文档库 最新最全的文档下载
当前位置:文档库 › 高温大颗粒气固流化床流化行为数值模拟

高温大颗粒气固流化床流化行为数值模拟

高温大颗粒气固流化床流化行为数值模拟
高温大颗粒气固流化床流化行为数值模拟

流化床反应器的设计定稿版

流化床反应器的设计 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

丙烯腈流化床反应器的设计 学院:化工与药学院 班级: 2012化学工程与工艺1、2班 学生姓名:翟鹏飞肖畅裴一歌 徐嘉星廖鹏飞田仪长 指导教师: 张丽丽 完成日期: 2015年12月10日 指导教师评语: _______________________________________________ ________________________________________________ ________________________________________________ 成绩: 教师签名:

目录 1 设计生产能力及操作条件 (1) 2 操作气速的选择 (1) 3 流化床床径的确定 (1) 3.1 密相段直径的确定 (1) 3.2 稀相段直径的确定 (2) 3.3 扩大段直径的确定 (2) 4 流化床床高 (2) 4.1 流化床的基本结构 (2) 4.2 催化剂用量及床高 (3) 5 床层的压降 (4) 6 选材及筒体的设计 (4) 7 封头的设计 (5) 8 裙座的选取 (5) 9 水压试验及其强度校核 (5) 10 旋风分离器的计算 (5)

11 主反应器设计结果 (6)

丙烯腈流化床反应器的设计 1 设计生产能力及操作条件 反应温度为:440℃ 反应压力为:1atm 丙烯腈氨氧化法催化剂选用:sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为:50μm 催化剂平均密度为:1200kg/m3 催化剂装填密度为:640kg/m3 催化性能:丙烯腈单收>78.0%;乙腈单收<4.0%;氢氰酸单收<7.0% 耐磨强度<4.0wt% 接触时间:10s 流化床反应器设计处理能力:420.5kmol/h 2 操作气速的选择 流化床的操作气速U =0.6m/s,为防止副反应的进行,本流化床反应器设计 密相和稀相两段,现在分别对其直径进行核算。

大颗粒气固流化床内两相流动的CFD模拟

上海理工大学学报 第32卷 第4期J.University of Shanghai for Science and Technology Vol.32 No.4 2010 文章编号:1007-6735(2010)04-0333-07 收稿日期:2009-11-02 基金项目:上海市浦江人才计划资助项目(07pj14072);上海市重点学科建设资助项目(J50501) 作者简介:晁东海(1985-),男,硕士研究生. E ma il:x yguo@https://www.wendangku.net/doc/e86042695.html, 大颗粒气固流化床内两相流动的CFD 模拟 晁东海, 郭雪岩 (上海理工大学能源与动力工程学院,上海 200093) 摘要:采用欧拉双流体模型和颗粒动力学方法,数值模拟了大颗粒流化床在不同密度、布风装置及曳力模型情况下的气固两相流动,考察了大颗粒流化床流化和流动特点,颗粒体积分率分布,床层压力瞬时变化,床层碰撞比,以及颗粒速度径向和空隙率轴向分布规律.研究结果表明,与直型布风板流化床比较,凹型布风板流化床内的气泡产生快,颗粒横向运动能力强;随着颗粒密度的增大,其在凹型布风板流化床边壁处的速度比中心位置处减小的快;比较3种曳力模型,发现其模拟的轴向空隙率分布和床层压力存在较大差异,且与床层膨胀比实验关联式相比,3种模型预测的值比实验关联式要大一些.通过研究,3个曳力模型中Gidaspow 模型相对适用于大颗粒气固流化床的数值模拟.关键词:流化床;欧拉双流体模型;并行计算;大颗粒中图分类号:TQ 051.13 文献标志码:A CFD simulation on two phase flow in gas solid fluidized beds with coarse granules CH AO Dong hai, GUO Xue yan (School of En er gy an d Pow er En gin eering ,Un iversit y of S han ghai for S cience and Technology ,Shanghai 200093,Chin a ) Abstract:Eulerian pseudo fluid model combined with the granule kinetics model,by integrating them in a CFD code(Fluent 6.3)was used to numerically simulate the gas solid flow patterns in fluidized beds of coarse granules.Different conditions including particle density,distributor types and drag models were taken into account for paramter study.The dependance of characteristics of fluidization and flow patterns,as well as the influences of phase fraction distribution,instantaneous pressure,radial particle velocity,expansion ratio and axial voidage distribution,on the parameters were thoroughly investigated.Simulation results show that two phase flow characteristics in the bed with a concave distributor is rather different from that in the bed with a flat distributor.For ex ample,bubbles will occur so oner and more particles move laterally in the concave distributor bed.It is also found that for larger solid gas density ratio,particle velocity profile near the wall becomes much flatter in the concave distributor bed.A comparison among the Syamlal O Brien,Gidaspow and Arastoopour models illustrates that the predicted axial voidage distributions and pressure drops by the three models are very different.Numerical prediction based on all the three drag models un derestimates the bed expansion ratio,comparing with the published experimental correlation.It can be concluded that numerical results based on Gidaspow drag model are of the least deviation in the

循环流化床锅炉的结构是什么

循环流化床锅炉的结构是什么

阀⑦对固体粒子流量进行分配,一部分通过回料器直接送入下炉膛以维持主循环回路固体粒子平衡;另一部分从旋风分离器分离下来的固体粒子通过布置在类似鼓泡床中的外置式换热器④放 热后被送入炉膛。分离后含少量飞灰的干净烟气进入尾部竖井 ③,经空气预热器和飞灰收集系统,最后由烟囱排入大气。 1.2锅炉整体布置 锅炉为单汽包、自然循环、半露天布置的循环流化床锅炉,锅炉整体呈左右对称布置,支吊在锅炉钢架上,采用高温旋风分离器进行气固分离,采用外置换热器控制床温及再热汽温。本锅炉由五跨组成,第一、二跨布置有主循环回路(炉膛、高温钢板旋风分离器、回料器以及外置式换热器)、冷渣器以及二次风系统等;第三、四跨布置尾部烟道(包括高温过热器、低温再热器以及省煤器);第五跨为单独布置的回转式空气预热器。炉膛采用全膜式水冷壁结构,炉膛底部采用裤衩型将下炉膛一分为二。布风板之下为由水冷壁管弯制围成的水冷风室。锅炉采用回料器给煤的方式,四个给煤口布置在回料器上,石灰石采用气力输送,8个石灰石给料口布置回料腿上。在水冷风室之前的两个一次风道内分别布置一台风道点火器,另外在炉膛下部还设置有2×4只不带点火和火检的床上助燃油枪,用于锅炉启动点火和低负荷稳燃。四台流化床式冷渣器被分为两组布置在炉膛两侧,每台冷渣器有9个排渣口,分别将底渣排到机械除渣系统或地面。四台高温旋风分离器布置在炉膛两侧的钢架副跨内,在旋风分离器下各

布置一台回料器。由旋风分离器分离下来的物料一部分经回料器直接返回炉膛,另一部分则经过布置在炉膛两侧的外置换热器后再返回炉膛。外置式换热器内布置有受热面,靠后墙外置式换热器内设置有中温过热器(ITS1和ITS2),可以通过控制其间的固体粒子流量来控制炉膛温度;靠前墙外置式换热器内设置有低温过热器(LTS)和高温再热器(HTR),可以通过控制其间的固体粒子流量来控制再热蒸汽温度。汽冷包墙包覆的尾部烟道内从上到下依次布置有高温过热器、低温再热器、省煤器。空气预热器采用四分仓回转式空气预热器。 1.3. 锅炉汽水系统 高压系统包括省煤器、锅筒、蒸发受热面和过热器。水循环系统采用自然循环。锅炉给水首先被引至布置在尾部烟道的省煤器进口集箱,逆流向上流经水平布置的省煤器管组后通过省煤器引出管进入锅筒。在启动阶段没有给水流入锅筒时,省煤器再循环管路可以将锅水从锅筒引至省煤器进口集箱,防止省煤器管子内的水静滞汽化。本方案为自然循环锅炉。锅炉水循环采用集中供水,分散引入、引出的方式。给水引入锅筒水空间,并通过各自的集中下降管进入水冷壁和附加受热面进口集箱。锅水在向上流经炉膛水冷壁、附加受热面的过程中被加热成为汽水混合物,经各自的上部出口集箱通过汽水引出管引入锅筒进行汽水分离。被分离出来的水重新进入锅筒水空间,并进行再循环,被分离出来的合格的饱和蒸汽从锅筒顶部的蒸汽连接管引出。饱和蒸汽从锅筒引

实验气固流化床反应器流化特性测定

实验四 气固流化床反应器的流化特性测定 一、 实验目的 1. 观察了解气固流化床反应器中不同气速下固体粒子的流化状况,建立起对流态化过 程的感性认识。 2. 了解和掌握临界流化速度U mf 和起始鼓泡速度U mb 的测量原理、方法和步骤,明确 细粒子流化床的基本特性。 3. 通过对U mf 和U mb 的测定,进一步理解两相理论以及临界流化速度与起始鼓泡速度 的区别。 二、实验原理 1.在气固流化床反应器中,气体通过床层的压力降△P 与空床速度U 0之间的关系能够很好地描述床层的流化过程。 如图1所示:气体自下向上流过床层。当气速很小时,气体通过床层的压力降△P 与空床速度U 0在对数坐标图上呈直线关系(图1中的AB 段);当气速逐渐增大到△P 大致等于单位面积的重量时,△P 达到一极值(图1中P 点);流速继续增大时,△P 略有降低;此后床层压力降△P 基本不随流速而变。此时将流速慢慢降低,开始时与前一样△P 基本不变,直到D 点以后,△P 则随流速的降低而降低,不再出现△P 的极大值,最后,固体粒子又互相接触,而成静止的固定床。 2.在一正常速度下,处于正常流化的流化床,如果突然关闭气源,则由于床层中有气泡存在,以气泡形式存在的气体首先迅速逸出床层,床层高度迅速下降;而后是浓相中的气体逸出,床层等速下降;最后是粒子的重量将粒子间的部分气体挤出,床层高度变化很小。由此可得其床层高度随时间变化的崩溃曲线(如图2所示)。因此,可以设想,如果床层中 图1 △P ~ U 关系 log U l o g △P

1 2 3 4 6 5 t (sec) 260 270 280 290 300 H T H D H D 图2 H T ~ t 关系 没有气泡,则床层一开始就随时间等速下降,所以,将上述崩溃曲线中的等速部分外推到t=0处时的床层高度,即为浓相床层的高度H D 。这样,只要重复上述过程,多做几条崩溃曲线,总可以找到一条曲线,这条曲线正好无气泡逸出段,开始就是等速下降的起点。与此相应的气速即为起始鼓泡速度U mb 。 根据△P 的情况,还可以了解床内的动态,如沟流和节涌等等。 三、实验装置与流程 如图3所示:本实验所用的流化床为 100×4mm 的有机玻璃制成的。床体上装有扩大管和过滤装置,以回收稀相段的微细粒子。气体分布板为多孔筛板,开孔率为1%。 图3 实验装置

循环流化床脱硫反应器气固两相流动模拟

第30卷第1期化学反应工程与工艺V ol 30, No 1 2014年2月 Chemical Reaction Engineering and Technology Feb. 2014 文章编号:1001—7631 ( 2014 ) 01—0091—06 循环流化床脱硫反应器气固两相流动模拟 李雨佳1,2,王雪1,朱廷钰1,魏耀东2,宋斗3 (1.中国科学院过程工程研究所湿法冶金与清洁生产技术国家工程实验室,北京 100190; 2.中国石油大学(北京)重质油国家重点实验室,北京 102249; 3.大唐峰峰发电厂,河北 056215) 摘要:为加深对循环流化床脱硫反应器的流动特性的认识,本研究采用双流体模型,耦合非均匀曳力模型和 颗粒动力学理论,使用非均匀的修正的Syamlal O'Brien曳力模型考虑颗粒团聚现象对气固流动的影响,对循 环流化床脱硫反应器中的流体力学特性进行了数值模拟。模拟得到的时均颗粒浓度和压降值与实验数据具有 较好的一致性,验证了模拟方法的可靠性。颗粒速度的时间序列和概率分布函数显示,在反应器壁面附近区 域均存在颗粒的向上、向下运动,在床层内颗粒总体上向上运动,同时还存在微观的内循环运动。模拟结果 为颗粒速度的径向非均一分布提供了合理的解释,较Gidaspow模型有更好的适用性。 关键词:脱硫反应器数值模拟双流体模型气固两相流曳力模型 中图分类号:TQ018 文献标识码:A 循环流化床脱硫反应器内部的气固两相流动状态直接影响着烟气脱硫反应的速率、选择性以及反应产物,因此气固两相流流场的研究一直是备受关注。若通过实验测量脱硫反应器流场中每一点的参数获得完整的流场分布过于复杂,而采用计算流体力学(CFD)模拟方法对各种结构参数条件下进行脱硫器反应器的流场计算,不仅可以节省大量的实验工作,得到全面的流场信息,而且可以对各种结构参数和流动参数进行优化。 许多研究者用标准双流体模型较好的模拟了Geldart B类和D类颗粒气固流态化的流体力学特性,但是采用双流体模型模拟Geldart A类颗粒体系的稠密鼓泡床或者湍流床时,床层膨胀被过高地估算,与实验数据不符[1,2]。其原因是采用双流体模型中的经典Gidaspow,Syamlal O'Brien等曳力模型[3,4]时,未考虑颗粒团聚效应的特征,导致模拟时的气固相间曳力值比实际流化时的曳力值大。基于颗粒团聚效应的考虑,一些研究者开始对双流体模型中涉及到经典曳力模型进行了不同方式的修正,成功模拟了Geldart A类颗粒气固两相流动。Mao等[5]在模拟时引入了系数C1考虑颗粒间的粘附作用,另还采用了尺度因子修正Wen&Yu曳力模型。Van Wachem等[6]通过对单颗粒受力平衡分析并考虑了颗粒间的相互作用力等因素,建立了一个综合的团聚模型来估算流化床内产生的颗粒团聚尺寸,其计算结果表明当颗粒团直径为原始的FCC催化剂颗粒直径的几倍。O'Brien等[7]在原有曳力模型的基础上,提出了修正的Syamlal O'Brien曳力模型。Wang等[8]认为网格尺寸和时间步长太大时忽略了介观尺度对本构方程的影响,提出了使用亚网格尺度对气固两相进行模拟。Yang等[9]在EMMS理论的基础上,提出了一种与结构相关的曳力模型,模拟了提升管中的气固流动特性。Wang[8]将能够模拟出颗粒团聚的曳力模型归纳为六类:经验关联法、尺度因子法、结构法、修正的Syamlal O'Brein曳力关联法、基收稿日期:2013-09-26; 修订日期: 2013-12-30。 作者简介: 李雨佳(1988—),男,硕士研究生;朱廷钰(1971—),男,研究员,通讯联系人。E-mail:tyzhu@https://www.wendangku.net/doc/e86042695.html,。 基金项目: “十二五”国家863计划主题项目课题(2011AA060802,2012AA062501)。

流化床中颗粒流化运动的直接数值模拟

流化床中颗粒流化运动的直接数值模拟! 袁竹林 "东南大学热能工程研究所#南京$%&&%’( 摘要)流化床燃煤锅炉对环境污染小的原因之一是在燃烧时向炉内加入脱硫剂#脱硫剂与煤颗粒一起沸腾流化#相互充分接触#脱硫剂对燃烧过程中产生的硫化物进行反应吸收*由于喷入炉内的脱硫物质在粒径和密度上通常与煤颗粒不同#在流化区域上也存在差异*为了了解不同粒径和密度颗粒在流化床内的运动规律#达到高效+经济的脱硫效果#采用直接数值模拟方法#对粒径和密度呈正态分布的物料在流化床内的流化运动区域进行了研究#得到了相关的结论* 关键词)流化床,颗粒流化区域,直接数值模拟 中图分类号)-.$$/011文献标识码)2文章编号)%&&13’45&"$&&%(&$3&%$&3&6 789:;<=>?9@:@A B:C B D@<=~{N!K7"#{|7~#$|~$j|L"$~%|{}{&’ (f V s4"$&&%(R f ) ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) s$ !收稿日期)%///3&/3&1,修回日期)$&&&3%&3$&* 基金项目)国家自然科学基金重大项目资助"*///*51&(* 作者简介)袁竹林"%/**+(#男#博士#教授* 万方数据

大颗粒气固流化床内两相流动的CFD模拟

大颗粒气固流化床内两相流动的CFD模拟 摘要:采用欧拉双流体模型和颗粒动力学方法,数值模拟了大颗粒流化床在不同密度、布风装置及曳力模型情况下的气固两相流动,考察了大颗粒流化床流化和流动特点,颗粒体积分率分布,床层压力瞬时变化,床层碰撞比,以及颗粒速度径向和空隙率轴向分布规律.研究结果表明,与直型布风板流化床比较,凹型布风板流化床内的气泡产生快,颗粒横向运动能力强;随着颗粒密度的增大,其在凹型布风板流化床边壁处的速度比中心位置处减小的快;比较3种曳力模型,发现其模拟的轴向空隙率分布和床层压力存在较大差异,且与床层膨胀比实验关联式相比,3种模型预测的值比实验关联式要大一些.通过研究,3个曳力模型中Gidaspow模型相对适用于大颗粒气固流化床的数值模拟. 关键词:流化床;欧拉双流体模型;并行计算;大颗粒 近年来,随着流态化技术的发展,大颗粒流化床在煤粉流态化燃烧和水泥熟料流态化煅烧等领域的应用也越来越广泛.由于流化床内两相流动情况复杂,使得人们对气固两相间的作用、固相应力本构方程的建立、两相湍流的认识以及多种因素的相对控制和协调的理解等变得很困难[】].实际上大多数流化床反应器都是根据经验设计的,大颗粒流化床的设计更是如此.文献[2]在研究颗粒的粒度及颗粒的表观密度等对流化特性影响后,将颗粒分成了A(30~100 tma)、B(100~600 tLm)、C(一般情况下粒度小于20 tLm)、D(600 Fm以上)4类_3].依据此分类,粒度在600肿以上的颗粒称为过粗颗粒.然而由于颗粒的

表观密度与气体密度之差不同,本文所用颗粒直径为855 可能为B类(鼓泡颗粒),也有可能为D类(喷动用颗粒).其中,D类颗粒流化时极易产生大气泡或节涌,使实验难以操作,然而数值模拟可以克服这一困难,而且D类颗粒粒度在1.5 rain以下时,是完全 可以流化的[3].文献[4]用粒径为3 mm的颗粒进行了模拟与实验,研究了气体进口速度和温度对床内含湿量、颗粒温度等的影响,得出模拟与实验的结果大体是一致的.文献[5]研究了表观气速、床内有无管道及布风方式对大颗粒流动的影响.模拟和试验的结果都表明,布风方式对颗粒体积分率及速度径向分布有着很大的影响,而且不论有无管道,某些布风方式都有助于气固形成环核流动结构.文献[6]通过改变颗粒粒径(从o.25 mm到1 mm)、密度、进口气速等参数后进行了模拟,结果表明:颗粒的粒径和进口气速对颗粒滑移速度的影响较大;合适的进口气速对减少能 耗起着很重要的作用.本文借助CFD软件FLUENT对大颗粒气固流化床进行了模拟计算.对比并分析了不同密度颗粒、曳力模型及布风装置对流化床流动特性的影响.有些曳力模型采用皿F(用户自定义函数)实现.通过这些研究,从数值计算的角度揭示出了一些大颗粒的流化及流动特性. 1 控制方程及曳力系数模型 1.1 流体控制方程 由于气固间没有质量交换,且升力、附加质量力等对流化床的影响很小,故气固两相流动所遵循的连续方程和动量方程可以简化成如下形

流化床反应器

流化床反应器 fluidized bed reactor(FBR) : 一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。 流态化过程: 当流体向上流过颗粒床层时,其运动状态是变化的。流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过。当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。此时,对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触而维持它的空间位置,相反地,在失去了以前的机械支承后,每个颗粒可在床层中自由运动;就整个床层而言,具有了许多类似流体的性质。这种状态就被称为流态化。颗粒床层从静止状态转变为流态化时的最低速度,称为临界流化速度。 流化床的性质: (1)在任一高度的静压近似于在此高度以上单位床截面内固体颗粒的重量; (2)无论床层如何倾斜,床表面总是保持水平,床层的形状也保持容器的形状; (3)床内固体颗粒可以像流体一样从底部或侧面的孔口中排出;(4)密度高于床层表观密度的物体在床内会下沉,密度小的物体会

浮在床面上; (5)床内颗粒混合良好,因此,当加热床层时,整个床层的温度基本均匀。 一般的液固流态化,颗粒均匀地分散于床层中,称之为“散式”流态化;一般的气固流态化,气体并不均匀地流过颗粒床层,一部分气体形成气泡经床层短路逸出,颗粒则被分成群体作湍流运动,床层中的空隙率随位置和时间的不同而变化,因此这种流态化称为“聚式”流态化。与固定床反应器相比,流化床反应器的优点是: ①可以实现固体物料的连续输入和输出; ②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应。但另一方面,由于返混严重,可对反应器的效率和反应的选择性带来一定影响。再加上气固流化床中气泡的存在使得气固接触变差,导致气体反应得不完全。因此,通常不宜用于要求单程转化率很高的反应。此外,固体颗粒的磨损和气流中的粉尘夹带,也使流化床的应用受到一定限制。为了限制返混,可采用多层流化床或在床内设置内部构件。这样便可在床内建立起一定的浓度差或温度差。此外,由于气体得到再分布,气固间的接触亦可有所改善。 近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固体颗粒被气体夹带而出,需要

气固流化床固体浓度分布的冷模研究.

第23卷第l期 2009年2月高校化学工程学报JournalofChemicalEngineeringofChineseUniversitiesNo.1、,bI.23Feb.2009 文章编号:1003-9015(2009)01-0045-06 基于枝条形分布器的气固流化床固体浓度分布的冷模研究 蔡进1,李涛1,孙启文2,应卫勇1,房鼎业1 (1.华东理工大学化学工程联合国家重点实验室大型工业反应器工程教育部工程中心,上海200237; 2.上海兖矿能源科技研发有限公司,上海201203) 摘要:实验在内径O.284m、高度6.000him的气固流化床冷模装置中进行,采用PC6D型光纤粉体浓度测试仪来检 测固体浓度。实验系统由有机玻璃简体、气体分布器、气体缓冲罐、冷冻干燥机、流量计、光纤测试仪和旋风分离器 组成。使用开孔率均为0.5'/0的枝条形气体分布器,以直径为154x10“一180×10“m、密度为2550kg?m。的砂子为固体 颗粒,压缩空气为流化气体,在静床高为0.“1.5m,表观气速为O.3~0.6m?s。的情况下,考察了时均固体浓度在空间 的分布。实验结果表明,表观气速的增加会使密相区的固体浓度减小。静床高较小(O.6m和0.9m)时,床层密相区的 固体浓度的分布比较简单,随着径向位置的增加而增加,随着轴向位置的增加而减少。静床高较大(1.2m和1.5m)时, 床层密相区的固体浓度的分布比较复杂:径向仍然呈现中心稀边擘浓的规律;从轴向来看,整体上满足下浓上稀的分 布,但是中问存在波动,床层高度H=O.4^D.8m区域固含率的等值线近似为椭圆。实验结果能够为工业流化床反应器 优化设计提供基础数据。 关键词:固体浓度;气固流化床;分布器;静床高 中国分类号:TQ051.13文献标识码:A SolidConcentrationDistributioninaGas-solidFluidizedBedBasedonaBranchedPipeDistributor CAIJinl,LITa01,SUNQi-wen2,YINGWei.Yon91,FANGDing.Yel

循环流化床锅炉的原理及结构

循环流化床锅炉的原理及结构 循环流化床锅炉是在炉膛里把燃料控制在特殊的流化状态下燃烧产生蒸汽的设备。 循环流化床锅炉工作原理及特点: 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其锅炉称为流化床锅炉。 循环流化床锅炉是在鼓泡流化床锅炉技术的基础上发展起来的新炉型,循环流化床锅炉炉内流化风速较高(一般为4~8m/s),在炉膛出口加装了气固物料分离器。被烟气携带排出炉膛的细小固体颗粒,经分离器分离后,再送回炉内循环燃烧。 循环流化床锅炉可分为两个部分:第一部分由炉膛(快速流化床)、气固物料分离器、固体物料再循环设备等组成,上述部件形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、省煤器和空气预热器等,与其它常规锅炉相近。 循环流化床锅炉燃烧所需的一次风和二次风分别从炉膛的底部和侧墙送入,燃料的燃烧主要在炉膛中完成,炉膛四周布置有水冷壁用于吸收燃烧所产生的部分热量。炉膛内燃烧所产生的大量烟气携带物料经分离器入口加速段加速进入分离器,将烟气和物料。物料经料斗、料腿、返料阀再返回炉膛;烟气自中心筒进入分离器出口区,流经转向室、进入尾部烟道。 锅炉给水经省煤器加热后进入汽包,汽包内的饱和水经集中下降管、分配管进入水冷壁下集箱,加热蒸发后流入上集箱,然后进入汽包;饱和蒸汽流经顶棚管、后包墙管、进入低温过热器,由低过加热后进入减温器调节汽温,然后经高过将蒸汽加热到额定蒸汽温度,进入汇汽集箱至主气管道。 循环流化床锅炉燃烧的基本特点: (1)低温的动力控制燃烧 循环流化床燃烧是一种在炉内使高速运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;同时,在炉外将绝大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧。炉膛温度一般控制在850-950℃之间,(850℃左右为最佳脱硫温度)低于一般煤的灰熔点。

实验气固流化床反应器流化特性测定

B o l 实验四 气固流化床反应器的流化特性测定 一、实验目的 1. 观察了解气固流化床反应器中不同气速下固体粒子的流化状况,建立起对流态化过 程的感性认识。 2. 了解和掌握临界流化速度 U mf 和起始鼓泡速度 U mb 的测量原理、方法和步骤,明确 细粒子流化床的基本特性。 3. 通过对 U mf 和 U mb 的测定,进一步理解两相理论以及临界流化速度与起始鼓泡速度 的区别。 二、实验原理 △ 1.在气固流化床反应器中,气体通过床层的压力降 P 与空床速度 U 0 之间的关系能够 很好地描述床层的流化过程。 如图 1 所示:气体自下向上流过床层。当气速很小时,气体通过床层的压力降 △P 与空 床速度 U 0 在对数坐标图上呈直线关系(图 1 中的 AB 段);当气速逐渐增大到 △P 大致等于 单位面积的重量时, △P 达到一极值(图 1 中 P 点);流速继续增大时, △ P 略有降低;此 后床层压力降 △P 基本不随流速而变。此时将流速慢慢降低,开始时与前一样 △ P 基本不变, 直到 D 点以后, △P 则随流速的降低而降低,不再出现 △P 的极大值,最后,固体粒子又互 相接触,而成静止的固定床。 2.在一正常速度下,处于正常流化的流化床,如果突然关闭气源,则由于床层中有气 泡存在,以气泡形式存在的气体首先迅速逸出床层,床层高度迅速下降;而后是浓相中的气 体逸出,床层等速下降;最后是粒子的重量将粒子间的部分气体挤出,床层高度变化很小。 由此可得其床层高度随时间变化的崩溃曲线(如图 2 所示)。因此,可以设想,如果床层中 △P g A P log U 图 1 △P ~ U 关系 1 / 4 D

流化床反应器

流化床反应器 流化床反应器 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床 反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克 勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 1产品分类 按流化床反应器的应用可分为两类:一类的加工对象主要是固体,如矿石的焙烧,称为 固相加工过程;另一类的加工对象主要是流体,如石油催化裂化、酶反应过程等催化反应 过程,称为流体相加工过程。 2结构形式 流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工 过程或催化剂迅速失活的流体相加工过程。例如催化裂化过程,催化剂在几分钟内即显著 失活,须用上述装置不断予以分离后进行再生。②无固体物料连续进料和出料装置,用于 固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。 3产品优缺点 与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率 高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。然而, 由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又 存在很明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论 气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的 收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶 部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;④床层内的 复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱 离经验放大、经验操作。近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工 业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气 固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固 体颗粒被气体夹带而出,需要进行分离并再循环返回床层,因此,对气固分离的要求也就 很高了。(见流态化、流态化设备)

流化床内颗粒流体两相流的CFD模拟

万方数据

万方数据

万方数据

万方数据

万方数据

第9期张锴等:流化床内颗粒流体两相流的CFD模拟 时难以获得颗粒的真实堆积率,因此研究者们需要假设最大颗粒堆积率,如洪若瑜等[49’56巧71采用o.55,Chen等№143取o.60,Lettieri等[45]选O.62。 3.1液固体系 在O.5m(高)×0.1m(宽)的二维流化床考察了液(IDl=1000kg?m一,产l一1.o×10-3Pa?s)固(佛=3000kg?m~,或一2.5×10-3m)体系内网格尺度、时间步长和收敛判据对床层固含率分布特性的影响。结果表明:(1)从整体来看网格数目和时间步长对床层固含率分布的影响不大,但是从局部放大图可以发现,当网格数目(10×50和15×75)较少时,平衡时垂直方向上的固含率出现振荡,且10×50网格的振荡幅度大于15×75的网格,而网格数目(20×100和30×150)较多时,床层固含率趋于均匀分布特征;(2)通过对0.01、O.005、0.001、O.O005s和O.o001s时间步长的模拟表明,o.001s时间步长给出了更适宜的模拟结果;(3)收敛判据取10一、10-6和10_。,所得模拟结果几乎完全一致,详细结果见文献[58]。 3.2气固体系 首先采用摄像法考察了图2所示中心孔口为O.010m的2.Om(高)×O.3m(宽)拟二维流化床内射流形成及发展过程、射流穿透深度和射流频率。实验以常温和常压下的空气为流化介质,GeldartB类物料的玻璃珠(佛=2550kg?m一,矾一250~300肛m,“mf一0.07m?s-1)为固体。通过对射流气速为7.07m?s。1的1200张图像进 图2实验装置流程示意图 Fig.2{khematicdiagramofexperimentalapparatus行逐帧分析,发现当时间为o.025s时射流已经形成并开始逐渐长大,到o.150s时,该射流在分布器上方脱落形成气泡,并有新的射流产生。进而,通过统计分析获得了射流穿透深度和射流频率分别为(O.138±O.010)m和(9.45±1.36)Hz。 针对中心射流的特点,在固定横向52个(中心射流处2个和其余部分均分为50个)和纵向1.00m上部稀相区20均匀网格的前提下,对纵向下部1.00m的密相区等分为50、100、120、150、180、200和230网格体系的模拟结果如图3所示,当网格数等于或大于100时,可以发现射流穿透深度变化不大,在一定范围内射流穿透深度随网格尺度减小呈现轻微波动的原因是当模拟结果输出时间确定后射流崩塌可能出现在两个间隔时间之间。进而,结合实验和模拟的气相体积分数分布图像,发现当网格数等于或大于100时,对射流形成、发展和射流崩塌后形成气泡的形状及其上升速度的影响可以忽略,而且射流穿透深度的模拟值和实验值之间的相对误差约为5%。随后,在时间步长为(1.O×10_4)~(5.O×10q)s范围内考察了缸对射流穿透深度和射流频率的影响,模拟结果表明当△£≤1.OxlOqs时对射流穿透深度没有影响,当&≤5.O×10叫s时对射流穿透深度和射流频率值均没有影响,并与对应的实验结果相一致。在此基础上,将最大颗粒堆积率设定为0.60、o.625和o.65,获得了射流穿透深度均为(O.130土0.005)m,证明在本研究范围内最大颗粒堆积率对模拟结果的影响可以忽略。有关本节的详细介绍可参考文献[59]。 图3网格数目与射流穿透深度之间的关系Fig.3Jetpenetrationdepthsatvariousgridnumbers(口+plusstandarddeviation,一一minusstandard deviation)万方数据

循环流化床锅炉结构及分类

近年来我国推出的流化床锅炉结构类型已有若干种,从受热面布置来说,有密相床带埋管的,有不带埋管的;流化速度有的低至3-4米/秒,有的高至5-6米/秒;分离器的种类更多,如高温旋风分离器;中温旋风分离器、卧式旋风分离器、平面流百叶窗、槽形钢分离器等型式,都称之为循环流化床锅炉。但从机理看,是否属于CFBB还有待商椎。 众所周知,流化床锅炉分为两大类:鼓泡流化床锅炉(BFBB)和循环流化床锅炉(CF -BB)。到目前为止,二者之间尚无明确而权威的分类法,有人主张以流化速度来分类,但从气固两相动力学来看,风速相对于颗粒粒径、密度才有意义,还有人主张以密相区是鼓泡还是湍动床或快速来区分,但锅炉使用的是宽筛力燃料,以煤灰为床料的锅炉往密相床是鼓床,故此分法仍欠全面。还有人以是否有灰的循环为标准等等,都有些顾此失彼。以作者之见,我们不妨从燃烧的机理上来分。鼓泡床锅炉的燃烧主要发生在炉膛下部的密相区,如我国编制的《工业锅炉技术手册(第二册)》推荐,对于一般的矸石烟煤、贫煤和无烟煤密相区份额高达75%-95%,燃烧需要的空气也主要以一次风送入床层.循环流化锅炉的一次风份额一般为50%-60%。密相床的燃烧份额受流化速度、燃料粒径及性质、床层高度、床温等影响在上述数值的上下波动。其余的燃料则在炉膛上部的稀相区悬浮燃烧,所以在燃烧的机理上,BFBB接近于层燃炉,而CFBB更接近于室燃炉,二者在这一方面存在着极大的差异,所以以此划分似乎更为合理。 鼓泡流化床锅炉密相床的燃烧份额大,需布置埋管受热面以吸收燃烧释放。埋管的传热系数高达220-270KW/MC比CFBB炉膛受热面的100-500kw/m2℃离得多尽管BFBB稀相区内的传热系数比要低,但因在稀相层内的吸热量所占份额较小,总的来说,对于容量较小的锅炉BFBB结构受热面的钢耗量要少小些,BFBB的燃烧主要在相床给煤的平均粒径偏大,煤破碎设备较为简单,电耗也底流化速度低,细煤粒在悬浮断停留时间长,炉膛也做的低。虽埋管有磨损,但如防磨损失处理得好,一般横埋管可用五年,竖埋管可用…….采用尾部飞灰再循环,BFBB的燃烧效率可达97%,如在炉膛出口安装分离器实现热态飞灰再循环,则可高达98-99%,但此时装设分离器的目的主要是为了提高燃烧效率而不是象CFBB主要上为了改变炉内的燃烧传热机理。 CFBB的截面热负荷是BFBB的2-3倍(从上至下加起来的热负荷,而不是一层),利于大型化,炉膛内温度均匀,大气污染物排放低,燃烧效率高(可达99%以上)是在BFBB技术上的进步,具有更优越的性能,但因分离器不能捕集到细小煤粒,就需要较高炉膛,对煤的破碎粒度及操作控制等都要求较高,投资大且技术复杂,所以CFBB炉型对中小容量锅炉并无明显优势,因而国外一些研究者认为,BFBB适用于50t/h以下容量,CFBB适用于220t/h 以上容量,在50-220t/h容量范围内二者共存。 我国在过去许多年中,建造了近3000台沸腾炉(即BFBB)虽然其在燃烧劣质煤方面发挥了极大的作用,但上于一直在低水平上运行,飞灰量大,含炭高,锅炉效率低下,再加上除尘方面投资不足,烟尘治理没得到很好解决,致使沸腾炉有点声名不佳。CFBB出现之后,人们便纷纷打出循环流化床锅炉的牌子,推出了不少炉型,如清华大推出的低携带率循环床锅炉,哈工大与北锅开发的带埋管和槽型分离器的循环床锅炉等,实际上都是BFBB。但它们是改进了的沸腾炉,把沸腾炉技术提高到了较高的水平,这些炉型在工业锅炉和热电联供锅炉范围内有着极强的生命力,所以我们应当为BFBB的新成绩欢呼,正其位,恢复其名誉,并在一定的锅炉容量范围内发展这种BFBB。

相关文档