胶球清洗系统、凝汽器铜管造膜系统具备投入条件,启动密封油系统,发电机充氢等已准备好。 机组自动停止也可设6步,也设计“GO/HOLD”逻辑,这6步分别为: ①减负荷 ②最小负荷 ③解列 ④汽机跳闸

电厂汽轮机辅机优化运行分析

电厂汽轮机辅机优化运行分析 发表时间:2018-11-16T20:36:12.400Z 来源:《基层建设》2018年第26期作者:王蒙 [导读] 摘要:随着我国社会经济的不断发展,电力的应用范围以及数量呈现出逐年上升的趋势,伴随着信息时代的到来,互联网的大范围覆盖,已经改变了人们传统的生产、生活方式。 山东电力建设第三工程有限公司山东青岛 266000 摘要:随着我国社会经济的不断发展,电力的应用范围以及数量呈现出逐年上升的趋势,伴随着信息时代的到来,互联网的大范围覆盖,已经改变了人们传统的生产、生活方式。当前,我国各方面的建设都在从萌芽阶段向茁壮成长的阶段过度,稳定的供电系统已经成为了时代发展的重要保障。电力企业应该加强火电厂汽轮机辅机管理的力度,在不断总结以往的工作经验的基础之上,加强对高新技术产品的引入,并针对火电厂汽轮机辅机检修管理的现状,采取合理有效的改进和提升措施。由此可以看出,加强火电厂汽轮机辅机检修的管理,是时代发展的必然选择。 关键词:电厂汽轮机;辅机;优化运行 引言 随着社会的发展,各行各业对电力的需求越来越大,人们生活中也离不开电力设备。汽轮机辅机是发电厂重要设备之一,由于汽轮机辅机在高温高压的环境下运行,使得整个系统对汽轮机辅机的要求很高,如果发电机组运行故障,将影响发电机组的稳定性,致使发电机组不能正常运行。做好对汽轮机组的故障排除和汽轮机辅机的故障排除是很有意义的工作,可保障汽轮机辅机的正常运行。然而汽轮机辅机的故障排除和日常维修需要高素质的工作人员和经验丰富的维修人员,将专业知识与实际生产经验相结合,在发现故障的情况下,快速有效的解决设备异常情况,将事故可能性降到最低,保障机组正常运行。 1 汽轮机辅机运行故障 1.1 汽轮机辅机油系统故障 在火电厂汽轮机辅机的工作过程当中,燃煤会产生尘土、碎屑等。在细节性问题中,汽轮机辅机油系统故障成为了最容易忽略的问题。在进行汽轮机辅机检修管理的过程当中,不注重火电厂工作车间杂尘处理的现象十分常见。一些小尘土或偏大的颗粒状物体进入油系统,会对轴径造成损伤。汽轮机辅机油系统出现故障,将影响整个汽轮机组的正常工作。因为油系统故障会导致汽轮机辅机构节流孔堵塞,以及汽轮机组当中伺服闸门的卡死,使机组无法正常工作。 1.2 汽轮机辅机振动异常 汽轮机辅机的异常振动,一般都是由一些不稳定的因素造成的。在汽轮机的工作过程当中,需要借助燃料产生的热能推动。有时候过于强烈的气流,或者汽轮机辅机工作过程当中产生的较大摩擦波动等,都会导致汽轮机辅机的异常振动,致使汽轮机辅机在工作当中的相关参数猛增,以及转子内部的受热不均匀。 1.3 汽轮机辅机调速系统故障 汽轮机辅机调速系统故障主要是因为高压调速阀门在工作过程当中出现摆动引起的。高压调速阀门的异常摆动,会引起汽轮机组轴瓦的振动。如果振动频率过于强烈,甚至会导致轴瓦的破坏,直接威胁着火电厂工人的生命安全,是火电厂汽轮机辅机检修管理当中最常见的安全隐患之一。 1.4 汽轮机辅机凝汽器真空偏低 汽轮机辅机凝汽器对真空的绝对性要求很高,因为只有凝汽器排汽口保持高度的真空状态,才能保障蒸汽膨胀。通过物量之间的转换,形成比较低的排汽压力,并且将汽体凝结成的水应用到锅炉水当中,实现水资源的循环利用,不仅可以保障汽轮机辅机的热工作效率,还可以实现资源的节约。然而,如果汽轮机辅机凝汽器真空偏低,会导致汽温的升高以及汽轮机辅机的振动,产生一系列的恶性循环。总而言之,汽轮机辅机凝汽器的真空状态检查,是火电厂汽轮机辅机检修管理重要工作之一。 2 电厂汽轮机辅机优化运行 2.1 做好汽轮机机油系统的检修 在发电厂的运行中要时刻保持工作环境的清洁,油系统的清洁最为重要,油系统的清洁能有效的缓解机械运动产生的摩擦,起到润滑冷却作用,如果油系统中有杂质会导致机械摩擦增大,系统温度增高,影响汽轮机机组运行。清理油系统的时候可以采用油循环清理,为了避免油系统出现问题,一定要定期进行滤油工作。其次就是清理轴瓦,结合机组A、C修检查轴瓦是否存在摩擦和脱胎等。 2.2 做好汽轮机异常振动的检修 在运行过程中振动是不可避免的,异常振动的原因有多种,我们要根据不同情况,采取不同的方式进行故障排查和维修。如果汽轮机机组的振动源是汽轮机叶片,则考虑的是否存在汽流紊乱引起的汽轮机叶片受力不均匀,需要运行工作人员调整运行参数,避免发生汽轮机发生激荡振动。如果是由于机械摩擦引起的振动,则可以观察碰磨情况,通过降低转速看汽封齿碰磨对转子振动影响;如果振动消除,可以适当增加转速观察振动情况,如果振动彻底消失,可以正常升速运行,如果振动未消除,需要停机检查碰磨处,对其进行修复处理。 2.3 做好汽轮机调速系统的检修 工作人员要加强油质监督管理,就是要保持滤网清洁,对报警滤芯及时更换处理。对于EH油做好颗粒度监督的同时,还要做好化学成分定期化验,对酸值超标及时投运再生装置,如果硅藻土再生滤芯效果不好,可以使用树脂再生滤芯,并定期更换精密滤芯;定期检测EH 油系统蓄能器气囊的氮气压力在9.2MPa左右保证EH油系统油压的稳定;电调系统要结合机组AC修更换冲洗板进行油冲洗,油冲洗合格后回装伺服阀、AST电磁阀、OPC电磁阀等,并进行调速系统静态试验,保证调速系统安全稳定运行。 2.4 做好汽轮机辅机凝汽器真空偏低的检修工作 真空偏低最直接的原因是由于机组负压系统渗漏空气造成,所以加强低压缸汽封供气压力调整,避免压力低从轴封处漏入空气。在机组检修期要对负压系统进行高位泡水查漏,对发现漏泄点进行彻底治理。同时保持凝汽器管束清洁和水塔喷淋效果也是提高机组真空度有效途径。 2.5 机组启停优化调整 汽轮机及其辅机设备节能技术改造过程中应对机组启停予以合理的优化与调整。首先,汽轮机组在启动过程中,工作人员必须严格按

相关文档
相关文档 最新文档