文档库 最新最全的文档下载
当前位置:文档库 › 砷胁迫下水稻苗期光合生理差异

砷胁迫下水稻苗期光合生理差异

砷胁迫下水稻苗期光合生理差异
砷胁迫下水稻苗期光合生理差异

砷胁迫下水稻苗期光合生理差异1

刘琳,杨桂娣,王海斌,牛变红,曾聪明,何海斌*

福建农林大学生命科学学院,农业生态研究所,福州(350002)

E-mail: becky_131@https://www.wendangku.net/doc/ec6077672.html,

摘要:本研究以水稻中汕优63为材料,田间网室中土培条件种植下,采用不同浓度、不同形态砷溶液处理,探讨砷对水稻光合特性影响的生理与响应机制。结果表明,砷处理后降低了水稻光合作用参数(净光合速率、细胞间隙CO2浓度、蒸腾速率、气孔导度、气孔限制值、叶绿素含量等),且随着砷浓度的升高,下降幅度增大。水稻光合作用相关酶的分析结果表明,砷处理后水稻光合作用关键酶—核酮糖-1,5-二磷酸羧化酶、磷酸烯醇式丙酮酸羧化酶和乙醇酸氧化酶的活性均降低,且随着砷浓度的升高而下降。水稻形态指标测定结果表明,砷处理后导致水稻根长、株高增长缓慢,植株干重积累减少。同时本研究还发现不同形态砷(无机砷、有机砷)处理水稻后,以无机砷对水稻光合特性的影响作用较大。

关键词:砷;水稻;光合作用;生理机制;分子机制

中图分类号:X55

砷是一种有毒并致畸、致癌的化学元素[1]。人类活动如采矿、金属冶炼以及含砷工业品(如陶瓷、制革、玻璃等)和含砷农药(如杀鼠剂、除草剂、杀菌剂、防腐剂)、防污油漆(船底)、染料、铜或铅的合金、半导体材料等的生产和使用都可能引起土壤砷污染,土壤砷污染的日益加剧将导致砷污染地寸草不生、生态系统完全崩溃等恶果[2]。

水稻是我国主要粮食作物之一,水稻产量的高低直接影响着国计民生。水稻田多采用沟渠灌溉,因此造成水稻田土壤砷污染现象日趋严重[3];作物光合作用是作物生长发育和产量形成的生理基础和作物生产力高低的决定性因素。据报道,在高温胁迫下,灌浆期水稻叶片衰老加速、光合能力下降,是导致灌浆速率、结实率、粒重和籽粒产量降低的主要生理原因[4]。陈悦等通过探讨了谷粒产量与光合作用的关系发现,增加单叶特别是剑叶的光合能力是克服谷粒产量的光合产物源限制和在未来的超级杂交水稻育种中实现产量潜力新突破的关键[5]。可见作物光合效率高低直接影响作物产量,因而研究砷对水稻光合特性的响应机制具有重要的意义,目前国内外对于这方面研究报道较少。本研究以常规水稻品种汕优63为材料,探讨土培条件下,外源添加不同形态砷对水稻光合作用能力影响的生理机制。以期为揭示砷对水稻的毒害机理提供一定的理论基础。

1. 材料与方法

试验于2007年7-8月在福建农林大学农业生态研究所田间网室进行,种植土壤的理化指标为:含全氮2.47g·kg-1,碱性氮28.1mg·kg-1,全磷1.22g·kg-1,有效磷119.7mg·kg-1,全钾1.08g·kg-1,有效钾372.4mg·kg-1,pH5.7。土壤中总砷含量19.68mg·kg-1,有效砷含量0.04 mg·kg-1。

1.1 实验设计

将土壤充分混匀装盆(长50cm×宽38cm×高17cm),盆中土壤高度约为12cm。将预萌发的水稻种子汕优63播于秧盘中,至二叶期,然后将其移植于盆中,每盆30株,株行距为7cm×7cm。待水稻长至三叶后,砷浓度参照Mohammed[6]和土壤中砷残留国家标准设计,将配置好的浓度分别为0.8、1.6、2.4mg·L-1的无机砷(3价和5价砷各半)和有机砷(一甲基砷)

1本课题得到福建省生态学重点学科项目(0608537)和福建省科技计划重点项目(2003Y027)的资助。

的溶液2L倒入盆中,盆中水层高度1cm左右,并以添加2L双蒸水作为对照(Control),每个

处理3个重复,共21盆。于处理后每天傍晚添加一定量的水,以保持盆中水层高度1cm左右。

种植30天后,采用直接测量法,测量水稻的根长、株高、干重(120℃杀青30min,80℃烘烤

48h),并测定水稻叶片光合作用参数,同时取样测定水稻光合作用相关酶的活性。

1.2 光合作用参数的测定

采用美国Gene公司LI-6400型自动便携式光合测定系统测定净光合速率(Pn)、大气温

度(Ta)、大气CO2浓度(C0)、细胞间隙CO2浓度(Ci)、蒸腾速率(Tr)、气孔导度(Gs)

等光合作用参数。气孔限制值(Ls)利用Downton的方法计算,Ls=(C0-C i)/(C0-Γ)≈1- C i/ C0

方程中C0、C i和Γ分别为,叶外CO2浓度、细胞间隙CO2浓度和CO2补偿点。测定过程采

用生物效应灯为光源,PFD为1200 μmol/m2/s,大气温度为30-35℃,△Ca为±1ul/L。叶绿

素含量的测定采用便携式叶绿素测定仪(日本)测定水稻叶片SPAD值。每盆测定15个叶

片,取平均值。

1.3 水稻光合酶活性的测定

水稻叶片光合作用相关酶—核酮糖-1,5-二磷酸羧化酶,乙醇酸氧化酶的活性测定参照王

学奎等(2006)的方法[7]。磷酸烯醇式丙酮酸羧化酶活性的测定,参照马冬云的方法[8]。

2. 结果与分析

2.1 砷处理后水稻的形态指标分析

水稻形态指标结果表明(表1),经砷处理后的水稻根长、株高、干重分别受到了不同

程度的影响,且随着砷浓度的升高影响作用增大。以试验的最高浓度(2.4mg·L-1)为例,在

无机砷处理后,水稻的根长由29.6cm下降至23.1cm,株高由69.7cm下降至52.6cm,干重

则由1.97g/plant下降至1.41g/plant。在有机砷处理后,水稻的根长、株高、干重的分别下降

至26.3cm,55.2cm,1.61g/plant。可见无机砷对水稻的毒害性比有机砷强,表现在同一砷浓

度下,无机砷对水稻相应形态指标的影响较大。

表1 砷处理后水稻苗的根长、株高、干重

Table 1 The root length, plant height, and dry weight of rice seedlings after treated by arsenic

形态指标

无机砷inorganic arsenic (mg·L-1)有机砷organic arsenic (mg·L-1)

Control

Morphological indices

根长Root length (cm)

株高P height (cm) 69.7 57.4 54.1 52.6 60.4 57.3 55.2 干重 Dry weight (g/plant) 1.97 1.82 1.62 1.41 1.90 1.72 1.61

2.2 砷处理对水稻光合作用参数的影响

不同浓度的无机砷及有机砷处理后对水稻苗期光合作用参数的影响结果(表2)。水稻的

光合作用参数—净光合速率、气孔导度、蒸腾速率、胞间二氧化碳浓度、气孔限制值、叶绿

素含量,随着处理砷浓度的升高而降低。即无机砷处理后,各光合参数随着砷浓度的升高变

化范围分别为:净光合速率为29.34~20.16 μmol CO2·m-2·s-1,气孔导度为0.260~ 0.214 mol

H2O·m-2·s-1,蒸腾速率为2.79~2.47 mmol H2O·m-2·s-1,胞间二氧化碳浓度为252~201 μmol

CO2·mol-1 air,气孔限制值0.142~0.342,叶绿素含量41.4~27.6 SPAD。而经有机砷处理后的水稻相应光合参数,随着砷浓度的升高分别为:净光合速率为29.34~23.05 μmol CO2·m-2·s-1,气孔导度为0.260~0.228 mol H2O·m-2·s-1,蒸腾速率为2.79~2.58 mmol H2O·m-2·s-1,胞间二氧化碳浓度为252~213 μmol CO2·mol-1 air,气孔限制值0.142~0.365,叶绿素含量41.4~30.6 SPAD。可见砷对水稻苗期光合作用参数存在较大的影响,并随着处理砷浓度的升高而加剧。其中又以无机砷对水稻的影响强度较大。

表2 砷对水稻苗光合生理特性的影响

Table 2 Effects of arsenics on photosynthesis physiology indices of rice seedling

无机砷 inorganic arsenic

(mg·L-1) 有机砷organic arsenic

(mg·L-1)

光合生理指标Photosynthesis physiology indices

对照

Control

0.8 1.6 2.4 0.8 1.6 2.4

净光合速率Net photosynthetic rate

(μmol CO2·m-2·s-1)

29.34 23.4722.0720.1624.13 23.84 23.05

气孔导度 Stomatal conductance

(mol H2O·m-2·s-1)

0.296 0.2340.2320.2140.241 0.239 0.228

蒸腾速率 Transpiration rate

(mmol H2O·m-2·s-1)

2.79 2.62 2.51 2.47 2.75 2.61 2.58

胞间二氧化碳浓度 Intercellular CO2

concentration (μmol CO2·mol-1 air)

252 218 217 201 223 221 213 气孔限制值 Stomatal limitation 0.412 0.3660.3610.3420.382 0.371 0.365 叶绿素含量 Chlorophyl content

(SPAD)

41.4 30.8 28.4 27.6 32.6 31.4 30.6

2.3 砷处理对水稻光合酶活性的影响

表3 砷对水稻光合作用关键酶活性的影响

Table 3 Effects of arsenics on the activity of photosynthesis enzymes in rice seedling

无机砷inorganic arsenic (mg/L)

有机砷organic arsenic (mg/L)

光合生理指标Photosynthesis physiology indices

对照Control

核酮糖1,5-二磷酸羧化酶

ribulose 1,5-bisphosphate carboxylas

mmol (CO2)·min-1·mg-1(protein)

磷酸烯醇式丙酮酸羧化酶

phosphoenolpyruvate carboxylase

μmol (CO2)·min-1·mg-1(protein)

0.53 0.41 0.37 0.35 0.42 0.39 0.37

乙醇酸氧化酶 glycollic oxidase

μmol (CO2)·min-1·mg-1(protein)

1.14 0.81 0.71 0.68 0.86 0.84 0.79

由表3可看出,砷处理后水稻光合作用的关键酶—核酮糖1,5-二磷酸羧化酶、磷酸烯醇式丙酮酸羧化酶和乙醇酸氧化酶活性均降低,且随着砷浓度的升高,下降幅度增大,但不同形态砷对酶活性影响程度不同。即无机砷处理后的水稻中核酮糖1,5-二磷酸羧化酶活性由0.72下降至0.41CO2·min-1·mg-1(protein),磷酸烯醇式丙酮酸羧化酶活性由0.53下降至0.35 CO2·min-1·mg-1(protein),乙醇酸氧化酶活性由1.14下降至0.68CO2·min-1·mg-1 (protein)。而有机砷处理后则依次下降至0.47CO2·min-1·mg-1 (protein),0.37CO2·min-1·mg-1(protein)和0.79

CO2·min-1·mg-1(protein)。以无机砷对水稻影响程度高于有机砷。此结果进一步验证前述,砷对水稻形态及光合作用参数的影响。可见砷毒害降低了水稻光合作用关键酶的活性,进而降低水稻光合作用的相关参数,最终影响其生长发育。

3. 讨论

瞿爱权等[7]研究表明,汞毒害下水稻光合作用参数受到抑制。据报道Cu2+离子毒害下,植物的光合作用能力严重降低[9-10]。Morelli研究表明[11],重金属能影响植物呼吸作用的气体交换,呼吸速率受影响程度依赖于金属的种类和浓度。可见重金属毒害对植物光合作用相关参数的影响具有一定的共性。本研究结果表明,砷处理下,水稻的根长、株高、干重的增长均降低,水稻光合作用相关参数—净光合速率、气孔导度、蒸腾速率、胞间二氧化碳浓度、气孔限制值、叶绿素含量等均受到抑制,且随着浓度的升高而增大。研究还发现,砷毒害下水稻光合作用相关酶—核酮糖1,5-二磷酸羧化酶、磷酸烯醇式丙酮酸羧化酶、乙醇酸氧化酶的活性均降低,且随着浓度的增加,影响程度增大。可见砷毒害下,水稻光合作用能力降低与其光合作用关键酶活性降低,进而导致光合作用能力降低有关。

据报道砷对作物的毒害能力很大程度上取决于不同的化学形态[12]。环境中存在的无机砷与有机砷相比,具有更高容量、更大移动性和更强的毒性[13-14]。本研究也发现不同形态砷,以无机砷对水稻光合作用能力影响强度较大。这些结论间接验证了无机砷对水稻的毒害作用大于有机砷的结论。

综上所述,砷毒害下水稻光合作用能力的下降,与水稻光合作用关键酶活性下降,进而引起光合作用相关参数的降低,光合作用能力下降,导致植物根系生长受阻,植株增长减缓和干物质积累降低。然而砷毒害对水稻生长发育的变化是一个综合作用的过程,其作用机理还有待于进一步揭示。

参考文献

[1]孟紫强. 环境毒理学[M]. 北京:中国环境出版社, 2000

[2] 毛跟年,许牡丹,黄建文. 环境中有毒有害物质与分析检测[M]. 北京:化学工业出版社,2003

[3] 陈同斌,郑袁明,等. 北京市不同土地利用类型的土壤砷含量特征[J]. 地理研究, 2005,24(2):229-235

[4] 汤日圣,郑建初,陈留根,等. 高温对杂交水稻籽粒灌浆和剑叶某些生理特征的影响[J]. 植物生理与分子生物学学报, 2005,(6):657-662

[5] Chen Y,Yuan N P, Wang X H. Relationship between Grain Yield and Leaf Photosynthetic Rate in Super Hybrid Rice[J]. Journal of Plant Physiology and Molecular Biology, 2007,33(3) :235-243

[6]Mohammed J A, Jorg F, Andy A M. Uptake kinetics of arsenic species in rice plant. Plant Physiology, 2002, 128:1120-1128

[7] 王学奎. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2006

[8] 马东云,郭天财,王晨阳,等. 不同发育时期追氮肥对冬小麦旗叶中光合酶活性的影响[J]. 植物生理学通讯, 2006,42(6):1091-1095

[9] 吴德勇. 铜、锌、铅对大豆幼苗生长和子叶光合特性的影响[D]. 江苏大学, 2007

[10] 夏来坤. 铜、镉胁迫对冬小麦生长和产量及其缓解措施的研究[D]. 河南:河南农业大学, 2007

[11] Morelli E, Scarano G. Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricomutum. Plant Science, 2004,167:289-296

[12] 李道林,程磊. 砷在土壤中的形态分布与青菜的生物学效应[J]. 安徽农业大学学报, 2000,27(2):131-134

[13] 杜永,王艳,徐敏权,等. 重金属污染来源及对水稻生长与发育的影响[J]. 耕作与栽培, 2004,(2):13-15

[14] 张玉龙. 农业环境保护(第二版)[M]. 北京:中国农业出版社, 2004

The differential of photosynthetic physiology of rice seedling

under arsenic stress

Liu Lin, Yang Guidi, Wang Haibin, Niu Bianhong, Zeng Congming, He Haibin School of Life Sciences/Agroecological Institute, Fujian Agriculture and Forestry University,

Fuzhou, China (350002)

Abstract

Rice accession, Shanyou 63, was used as a test material to investigate the physiological and molecular mechanism of photosynthesis after treated by different arsenic species. The results showed that the parameter of photosynthesis of rice seedlings, such as net photosynthetic rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, stomatal limitation, and chlorophyl content were all decreased with increasing of arsenic concentrations. The results of the analysis on the enzymes activity involving in photosynthesis indicated that the activity of ribulose 1,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase, glycollic oxidase were all descended with the increasing of arsenic concentrations. The root length, plant height, and dry weight of rice seedlings were also decreased. Simultaneously, the study also found that inorganic arsenics were more toxic to growth of rice seedlings than organic arsenics.

Key words: Arsenic; Rice (Oryza sativa L.); Photosynthesis; Physiological mechanism

作者简介:

刘琳(1985.02),女,汉族,硕士生;

何海斌(1965.08),通讯作者,男,汉族,教授,主要从事植物化学与化学生态学研究,E-mail:alexhhb@https://www.wendangku.net/doc/ec6077672.html,。

植物对盐胁迫的反应

植物对盐胁迫的反应 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REVIEW ON PLANT RESPONSE AND RESISTANCE MECHANISM TO SALT STRESS YANG Xiao-hui1,2,JIANG Wei-jie1*,WEI Min2,YU Hong-jun1( 1.Institute of Vegetables and Flowers,Chinese Academy of Agricultural Science,Beijing100081,China;2.College of Horticulture Science and Engineering,Shandong Agriculture University,Taian 271018,China) Key words:Iron stress,Osmotic stress,Salt resistant mechanism,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)

植物生理学发展趋势

植物生理学的发展 植物生理学是研究植物生命活动规律的生物学分支学科,其目的在于认识植物的物质代谢、能量转化和生长发育等的规律与机理、调节与控制以及植物体内外环境条件对其生命活动的影响。包括光合作用、植物代谢、植物呼吸、植物水分生理、植物矿质营养、植物体内运输、生长与发育、抗逆性和植物运动等研究内容。 现在普遍认为植物生理学起源于16世纪荷兰人J.B van Helmont所做的实验来研究植物营养本质。随后植物生理学的发展大约经历了三个阶段。 一:18-19世纪,光合作用的概念具有雏形,其发现彻底动摇了植物营养的腐殖质理论。植物生理学开始孕育。 二:这一阶段大约经历了半个多世纪,十九世纪的三大发现,细胞学说、能量守恒定律和生物进化理论有力地推动了植物生理学的发展。在植物矿物质研究,渗透现象,光合作用,呼吸作用,生长发育生理方面取得了一些列的成就。十九世纪末二十世纪初,随着《植物生理学讲义》和《植物生理学》的出版。植物生理学正式从植物学和农业科学中分离出来,成为了一门单独的科学。 三:二十世纪随着科学技术的飞速发展,植物生理学也取得了很多成就电子显微技术,X 衍射技术,超离心技术,色层分析技术,膜片钳技术等成为研究的有力工具。二十世纪五十年代,随着DNA分子双螺旋结构的揭示和遗传密码子的发现,催生了分子生物学。在分子生物学的帮助下。植物生理学的研究开始向微观方面发展。 植物生理学现在所遇到的最大挑战普遍认为来自分子生物学。随着分子生物学的发展,植物的许多生理活动都可以用分子生物学的方式来解释。但是分子生物学只能解释一部分的问题,却不能解释所有的问题。 植物生理学的发展趋势一般概括为以下几个方面: 一:植物生理学内容的扩展以及和其他学科的交叉渗透。如计算机科学在植物生理学中营养和数学模拟研究某些生理问题,逆境生理方面与生态学和环境科学的交叉等。这种交叉渗透大大扩展了植物生理学的研究范围。 二:机理研究的深入和调控探讨的兴起。由于分子生物学的迅速发展,植物生理学已经可以在细胞和分子水平上去研究植物的生理活动。许多重要功能蛋白如RUBP羧化酶、光敏色素蛋白及钙调素等研究都是成功的范例。关于生命活动的调节也在不断的深入。 三:现代生命科学已经进入到两极分化与趋同的时代。在微观和宏观上不断深入并且相互融合。植物生理学也将符合这一趋势,不断重视从分子到到群体的不同层次的研究。 四:植物生理学的应用范围不断扩大。随着植物生理学研究内容的不断扩大。其应用范围也从农业林业扩大到环境保护,资源开发,医药,轻工业和商业等方面。并且在食品行业会有更大的应用。 随着植物生理学的不断深入研究,其应用范围肯定是越来越广的。 参考文献 1:魏小红,龙瑞军论现代科学技术革命对植物生理学发展的影响甘肃科技纵横 2:王晶赵文东甄纪东植物生理学作用于发展农机化研究 3:余小平植物生理学面临的挑战及发展趋势陕西师范大学积继续教育学报(西安)

植物盐胁迫及其抗性生理研究进展解读

植物盐胁迫及其抗性生理研究进展 李艺华1罗丽2 (1、漳州华安县科技局华安 363800 2、福建农林大学园艺学院福州 350002 摘要:盐胁迫是制约农作物产量的主要逆境因素之一。本文综合了几年来植物盐胁迫研究的报道,对盐胁迫下植物生理生化和生长发育变化、植物自身生理系统的响应以及增强植物抗盐胁迫的方法进行综述和讨论。 关键词:植物抗盐胁迫生理 中图分类号:Q945.7 文献标识码:A 文章编号:1006—2327—(200603—0046—04 盐胁迫是目前制约农作物产量的主要逆境因素之一[1],既有渗透胁迫又有离子胁迫[2]。随着土壤盐渍化面积的扩展,许多非盐生植物因受盐胁迫而导致产量和品质的快速下降,已成为中国西北部和沿海地区迫切解决的难题。迄今,植物盐胁迫这方面有较多的研究报道,多数侧重于某一植物或是植物某一生长阶段耐盐胁迫性与抗盐胁迫性的研究,缺少对植物抗盐胁迫有一个较为系统的综合阐述。鉴于植物抗盐胁迫的研究面的广泛性和分散性,本文综合了几年来抗盐胁迫研究报道,对植物抗盐胁迫的生理机制做一个综合阐述,为阐明植物对盐胁迫的反应机制提供一个较系统的理论依据。 1 盐胁迫对植物生理生化和生长发育的影响 盐胁迫对植物生理生化的影响可分为三方面:离子毒害、渗透胁迫和营养亏缺。离子毒害作用包括过量的有毒离子钠和氯对细胞膜系统的伤害,导致细胞膜透性的增大,电解质的外渗以及由此而引起的细胞代谢失调;渗透胁迫是由于根系环境中盐分浓度的提高、水势下降而引起的植物吸水困难;营养亏缺则是由于根系吸收过程中高浓度Na和Cl 离子存在,干扰了植物对营养元素K、Ca和N的吸收,造成植物体内营养元素的缺乏,影响植物生长发育[1]。大量试验结果表明,盐胁迫不同程度地影响植物的光合作用、呼吸作用和渗透作用,影响植物的同、异化功能[3],当盐

植物生理学研究技术

植物生理学研究技术 长江大学农学院植物生理教研室 2004年8月

实验一植物组织水势的测定(小液流法)植物体内的生理生化活动与其水分状况密切相关,而植物组织的水势是表示植物水分状况的一个重要生理指标。目前,植物组织水势的测定主要有几种方法:小液流法、折射仪法、压力室法、露点法、热电偶法。前两种方法虽然简便,但精确性差。压力室法较适于测定枝条或叶柄导管的水势。露点法、热电偶法较适宜测定柔软叶片的水势,且精确度高,可在一定范围内重复测定叶片的水势,是较好的水势测定方法。植物的水势可作为制定灌溉的生理指标。 一、实验目的 通过实验,掌握用小液流法测定植物组织水势的原理和方法。 二、实验原理 水势代表水的能量水平,水总是从水势高处流向低处。水进入植物体内并分布到各组织器官中的快慢或难易由水势差来决定,水势越高,植物组织的吸水能力越差,而供给水能力越强。当植物组织与一系列浓度递增的溶液接触后,如果植物组织水势大于(或小于)外液的水势,则组织失水(或吸水),使外液浓度变低(或变高),密度变小(或变大)。如果植物组织的水势等于外液的水势时,植物组织既不失水也不吸水,外液浓度不变。当取浸泡过植物组织的溶液的小滴(亦称小液流,为便于观察应先染色),分别放入原来浓度相同而未浸泡植物组织的溶液中部时,小液流就会因密度不同而发生上升或下沉或不动的情况。小液流在其中不动的溶液的水势(该溶液为等渗浓度),即等于植物组织的水势。 三、实验材料、设备及试剂 1. 材料:植物叶片;马铃薯块茎等。 2. 仪器设备:试管;小瓶;小塞子;打孔器(直径0.5㎝);尖头镊子;移液管(1ml、5ml、 10ml);注射针钩头滴管;刀片。 3. 试剂:1mol·L-1蔗糖液;甲烯蓝粉。 四、实验步骤 1. 系列糖浓度配制 1.1 取干燥洁净试管6支,贴上标签,编号,用1mol·L-1蔗糖母液配成0.05、0.1、0.15、0.2、0.25、 0.30 mol·L-1浓度的糖液,各管总量为10ml,并塞上塞子(防止浓度改变),作为甲组。 1.2 另取干燥洁净的小瓶6个,标明0.05、0.10、0.15、0.20、0.25、0.30mol·L-1浓度,分别从甲组取相应浓度糖液1ml盛于小瓶中,随即塞上塞子,作为乙组。 2. 取样及测定 2.1选取生长一致的叶片,用直径为0.5cm的打孔器钻取圆片,在玻璃皿内混匀,然后用镊子把圆片放进乙组小瓶中,每瓶放15~20片,(若采用植物块茎如马铃薯,先用打孔器钻取圆条,然后切成约1mm厚圆片,每瓶放5片),立即塞紧塞子,放置40min左右,其间轻轻摇动几次,以加速平衡。2.2到预定时间后,各小瓶加入几粒甲烯蓝粉染色,摇匀,取6支干燥洁净的注射针钩头滴管,分别从乙组中取出溶液,插入甲组原相应浓度蔗糖溶液的中部,轻轻挤出钩头滴管内的溶液,使成小液滴,并小心地抽出钩头滴管(注意勿搅动溶液),注意观察那些管的小液滴往上移动,那些管的小液滴往下

植物生理学光合作用的概念和意义知识点

光合作用的概念和意义 名词解释 温室效应:透过太阳短波辐射,返回地球长波辐射,地球散失能量减少,地球变暖 光合膜:光合作用中光能吸收和电子传递过程都是在类囊体的膜片层上进行,因此类囊体膜也称为光合膜 荧光现象:叶绿素溶液在透射光下呈绿色,而在反射光下呈红色的现象,荧光寿命很短。是由于Chl分子吸收光能后,重新以光的形式释放所产生的。 磷光现象:在暗处叶绿素会发出弱光,磷光的寿命为10-2~103秒 原初反应:包括光能的吸收,传递和光化学反应;在类囊体膜上进行(光→电) 电子传递和光和磷酸化:光能经电能转化为化学能,在类囊体膜上进行 碳同化:CO2固定于还原,在间质进行 集光色素(天线色素):吸收和传递光能,不进行光化学反应的光合色素,大部分Chl a 中心色素:少数特殊状态的Chl a,吸收集光色素传递而来的激发能后,发生光化学反应引起电荷分离的光合色素 光合单位:指在光饱和条件下吸收、传递和转化一个光量子到作用中心所需要协同作用的色素分子 诱导共振:是指当某一特定的分子吸收能量达到激发态,在重新回到基态时,使另一分子变为激发态 光化学反应:指中心色素分子受光激发引起的氧化还原反应。作用中心包括原初电子供体、原初电子受体、和作用中心色素组成 量子产额:每吸收一个光量子所同化的CO2分子数(或释放的氧分子数) 红降现象:小球藻能大量吸收波长>690nm的长波红光,但光合作用的效率很低的现象 双光增益效益(爱默生):红降出现,如果加入辅助的短波红光(650nm)则光合效率大增,并且比这两种波长单独照射的总和还要高的现象 光合链:光合链是类囊体膜上由两个光系统和若干电子传递体,按一定的氧化还原电位依次排列而成的电子传递系统 PQ质体醌(质醌):担负着传递氢H+和e-的任务 PC质蓝素(质体菁):含铜蛋白质,PSI的远处电子供体 Fd铁氧还蛋白:把电子传给FNR后还原NADP为NADPH,或把电子传给Cytb6进行环式光合电子传递。此外,Fd还在亚硝酸还原,酶活化等方面具有多种功能。PQ穿梭:在光合电子传递过程中PQ使间质间H+不断转入类囊体腔,导致间质pH上升,形成跨膜的质子梯度 光合电子传递途径:绿色植物光下催化ADP形成ATP的过程称为光合磷酸化 水光解与氧释放(希尔反应):离体叶绿体(类囊体)加到有适宜氢受体A的水溶液中, 照光后立即有O2放出,并使氢受体A还原 PSP光合磷酸化:光下叶绿体在光合电子传递的同时,使ADP和Pi形成ATP的过程 质子动力势:ATP形成的动力 同化力:光合作用前两阶段结束形成活跃的化学能ATP和NADPH合称为同化力 C3途径:指光合作用中CO2固定后的最初产物是三碳化合物的CO2同化途径 C4途径:固定CO2后的出产物是OAA(四碳二羧酸),固称该途径为C4途径 光呼吸:高等植物的绿色细胞在光下吸收O2放出CO2的过程(底物:乙醇酸) 光合速率(强度):每小时每平方分米叶面积吸收CO2的量或氧气量来表示 光合能力:指在饱和光强、正常CO2和O2浓度、最适温度和高RH条件下的光合速率

高级植物生理学04盐胁迫及其它

盐胁迫 全世界约有1/3的盐渍化土壤,我国约有250 多万公顷的各种盐渍土壤,主要分布在沿海地区或内陆新疆、甘肃等西北干旱、半干旱地区。随着工业污染加剧、灌溉农业的发展和化肥使用不当等原因, 次生盐碱化土壤面积有不断加剧的趋势。这些地区由于土壤中含有较多的盐类植物常受盐害而不能正常生长和存活,给农业生产造成重大损失。植物耐盐机理和耐盐作物品种的培育已成为当前的研究热点之一。综合治理盐渍土、提高植物的耐盐性、开发利用盐水资源已成为未来农业发展及环境治理所亟待解决的问题。 钠盐是形成盐分过多的主要盐类,NaCl和Na2SO4含量较多称为盐土,Na2CO3与NaHCO3含量过多称为碱土。自然界这两种情况常常同时出现统称为盐碱土。 一、盐胁迫对植物的伤害机理 盐害包括原初盐害和次生盐害。原初盐害是指盐离子的直接作用,对细胞膜的伤害极大;次生盐害是指盐离子的间接作用导致渗透胁迫,从而造成水分和营养的亏缺。 1、生理干旱。土壤盐分过多使植物根际土壤溶液渗透势降低,植物要吸收水分必须形成一个比土壤溶液更低的水势,否则植物将受到与水分胁迫相类似的危害,处于生理干旱状态。如一般植物在土壤盐分超过0. 2 %~0.5 %时出现吸水困难,盐分高于0. 4 %时植物体内水分易外渗,生长速率显著下降,甚至导致植物死亡。 2、直接盐害。(1)细胞内许多酶只能在很窄的离子浓度范围内才有活性,从而导致酶的变性和失活,以致于影响了植物正常的生理功能和代谢。高浓度盐分影响原生质膜,改变其透性,盐分胁迫对植物的伤害作用,在很大程度上是通过破坏生物膜的生理功能引起的。盐胁迫还可影响膜的组分用NaCl 和NaCO3溶液处理玉米幼苗发现膜脂中不饱和脂肪酸指数降低,饱和脂肪酸指数相对增多,这也证明了盐离子能影响膜脂成分的组成。(2)植物吸收某种盐类过多而排斥了对另一些营养元素的吸收,导致不平衡吸收,产生单盐毒害作用,还造成营养胁迫。如Na+浓度过高时,减少对K+的吸收,同时也易发生PO43-和Ca2+的缺乏症,盐胁迫下造成养分不平衡的另一方面在于Cl-抑制植物对NO3-及H2PO4 -的吸收。 3、光合作用。众多实验证明,盐分胁迫对盐生植物和非盐生植物的光合作用都是抑制的,并且降低程度与盐浓度呈正相关。 (1)盐胁迫使叶绿体中类囊体膜成分与超微结构发生改变 (2)盐胁迫对光能吸收和转换的影响 (3)盐胁迫对电子传递的影响随着盐浓度的提高PSⅡ电子传递速度明显下降能与盐胁迫损害了PSⅡ氧化侧的放氧复合物的功能,使它向PSⅡ反应中心提供的电子数量减少,阻断了PSⅡ还原侧从QA 向QB 的电子传递。 (4)盐胁迫对光合碳同化的影响光合作用碳同化过程中最重要的酶1,5—二磷酸核酮糖羧化酶(RUBPCase),在盐胁迫下会使RUBPCase 的活性和含量降低,结果酶的羧化效率下降,导致植物固定CO2 的能力减弱,与此同时,RUBPCase 还限制RUBP 和无机磷(Pi)的再生,而这两种物质再生能力的大小对C3 循环至关重要。此外,盐胁迫还会降低磷酸甘油酸、磷酸三糖和磷酸甘油醛的含量。这些物质均是C3循环的中间产物,其含量减少不利于碳同化的正常

光合作用生理生态及其在园林植物的研究进展

光合作用生理生态及其在园林植物 的研究进展

光合作用生理生态及其在园林植物的研究进展 摘要: 本文通过对植物光合作用生理生态方面知识的概括,并介绍近年来我国园林植物光合作用的研究进展,从而为今后相关方面的研究提供参考。 关键词:光合作用生理生态研究进展 The physiological ecology of photosynthesis and its research in landscape plants Abstract:This thesis showed the research of landscape plants photosynthesis and through summarizing the knowledge of it to provide some reference in further research. Keyword: Photosynthesis Physiological ecology Progress of study 引言 植物利用光能将二氧化碳和水等无机物合成有机物并放出氧气的过程,称为光合作用(photosynthesis)。通常用下式表示: 12H2O + 6CO2 + 阳光→ (与叶绿素产生化学作用);C6H12O6 (葡萄糖) + 6O2 + 6H2O 1 光合作用的意义 光和作用所利用的能源,实际上是取之不尽用之不竭的日光能,所利用的原料是是广布于地球表面的CO2和H2O,而生成的是人类、动植物赖以生存的O2,具有重要意义: 1.1 把无机物转变成为有机物。 植物通过光合作用制造有机物的规模是非常巨大的。据估计,地球上的自养植物每年约同化2×1014kg碳素,其中40%是由浮游植物同化的,60%是由陆生植物同化的。这些有机物可直接或间接作为人类或全部动物界的食物(如粮、油、糖和牧草饲料、鱼饵等),也可以作为某些工业的原料(如棉、麻、橡胶等)。1.2 把太阳能转化为化学能。

盐胁迫对植物的影响

盐胁迫对植物影响 摘要:土壤盐渍化是现代农业生产所面临的主要问题之一。植物为了抵御盐分胁迫,它们积极地适应生存环境,产生了一系列生理生化的改变以调节水分及离子平衡,维持正常的光合作用。本文主要从盐胁迫对植物细胞生理生化的影响、植物对盐的适应性及抗盐机理和盐对种子萌发的影响,在Nacl胁迫下,对种子发芽势、发芽率、发芽指数、活力指数等问题进行分析,探讨植物种子在不同盐分浓度下的耐盐性和提高植物的耐盐性,减轻土壤盐渍化危害。 关键词:Nacl胁迫;发芽率;发芽势;土壤盐渍化 To Summarize on Salt Stress on Plants Abstract:Soil salinization is one of the main problems facing in a modern agricultural production .Plants to resist salt stress, they actively adapt to the living environment,a series of physiological and biochemical changes in order to regulate water and ion balance and maintain normal photosynthesis. This article from the salt stress on plant cell physiology and biochemistry of plant adaptation to salt and salt tolerance mechanisms and the influence of salt on seed germination in Nacl stress on seed germination potential,germination rate,germination index,vigor index Problems are analyzed to explore the seeds under different salinity tolerance and improve the salt tolerance of plants to reduce soil salinity hazards. Key words:Nacl stress;germination rate ;ermination energy;soil salinization 土壤盐渍化是人类面临的生态危机之一,土壤的盐碱化问题日益威胁着人类赖以生 存的有限的土地资源。全国有各种盐渍土地1亿hm2,其中现代盐渍土约0.373亿hm2,残余盐渍土约0.446亿hm2,其它潜在盐渍土约0.173亿hm2。盐碱地2.7×107hm2,其中7×107hm2为农田。土壤次生盐渍化面积在逐年增加,盐胁迫己成为世界范围内影响农业生产最重要的环境胁迫因子。如何提高植物的耐盐性、盐渍土的生物治理和综合开发是未来农业的重大课题。因此,了解盐胁迫的发生机理,盐胁迫下植物的生理生化变化,探讨盐胁迫作用机理及提高植物抗盐性的途径具有重要的理论意义[1]。中国的盐渍化土壤主要分布在东北、华北和西北地区。近年来,随着温室、大棚生产的发展,设施内土壤次生盐渍化程度不断加重,产量逐年下降,已成为国内外设施栽培中普遍存在的问题。提高植物的耐盐性是减轻土壤盐渍化危害的重要措施[2]。 1.盐胁迫对细胞生理生化特性的影响 1.1对细胞膜透性的影响在盐逆境中,植物细胞的质膜透性增加。耐盐性较强的植物细胞膜稳定性较强,质膜透性增加较少,伤害率低;而耐盐性弱的植物则相反。盐胁迫使葡萄愈伤组织和叶片的细胞膜透性增加,用Nacl溶液处理葡萄2d,当Nacl的浓度≤100mmol/L时,叶片细胞膜透性变化小;当Nacl的浓度>100mmol/L时,叶片细胞膜透性增加显著;当Nacl 浓度在75~200mmol/L时,叶片细胞膜透性随处理时间的延长明显增大。盐处理能使无花果叶片质膜透性增加,且增加幅度与品种耐盐性呈负相关。 1.2对细胞渗透调节物质的影响在盐胁迫下,果树体内常合成和积累一些渗透调节物质,主要有甘氨酸甜菜碱和脯氨酸等少数几种,以降低细胞渗透势,适应盐渍环境。甜

植物生理学的定义和研究内容

绪论 一、植物生理学的定义和研究内容 二、植物生理学产生与发展 三、植物生理学的任务与展望 四、学习方法 一.植物生理学(Plant Physiology)的定义及研究内容 1.定义: 简言之,植物生理学就是研究植物生命活动规律,揭示植物生命现象本质的一门科学。 植物的生命活动是在水分代谢,矿质营养,光合作用和呼吸作用,物质的运输与分配以及信息传递和信号转导等基本代谢基础上,所展示的种子萌发,生长,运动,开花,结实等生长发育过程。植物生理学就是研究和探索这些生命活动的各个生理过程内在的奥秘及其与环境的相互关系,通过对这些功能和作用机制,机理的研究,阐明植物生命活动的规律和本质。要点:(1)研究的对象是植物。因为绿色植物在生物界中具有无与伦比的特殊性——自养性,即它可以吸收简单的无机物(CO2、H2O和矿质元素等),利用太阳能,合成自身赖以生存任何物质(CH2O、脂肪、蛋白质、维生素等),自给自足建成自身。这就是生物的自养性。绿色植物的自养性是地球上的其它生物生存所需有机物及能量的根本来源。 (2)基本任务是探索植物生命活动的基本规律。2.研究内容 植物生理学的研究范畴不仅局限在个体,组织和器官,细胞,分子等某一结构层面上,也可以在较为宏观的个体或组织,器官水平上,也可以在细胞和分子的水平上。 植物完成其生活史,生命活动虽然十分复杂,从生理学角度可将其分为三大方面: ○1生长发育(growth and development)与形态建成(morphogenesis) 植物的生长发育是植物生命活动的外在表现。生长是指由于细胞数目增加,体积的扩大而导致的植物个体体积和重量的不可逆增加;发育是指由于细胞的分化所导致的新组织,新器官的出现所造成的一系列形态变化(或称形态建成),包括从种子萌发,根,茎,叶的生长,直到开花,结实,衰老,死亡的全过程。人类对植物生命活动的认识始于对其生长发育的观察和描述,如“春华秋实”,“春发,夏长,秋收,冬藏”等,正是人类对其认识的写照。 ○2物质与能量代谢(metabolism of substance and energy) 代谢过程是运行于植物体内的一系列生物化学和生物物理的变化过程。物质代谢是指物质的合成与分解过程;能量代谢是指能量的贮存与释放过程。代谢是生命活动的基础,而生长发育是代谢作用的综合表现与最终结果。代谢作用遭受破坏,生命过程就会受到影响,代谢一旦停止,生命过程就不复存在。

干旱胁迫盐胁迫百日草生理指标生长指标

马里兰百日草扎哈拉系列植物抗旱性与耐盐性研究 森林培育, 2010,硕士 【摘要】本课题主要对6种抗旱和耐盐能力未知的马里兰百日草(Z. marylandica)扎哈拉系列(Zahara Series)品种的抗旱性及耐盐性作一个初步研究。设置2个干旱胁迫强度处理(中度胁迫和重度胁迫) 和4个盐分胁迫梯度处理(EC(电导率)2.0 dS·m-1,EC 4.0dS·m-1, EC 6.0 dS·m-1和EC 8.0 dS·m-1)。研究在温室条件下这些实验材料对不同程度的干旱和盐分胁迫的形态,生理等的反应,旨在选育出抗 旱性或耐盐性较强的品种,同时也为百日草的引种驯化等提供基础性的理论依据。结果表明:(一)抗旱性研究1.所有品种的气孔导度均随干旱胁迫程度的提高而降低。同时发现土壤的含水量与叶片气孔导度呈现正相关关系,二者的变化基本一致.2.随着干旱胁迫水平的提高,6个品种的株高,侧枝数量,生长指数和蓓蕾数量等均呈下降趋势;就花朵直径和开花时间而言,品种之间的差异并不是很大。通过比较发现适度的干旱胁迫可能对提早植物开花有促进作用,但当干旱胁迫超过一定程度时反而会延迟植物开花:随着干旱胁迫程度的提高,所有品种的根和地上部分物质干重都有不同程度的下降;干旱处理水平的升高降低了百日... 更多还原 【Abstract】 This paper was focus on a primary study of drought and salt resistance of six Zinnia cultivars (Z. marylandica Zahara Series).2 different drought treatments and 4 different

当前植物生理生态学研究的几个热点问题

植物生态学报 2001,25(5)514~519 Acta P h ytoecolog i ca Si nica ·植物生理生态学专栏· 当前植物生理生态学研究的几个热点问题 蒋高明 (中国科学院植物研究所植被数量生态学开放研究实验室,北京 100093) 摘 要 简要介绍了最近国内外植物生理生态学研究的几个热点问题。这些问题主要围绕着人类活动影响造成的几大重要环境因子改变而可能导致的植物生理生态变化展开,包括CO2浓度升高、紫外辐射增加、温度变化、强光、盐生环境扩大化等;部分工作探讨已经存在的特殊生境下的植物生态适应。其中,围绕着陆地生态系统的碳平衡是最为热门的话题之一。虽然以CO2浓度升高主题展开对C3和C4植物的影响研究依然是众多刊物发表生理生态学原始论文的重要内容,一些特殊功能型如C AM植物的响应引起了人们的兴趣;植物对于紫外辐射的生理生态响应有望成为新的研究热点。研究手段的完善以及实验材料的改进是最近植物生理生态学不断出新成果的重要原因之一,如稳定同位素技术的应用、野外F ACE实验、叶绿素荧光技术等使一些机理性问题不断被揭示出来。 关键词 植物生理生态学 全球变化 CO2 紫外辐射 强光辐射 高温与低温 REVIEW ON SOME HOT TOPICS TOWARDS THE RESEARCHES I N THE FIELD OF PLANT PHYSIOEC OLOGY JIAN G Gao-M ing (Lab oratory of Quantitative Vegetation Ecology,Institu te of Botany,the Chinese Academy of Sciences,Beijing 100093) Abstract Some hot topics i n plant physioecology research have recently made regular appearances in a number of important int ernational journals(Science,N ature,etc.).These describe the responses of plant physioecology and g row th to facto rs such as:increasi ng CO2concentration,ul traviolet radiation enhancement,changes in tem-perature,sunlight i rradiation and the enlargement of sal ty habi tats.All of these factors are closely associated wi th the processes of global climat e change.Some of the research,however,aims to investigate the response of plant s to existing environmental st resses in specialised environmental habitat s.Among the intensive studies,the carbon budget of t errest rial ecosystems is one of the ho ttest topics,research conducted recent ly,including:the e-mission of greenhouse gasses,si nk and source dynamics of carbon at regional and global scales and the function of the terrest rial and oceanic ecosystems.Al though the responses of C3and C4species t o elevated CO2are sti ll the main topics i n most journals,there has been much progress i n study of CAM functional types.Prog ress in the ap-plication of new t echnologies such as st able isotope methods,f ree air CO2enrichment(FACE)facili ti es,and chlorophyll fluorescence t echnology hav e helped g rea tly i n understandi ng these general problems. Key words Plant physioecology,Global climate chang e,CO2,Ul traviolet radiation,High light radiation,High or low temperat ure st ress 近年来,由于人类经济活动对生物圈干扰的不断升级,造成的生态环境问题越来越突出,如全球气候变化、生物多样性丧失、环境污染的扩大等。对这些环境问题的解决引起了各国政府与科学家的广泛关注。植物生理生态学(Plant Phy sioeco logy)是研究生态因子与植物生理现象之间的关系的科学,它从生理机制上探讨植物与环境的关系、物质代谢和能量流动规律以及植物在不同环境条件下的适应性(La rcher,1995)。由于它能够给许多生态环境问题以生理机制上的解释,因而得到日益广泛的重视。 收稿日期:2001-06-01 接受日期:2001-07-30 基金项目:中国科学院重大创新项目(KS CX1-08-02)和国家重大基础研究与发展计划项目(G1998010100) E-mail:jgm@h https://www.wendangku.net/doc/ec6077672.html,

植物生理学主要内容

植物生理学主要内容 绪论 一、植物生理学的定义和任务 (一)定义植物生理学是研究植物生命活动规律的科学。从定义知,它的研究对象是植物,但和人类关系最密切的植物多是高等植物(农作物、林木、果蔬、花卉等),所以植物生理学研究的对象主要是高等植物。 生命活动规律:是指植物体内各种生理过程以及作为这些生理过程基础的生物物理和生物化学过程,包括“水分代谢、矿质营养、光合作用、呼吸作用、有机物的转化和运输、生长和发育”等,以及这些过程与外界环境条件之间的联系。 它研究植物“从种子→幼苗→营养体生长→开花、合子→结实、衰老死亡”整个生活周期中,植物体在自身的遗传因子控制和外界环境影响下,如何通过“物质代谢、能量转化和信息传递”而在一定的时间、空间有序生长发育的规律和机理。 物质代谢:光合作用利用太阳能把CO2,水和无机物转化成有机物,光合作用合成的有机物作为呼吸作用的底物,通过呼吸代谢途径,分解成CO2、H2O及其他中间产物。合成分解的物质形式有:糖、脂肪、蛋白质、核酸以及其他次生物质等。 能量的转化:是伴随着物质代谢过程进行,ATP作为能量转化的“通货”。在水分和矿质的吸收和运输基础上,进行大分子物质的合成、转化、信息传递与转化以及植物的生长和运动等。 信息传递:植物生活周期在时间和空间上有条不紊地进行与信息传递分不开的,以核酸为载体的遗传信息世代传递,它是植物个体发育沿确定方向进行的基础,并不断进化、发展。 综上所述,物质和能量代谢过程是植物生长发育的基础,而包括遗传信息在内的信息传递是控制生长发育的“开关”,三者有机结合组成了植物生理学的基本内容。 (二)任务 研究植物在各种环境条件下生命活动的规律和机理,并将这些研究成果应用于植物生产中。 蔬菜、果树、花卉、园林等栽培都是以植物生理学为理论基础的,认识了植物的生理生化本

植物生理第三章复习题_光合作用

第三章植物的光合作用 二、中译英(Translate) 4、叶绿体 5、类囊体 7、叶绿素 8、类胡萝卜素 13、光反应 14、碳反应 15、原初反应 16、光合单位 18、电子传递 19、光合链 20、光合磷酸化 23、化学渗透假说 23、卡尔文循环 26、光呼吸 27、暗呼吸 29、光合产物 30、光合速率 31、光补偿点 32、光饱和现象 39、天线色素 40、聚光色素 41、反应中心 42、光系统I 43、放氧复合体 三、名词解释(Explain the glossary)

四、是非题(True or false) ()1、叶绿体是单层膜的细胞器。 ()3、光合作用中释放的O2使人类及一切需O2生物能够生存。 ()4、所有的叶绿素分子都具备有吸收光能和将光能转换电能的作用。 ()5、叶绿素具有荧光现象,即在透谢光下呈绿色,在反射光下呈红色。 ()6、一般说来,正常叶子的叶绿素a和叶绿素b的分子比例约为3:1。 ()10、碳反应是指在黑暗条件下所进行的反应。 ()11、光合作用中的暗反应是在叶粒体基质上进行。 ()12、在光合链中最终电子受体是水,最终电子供体是NADPH。 ()13、卡尔文循环是所有植物光合作用碳同化的基本途径。 ()14、C3植物的光饱和点高于C4植物的。 ()15、C4植物的CO2补偿点低于C3植物。 ()16、在弱光下,光合速率降低比呼吸速率慢,所以要求较低的CO2水平,CO2补偿点低。()17、光合作用中的暗反应是由酶催化的化学反应,故温度是其中一个最重要的影响因素。()19、在光合用的总反应中,来自水的氧被参入到碳水化合物中。 ()22、光合作用产生的有机物质主要为脂肪,贮藏着大量能量。 ()23、PSI的作用中心色素分子是P680。 ()24、PSII的原初电子供体是PC。 ()25、PSI的原初电子受体是Pheo。 五、选择题(Choose the best answer for each question) 1、光合作用的产物主要以什么形式运出叶绿体?() A、蔗糖 B、淀粉 C、磷酸丙糖 3、叶绿体中由十几或几十个类囊体垛迭而成的结构称() A、间质 B、基粒 C、回文结构 4、C3途径是由哪位植物生理学家发现的?() A、Mitchell B、Hill C、Calvin 9、PSI的光反应的主要特征是() A、ATP的生成 B、NADP+的还原 C、氧的释放 10、高等植物碳同化的二条途径中,能形成淀粉等产物的是() A、C4途径 B、CAM途径 C、卡尔文循环 12、正常叶子中,叶绿素和类胡萝卜素的分子比例约为() A、2:1 B、1:1 C、3:1 13、光合作用中光反应发生的部位是() A、叶绿体基粒 B、叶绿体基质 C、叶绿体膜 14、光合作用碳反应发生的部位是() A、叶绿体膜 B、叶绿体基质 C、叶绿体基粒 15、光合作用中释放的氧来原于() A、H2O B、CO2 C、RuBP 16、卡尔文循环中CO2固定的最初产物是() A、三碳化合物 B、四碳化合物 C、五碳化合物 17、C4途径中CO2的受体是() A、PGA B、PEP C、RuBP 18、光合产物中淀粉的形成和贮藏部位是() A、叶绿体基质 B、叶绿体基粒 C、细胞溶质 19、在光合作用的产物中,蔗糖的形成部位在() A、叶绿体基粒 B、胞质溶胶 C、叶绿体间质 20、光合作用吸收CO2与呼吸作用释放的CO2达到动态平衡时,外界的CO2浓度称为()

植物生理学第三章 植物的光合作用

第三章植物的光合作用 一、名词解释 1. C3途径 2. C4途径 3. 光系统 4. 反应中心 5. 原初反应 6. 荧光现象 7. 红降现象8. 量子产额9. 爱默生效应 10. PQ循环11. 光合色素12. 光合作用 13. 光合单位14. 反应中心色素15. 聚光色素 16. 解偶联剂17. 光合磷酸化18. 光呼吸 19. 光补偿点20. CO2补偿点21. 光饱和点 22. 光能利用率23. 光合速率 二、缩写符号翻译 1. Fe-S 2. PSI 3. PSII 4. OAA 5. CAM 6. NADP+ 7. Fd 8. PEPCase 9. RuBPO 10. P680、P700 11. PQ 12. PEP 13. PGA 14. Pheo 15. RuBP 16. RubisC(RuBPC) 17. Rubisco(RuBPCO) 18.TP 三、填空题 1. 光合作用的碳反应是在中进行的,光反应是在中进行的。 2. 在光合电子传送中最终电子供体是,最终电子受体是。 3. 在光合作用过程中,当形成后,光能便转化成了活跃的化学能;当形 成后,光能便转化成了稳定的化学能。 4. 叶绿体色素提取掖液在反射光下观察呈色,在透射光下观察呈色。 5. P700的原初电子供体是,原初电子受体是。 6. 光合作用的能量转换功能是在类囊体膜上进行的,所以类囊体亦称为。 7. 光合作用中释放的氧气来自于。 8. 与水光解有关的矿质元素为。 9. 和两种物质被称为同化能力。 10. 光的波长越长,光子所持有的能量越。 11. 叶绿素吸收光谱的最强吸收区有两个:一个在,另一个在。 12. 光合磷酸化有三种类型:、、。 13. 根据C4化合物和催化脱羧反应的酶不同,可将C4途径分为三种类型:、、。 14. 一般来说,正常叶子的叶绿素和类胡萝卜素的分子比例为;叶黄素和胡萝卜素的 分子比例为。 15. 光合作用中,淀粉的形成是在中,蔗糖的形成是在中。 16. C4植物的C3途径是在中进行的;C3植物的卡尔文循环是在中进行的。 17. C4植物进行光合作用时,只有在细胞中形成淀粉。 四、选择题 1. C3途径是由谁发现的?( ) A.Mikhell B.Hill C.Calvin D.Hatch 2. C4途径是由哪位植物生理学家发现的?( ) A.Calvin B. Hatch and Slack C.Emerson D.Hill 3. 光合产物主要以什么形式运出叶绿体?( )

盐胁迫对植物生理生化特性的影响

盐胁迫对植物生理生化特性的影响根据联合国粮农组织(FAO)统计,全世界存在盐渍土面积8亿 hm2,占陆地面积的6%。据统计,我国盐渍土面积为3 470 万 hm2,土壤盐渍化是世界上许多干旱和半干旱地区农作物产量下降的主要原因。 土壤中过量的盐分能够引起土壤物理和化学性质的改变,从而导致大部 分农作物生长环境的恶化。盐渍土作为一种土地资源,在全国乃至全世 界都有着广泛的分布和较大的面积迄今为止,我国有80%左右的盐渍土 尚未得到开发利用,有着巨大的开发利用潜力。 1盐胁迫对植物耐受性的影响 近年来,盐胁迫对各种植物各个性状方面的影响已成为很多科学家 研究的重点。包括对拟南芥、玉米、马铃薯、水稻、香蕉、黄瓜、花生 和韭菜等植物都有过相关的研究。童仕波等证明转基因拟南芥对盐胁迫 的耐受性明显增强。其脯氨酸(Pro)含量明显提高。赵昕等研究发现 (NaCl)降低拟南芥叶绿。体对光能的吸收能力,而且降低叶绿体的光 化学活性。使电子传递速率和光能转化效率大幅度下降,造成光能转化 为化学能的过程受阻,进一步加剧了光合放氧和碳同化能力的降低。盐 胁迫下拟南芥中的(Na+)与(K+)含量变化呈极显著正相关。因此 推断它们的吸收通道或载体为单一竞争性。发现盐浓度达到一定程度 时,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶 (CAT)活性均达到最高。随后随着(NaCl)浓度的增加,SOD、 POD、CAT活性逐渐降低。表明SOD、POD、CAT活性不能维持较高水平。反之会导致膜脂过氧化作用加强,细胞膜受到损害。研究发现盐浓度对马铃薯脱毒苗叶片SOD和POD活性影响极显著。盐比例及盐浓度与盐比例的交互作用对马铃薯脱毒苗叶片SOD和POD活性影响均不显著。随着混合盐浓度的增加(Na+)含量显著增加K+含量平缓下降。(Na+)与(K+)的比值显著上升。发现,水稻在(NaCl)浓度为30 mmol/L 时生长状况良好,但随着NaCl浓度的增加,水稻的生长速度减慢。在一定范围内POD和SOD的活性与胁迫强度呈正相关。游离脯氨酸和可溶性糖含量也随着 NaCl浓度的增加而增加。 2盐胁迫对植物生理生化特性的影响 2.1盐胁迫对植物MDA含量的影响 植物器官衰老时或在逆境条件下,往往发生膜脂过氧化作用,其产 物MDA会严重损伤生物膜。常用MDA作为膜脂过氧化指标表示细胞膜 脂过氧化程度和植物衰老指标及对逆境条件反应的强弱。 李会云等以葡萄砧木扦插苗为试验材料的研究结果表明,随着土壤 含盐量的增加MDA含量逐渐升高。骆建霞等以海姆维斯蒂枸子为材料 证明随盐浓度的升高MDA含量基本保持上升趋势。李源等以紫花苜蓿 为材料,得出了同样的结果。此外,一些研究者利用外源Si、水杨酸、 壳聚糖和硒处理植物,使得盐胁迫处理的植物MDA含量降低,免受盐 胁迫侵害。

相关文档