文档库 最新最全的文档下载
当前位置:文档库 › 预测模型分类

预测模型分类

预测模型分类
预测模型分类

预测模型分类及优缺点分析

灰色(系统)预测模型

神经网络预测模型

趋势平均预测法

1 微分方程模型

当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态、研究它的控制手段时,通常要建立对象的动态微分方程模型。微分方程大多是物理或几何方面的典型.问题,假设条件已经给出,只需用数学符号将已知规律表示出来,即可列出方程,求解的结果就是问题的答案,答案是唯一的,但是有些问题是非物理领域的实际问题,要分析具体情况或进行类比才能给出假设条件。作出不同的假设,就得到不同的方程。比较典型的有:传染病的预测模型、经济增长预测模型、正规战与游击战的预测模型、药物在体内的分布与排除预测模型、人口的预测模型、烟雾的扩散与消失预测模型以及相应的同类型的预测模型。其基本规律随着时间的增长趋势是指数的形式,根据变量的个数建立初等微分模型。微分方程模型的建立基于相关原理的因果预测法。该法的优点:短、中、长期的预测都适合,而.既能反映内部规律,反映事物的内在关系,也能分析两个因素的相关关系,精度相应的比较高,另外对初等模型的改进也比较容易理解和实现。该法的缺点:虽然反映的是内部规律,但是由于方程的建立是以局部规律:的独立性假定为基础,故做中长期预测时,偏差有点大,而且微分方程的解比较难以得到。

2 时间序列法

将预测对象按照时问顺序排列起来,构成一个所谓的时间序列,从所构成的这一组时间序列过去的变化规律,推断今后变化的可能性及变化趋势、变化规律,就是时间序列预测法。时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。考虑一组给定的随时间变化的观察值,t=1,2,3,?,n},如何选取合适模型预报,t=n+1,n+3,n+k}的值。

上面的模型统称ARMA模型,是时间序列建模中最重要和最常用的预测手段。事实上,对实际中发生的平稳时间序列做恰当的描述,往往能够得到自回归、滑动平均或混合的模型,其阶数通常不超过2。时间序列模型其实也是一种回归模型,属于定量预测,其基于的原理是,一方面承认事物发展的延续性,运用过去时间序列的数据进行统计分析就能推测事物的发展趋势;另一方面又充分考虑到偶然因素影响而产生的随机性,为了消除随机波动的影响,利用历史数据,进行统计分析,并对数据进行适当的处理,进行趋势预测。优点是简单易行,便于掌握,能够充分运用原时间序列的各项数据,计算速度快,对模型参数有动态确定的能力,精度较好,采用组合的时间序列或者把时间序列和其他模型组合效果更好。缺点是不能反映事物的内在联系,不能分析两个因素的相关关系,常数的选择对数据修匀程度影响较大,不宜取得太小,只适用于短期预测

3 灰色预测理论模型

灰色预测的基本思路是将已知的数据序列按照某种规则构成动态或非动态的白色模块,再按照某种变化、解法来求解未来的灰色模型。它的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。其核心体系是灰色模型(GM),即对原始数据作累加生成(或其他方法生成)得到近似的指数规律再进行建模的模型方法。优点是不需要很多的数据,一般只需要4个数据就够,能解决历史数据少、序列的完整性及可靠性低的问题;能利用微分方程来充分挖掘系统的本质,精度高;能将无规律的原始数据进行生成得到规律性较强的生成数列,运算简便,易于检验,具有不考虑分布规律,不考虑变化趋势。缺点是只适用于中长期的预测,只适合指数增长的预测,对波动性不好的时间序列预测结果较差。

4 BP神经网络模型

BP神经网络模型,是目前神经网络学习模型中最具代表性、应用最普遍的模型。BP神经网络架构是由数层互相连结的神经元组成,通常包含了输入层、输出层及若干隐藏层,各层包含了若干神经元。神经网络便于依照学习法则,透过训练以调整连结链加权值的方式来完成目标的收敛。所得的神经网络构架结构基本形式.BP神经网络的神经采用的传递函数一般都是Sigmoid(S壮弯曲)型可微函数,是严格的递增函数,在线性和非线性之间显现出较好的平衡,所以可实现输入和输出间的任意非线性映射,适用于中长期的预测;优点是逼近效果好,计算速度快,不需要建立数学模型,精度高;理论依据坚实,推导过程严谨,所得公式对称优美,具有强非线性拟合能力。缺点是无法表达和分析被预测系统的输入和输出间的关系,预测人员无法参与预测过程;收敛速度慢,难以处理海量数据,得到的网络容错能力差,算法不完备(易陷入局部极小)。

5 结束语

本文综合介绍了几种基本预测方法的使用范围和相应的优缺点,学生可以根据以上的一些经验,在建立预测模型的时候可以依据不同的情况进行不同的选择,从而建立合理的数学模型。其实在一般情况下最合理的就是组合模型,也就是把上述的两种或两种以上的模型综合运用,所取得的精确度会更好,稳定性也会更好。

生存分析-随机森林实验与代码

随机森林模型在生存分析中的应用 【摘要】目的:本文探讨随机森林方法用于高维度、强相关、小样本的生 存资料分析时,可以起到变量筛选的作用。方法:以乳腺癌数据集构建乳腺癌转 移风险评估模型为实例进行实证分析, 使用随机森林模型进行变量选择,然后拟 合cox 回归模型。 结果:随机森林模型通过对变量的选择,有效的解决数据维 度高且强相关的情况,得到了较高的 AUC 值。 一、数据说明 该乳腺癌数据集来自于NCBI ,有77个观测值以及22286个基因变量。通过 筛选选取454个基因变量。将数据随机分为训练集合测试集,其中2/3为训练集, 1/3为测试集。绘制K-M 曲线图: 二、随机森林模型 随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法, 因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随 机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最 多的那类为最终的结果。因此随机森林是一个包含多个决策树的分类器, 并且其 输出的类别是由个别树输出的类别的众数而定 使用randomForestSRC 包得到的随机森林模型具有以下性质: Kaplan-Meker estlmaie wHh 95% conndence bounds S ?2 S

Number of deaths: 27 Number of trees: 800 Mini mum term inal node size: 3 Average no. of term inal no des: 14.4275 No. of variables tried at each split: 3 Total no. of variables: 452 Analysis: RSF Family: surv Splitting rule: logrank Error rate: 19.87% 发现直接使用随机森林得到的模型,预测误差很大,达到了19.8%进一步考虑使用随机森林模型进行变量选择,结果如下: > our.rf$rfsrc.refit.obj Sample size: 52 Number of deaths: 19 Number of trees: 500 Minimum terminal node size: 2 Average no. of term inal no des: 11.554 No. of variables tried at each split: 3 Total no. of variables: 9 Analysis: RSF Family: surv Splitting rule: logrank *random* Number of random split points: 10 Error rate: 11.4% > our.rf$topvars [1] "213821_s_at" "219778_at" "204690_at" "220788_s_at" "202202_s_at" [6] "211603_s_at" "213055_at" "219336_s_at" "37892_at" 一共选取了9个变量,同时误差只有11.4% 接下来,使用这些变量做cox回归,剔除模型中不显著(>0.01 )的变量,最终 参与模型建立的变量共有4个。模型结果如下: exp(coef) exp(-coef) lower .95 upper .95 '218150_at' 1.6541 0.6046 0.11086 24.6800 '200914_x_at' 0.9915 1.0086 0.34094 2.8833 '220788_s_at' 0.2649 3.7750 0.05944 1.1805 '201398_s_at' 1.7457 0.5729 0.33109 9.2038 '201719 s at' 2.4708 0.4047 0.93808 6.5081

预测方法的分类

预测方法的分类 郑XX 预测方法的分类 由于预测的对象、目标、内容和期限不同,形成了多种多样的预测方法。据不完全统计,目前世界上共有近千种预测方法,其中较为成熟的有150多种,常用的有30多种,用得最为普遍的有10多种。 1-1预测方法的分类体系 1)按预测技术的差异性分类 可分为定性预测技术、定量预测技术、定时预测技术、定比预测技术和评价预测 技术,共五类。 2)按预测方法的客观性分类 可分为主观预测方法和客观预测方法两类。前者主要依靠经验判断,后者主要借 助数学模型。 3)按预测分析的途径分类 可分为直观型预测方法、时间序列预测方法、计量经济模型预测方法、因果分析 预测方法等。 4)按采用模型的特点分类 可分为经验预测模型和正规的预测模型。后者包括时间关系模型、因果关系模 型、结构关系模型等。 1-2 常用的方法分类 1)定性分析预测法 定性分析预测法是指预测者根据历史与现实的观察资料,依赖个人或集体的经验与智慧,对未来的发展状态和变化趋势作出判断的预测方法。 定性预测优缺点 定性预测的优点在于: 注重于事物发展在性质方面的预测,具有较大的灵活性,易于充分发挥人的主观能动作用,且简单的迅速,省时省费用。

定性预测的缺点是: 易受主观因素的影响,比较注重于人的经验和主观判断能力,从而易受人的知识、经验和能力的多少大小的束缚和限制,尤其是缺乏对事物发展作数量上的精确描述。 2)定量分析预测法 定量分析预测法是依据调查研究所得的数据资料,运用统计方法和数学模型,近似地揭示预测对象及其影响因素的数量变动关系,建立对应的预测模型,据此对预测目标作出定量测算的预测方法。通常有时间序列分析预测法和因果分析预测法。 ⅰ时间序列分析预测法 时间序列分析预测法是以连续性预测原理作指导,利用历史观察值形成的时间数列,对预测目标未来状态和发展趋势作出定量判断的预测方法。

随机森林实验报告

随机森林实验报告 实验目的 实现随机森林模型并测试。 实验问题 Kaggle第二次作业Non-linear classification 算法分析与设计 一.算法设计背景: 1.随机森林的原子分类器一般使用决策树,决策树又分为拟合树和分类树。这两者的区别在于代价估值函数的不同。 2.根据经验,用拟合树做分类的效果比分类树略好。 3.对于一个N分类问题,它总是可以被分解为N个2分类问题,这样分解的好处是其决策树更加方便构造,更加简单,且更加有利于用拟合树来构建分类树。对于每一个2分类问题,构造的树又叫CART树,它是一颗二叉树。 4.将N个2分类树的结果进行汇总即可以得到多分类的结果。 树构造:

6.随机森林构造: 二.算法思路: 将一个N分类问题转化为N个二分类问题。转化方法是:构造N棵二叉拟合树,这里假设N为26,然后我们给N棵二叉树依次标号为1,2,3...26。1号树的结果对应于该条记录是不是属于第一类,是则输出1,否则输出号树的结果对应于该条记录是不是属于第二类,是则1否则0,依此类推。这样,我们的26棵二叉树的结果就对应了26个下标。 例如对于某条记录,这26个二叉树的结果按序号排列为{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...1,0},那么这条记录的分类应该为25。要将一个26维的0,1序列变回

一个索引,我们只需要找出这个序列中值最大的元素的索引,这个索引即是序列号。 我们将上面的26棵分别对26个索引做是否判断的二分类树视为一个整体,在多线程的环境下,构造多个这样的整体,然后进行求和运算,最后取出每个结果序列中值最大的元素的下标作为分类值,那么久得到了我们想要的结果,随机森林完成。 三.算法流程: 1.读入训练集trainset,测试集testset 2.将训练集分割为输入trainIn,输出trainOut 3.这里假设类别数N为26,将trainOut[记录条数] 映射为 transformTrainOut[训练记录数][26] 4.初始化transformTestOut[测试记录数][26]全部为0 i = 1 : ForestSize: 策树 在这里,我们每一次26分类是由26棵CART共同完成的,CART的cost function采用的是gini系数,CART的最大层数为7,分裂停止条件为当前节点GINI为0或者当前节点所在层数到达了7. 2.随机森林 a.随机森林每次循环的训练集采样为原训练集的. b.对于森林中每一棵决策树每一次分割点的选取,对属性进行了打乱抽样,抽样数为25,即每次分割只在25个属性中寻找最合适的值。并且对于每个选取的属性,我们进行了行采样。即如果这个属性所拥有的属性值数大于30,我们选取其中30个作为分割候选,如果小于30,则全部纳入分割候选。 四.代码详解 1.训练集/测试集的读入 a.在中定义了:

试述数据模型的概念

试述数据模型的概念,数据模型的作用和数据模型的三个要素: 答案: 模型是对现实世界的抽象。在数据库技术中,表示实体类型及实体类型间联系的模型称为“数据模型”。 数据模型是数据库管理的教学形式框架,是用来描述一组数据的概念和定义,包括三个方面: 1、概念数据模型(Conceptual Data Model):这是面向数据库用户的实现世界的数据模型,主要用来描述世界的概念化结构,它使数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等,与具体的DBMS 无关。概念数据模型必须换成逻辑数据模型,才能在DBMS中实现。 2、逻辑数据模型(Logixal Data Model):这是用户从数据库所看到的数据模型,是具体的DBMS所支持的数据模型,如网状数据模型、层次数据模型等等。此模型既要面向拥护,又要面向系统。 3、物理数据模型(Physical Data Model):这是描述数据在储存介质上的组织结构的数据模型,它不但与具体的DBMS有关,而且还与操作系统和硬件有关。每一种逻辑数据模型在实现时都有起对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实现工作又系统自动完成,而设计者只设计索引、聚集等特殊结构。 数据模型的三要素: 一般而言,数据模型是严格定义的一组概念的集合,这些概念精确地描述了系统的静态特征(数据结构)、动态特征(数据操作)和完整性约束条件,这就是数据模型的三要素。 1。数据结构 数据结构是所研究的对象类型的集合。这些对象是数据库的组成成分,数据结构指对象和对象间联系的表达和实现,是对系统静态特征的描述,包括两个方面: (1)数据本身:类型、内容、性质。例如关系模型中的域、属性、关系等。 (2)数据之间的联系:数据之间是如何相互关联的,例如关系模型中的主码、外码联系等。 2 。数据操作 对数据库中对象的实例允许执行的操作集合,主要指检索和更新(插入、删除、修改)两类操作。数据模型必须定义这些操作的确切含义、操作符号、操作规则(如优先级)以及实现操作的语言。数据操作是对系统动态特性的描述。 3 。数据完整性约束 数据完整性约束是一组完整性规则的集合,规定数据库状态及状态变化所应满足的条件,以保证数据的正确性、有效性和相容性。

随机森林算法介绍及R语言实现

随机森林算法介绍及R语言实现 随机森林算法介绍 算法介绍: 简单的说,随机森林就是用随机的方式建立一个森林,森林里面有很多的决策树,并且每棵树之间是没有关联的。得到一个森林后,当有一个新的样本输入,森林中的每一棵决策树会分别进行一下判断,进行类别归类(针对分类算法),最后比较一下被判定哪一类最多,就预测该样本为哪一类。 随机森林算法有两个主要环节:决策树的生长和投票过程。 决策树生长步骤: 1.从容量为N的原始训练样本数据中采取放回抽样方式(即bootstrap取样) 随机抽取自助样本集,重复k(树的数目为k)次形成一个新的训练集N,以此生成一棵分类树; 2.每个自助样本集生长为单棵分类树,该自助样本集是单棵分类树的全部训 练数据。设有M个输入特征,则在树的每个节点处从M个特征中随机挑选m(m < M)个特征,按照节点不纯度最小的原则从这m个特征中选出一个特征进行分枝生长,然后再分别递归调用上述过程构造各个分枝,直到这棵树能准确地分类训练集或所有属性都已被使用过。在整个森林的生长过程中m将保持恒定; 3.分类树为了达到低偏差和高差异而要充分生长,使每个节点的不纯度达到 最小,不进行通常的剪枝操作。 投票过程: 随机森林采用Bagging方法生成多个决策树分类器。 基本思想: 1.给定一个弱学习算法和一个训练集,单个弱学习算法准确率不高,可以视 为一个窄领域专家; 2.将该学习算法使用多次,得出预测函数序列,进行投票,将多个窄领域专 家评估结果汇总,最后结果准确率将大幅提升。 随机森林的优点: ?可以处理大量的输入变量; ?对于很多种资料,可以产生高准确度的分类器; ?可以在决定类别时,评估变量的重要性; ?在建造森林时,可以在内部对于一般化后的误差产生不偏差的估计;

预测模型分类

预测模型分类及优缺点分析 灰色(系统)预测模型 神经网络预测模型 趋势平均预测法 1 微分方程模型 当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态、研究它的控制手段时,通常要建立对象的动态微分方程模型。微分方程大多是物理或几何方面的典型.问题,假设条件已经给出,只需用数学符号将已知规律表示出来,即可列出方程,求解的结果就是问题的答案,答案是唯一的,但是有些问题是非物理领域的实际问题,要分析具体情况或进行类比才能给出假设条件。作出不同的假设,就得到不同的方程。比较典型的有:传染病的预测模型、经济增长预测模型、正规战与游击战的预测模型、药物在体内的分布与排除预测模型、人口的预测模型、烟雾的扩散与消失预测模型以及相应的同类型的预测模型。其基本规律随着时间的增长趋势是指数的形式,根据变量的个数建立初等微分模型。微分方程模型的建立基于相关原理的因果预测法。该法的优点:短、中、长期的预测都适合,而.既能反映内部规律,反映事物的内在关系,也能分析两个因素的相关关系,精度相应的比较高,另外对初等模型的改进也比较容易理解和实现。该法的缺点:虽然反映的是内部规律,但是由于方程的建立是以局部规律:的独立性假定为基础,故做中长期预测时,偏差有点大,而且微分方程的解比较难以得到。 2 时间序列法 将预测对象按照时问顺序排列起来,构成一个所谓的时间序列,从所构成的这一组时间序列过去的变化规律,推断今后变化的可能性及变化趋势、变化规律,就是时间序列预测法。时间序列预测一般反映三种实际变化规律:趋势变化、周期性变

化、随机性变化。考虑一组给定的随时间变化的观察值,t=1,2,3,?,n},如何选取合适模型预报,t=n+1,n+3, n+k}的值。 上面的模型统称ARMA模型,是时间序列建模中最重要和最常用的预测手段。 事实上,对实际中发生的平稳时间序列做恰当的描述,往往能够得到自回归、滑动平均或混合的模型,其阶数通常不超过2。时间序列模型其实也是一种回归模型,属于定量预测,其基于的原理是,一方面承认事物发展的延续性,运用过去时间序列的数据进行统计分析就能推测事物的发展趋势;另一方面又充分考虑到偶然因素影响而产生的随机性,为了消除随机波动的影响,利用历史数据,进行统计分析,并对数据进行适当的处理,进行趋势预测。优点是简单易行,便于掌握,能够充分运用原时间序列的各项数据,计算速度快,对模型参数有动态确定的能力,精度较好,采用组合的时间序列或者把时间序列和其他模型组合效果更好。缺点是不能反映事物的内在联系,不能分析两个因素的相关关系,常数的选择对数据修匀程度影响较大,不宜取得太小,只适用于短期预测 3 灰色预测理论模型 灰色预测的基本思路是将已知的数据序列按照某种规则构成动态或非动态的 白色模块,再按照某种变化、解法来求解未来的灰色模型。它的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。其核心体系是灰色模型(GM),即对原始数据作累加生成(或其他方法生成)得到近似的指数规律再进行建模的模型方法。优点是不需要很多的数据,一般只需要4个数据就够,能解决历史数据少、序列的完整性及可靠性低的问题;能利用微分方程来充分挖掘系统的本质,精度高;能将无规律的原始数据进行生成得到规律性较强的生成数列,运算简便,易于检验,具有不考虑分布规律,不考虑变化趋势。缺点是只适用于中长期的预测,只适合指数增长的预测,对波动性不好的时间序列预测结果较差。 4 BP神经网络模型

随机森林与逻辑回归模型在违约预测中的应用

2016年第21期 信息与电脑 China Computer&Communication 计算机工程应用技术 随机森林与逻辑回归模型在违约预测中的应用 刘开元 (广州大学 计算机科学与教育软件学院,广东 广州 510006) 摘 要:近几年来随着国家经济以及汽车消费信贷市场的发展,贷款违约问题逐渐成为各家信贷机构关注的焦点。目前,汽车信贷违约预测的方法还不够完善,为了建立起一套行之有效的模型,笔者通过将随机森林组合算法与逻辑回归相结合,对某商业银行的汽车信贷数据进行分析,构建了一个易于解释且实用的违约判别模型。 关键词:随机森林;逻辑回归;违约预测;汽车贷款 中图分类号:P642.22 文献标识码:A 文章编号:1003-9767(2016)21-111-02 1 引言 21世纪初,车辆信贷市场在国内打开,许多银行预感汽车信贷的获利机遇,纷纷开始进入车贷市场。在接下来的几年里,车辆信贷业务发展迅猛,仅仅两年多的时间里,银行车辆信贷业务增加了数倍,据统计,仅2003年车贷额就增加30亿左右,平均每月增加2亿至3亿,最多的月增加达到6亿多。2003年底,上海一个市的银行发放汽车贷款超过80亿。然而在车贷市场迅猛发展的同时,车贷违约问题逐渐暴露出来,因为车贷风险要比房贷来得快而高,车贷风险释放使银行违约率上升的同时,车贷坏账最终的受害者也是银行本身。为了降低坏账率,构建一个适用的违约判别模型就成为了各家信贷机构关注的重大点。本文在传统决策树模型的基础上引入随机森林组合算法,使得模型在易于解释的同时能得到更好的预测结果。 2 随机森林与逻辑回归组合模型 2.1 决策树与随机森林 决策树是一个贪婪算法,它代表的是对象属性与对象值之间的一种映射关系。决策树通过熵增益率或Gini 系数下降幅度对对象属性进行分组判断,理想的分组应尽量使两组输出变量值的Gini 系数下降幅度或熵增益率最大。 Gini 系数表达式为:2 1i Gini p =?∑。信息熵表达式为:2log ()i i info p p =∑。 其中为样本类别在当前分类样本下出现的频率。 随机森林最早起源于贝尔实验室Tin Kam Ho 提出的随即决策森林(Random Decision Forests )算法,后由Leo Breiman 和Adele Cutler 提出。随机森林实际上由许多决策树组成,最后分类结果取决于各个决策树分类器的简单多数选举。 随机森林是一个由一组决策树分类器(h (X ,f k (θ)),k =1~K )组成的分类器集合,其中为输入向量集, f (x )表示单个决策树,θk 是服从独立同分布的输入向量集的子集,K 表示随机森林中决策树的个数,在给定自变量X 的情况下,每个决策树通 过投标来决定最优的分类结果。 随机森林算法构造如下: (1)对给定的训练样本,随即可重复取样,形成新的子样本数据; (2)对新的子样本数据中的M 个特征变量随机抽取m (m <M )个特征,构造完整的决策树; (3)重复前两个步骤得到K 个决策树,形成随机森林;(4)每个决策树投票,选出最优的分类。随机森林模型如图1 所示。 图1 随机森林模型 2.2 逻辑回归 逻辑回归是一种广义线性回归(Generalized Linear Model ),因此与多元线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有βx+β0,其中β为权重,β0为阈值,区别在于它们的因变量不同,多元线性回归直接将βx+β0作为因变量,即y =βx+β0,而逻辑回归则通过逻辑函数对表达式进行logit 变换,然后根据阈值设定大小决定因变量的值。 逻辑回归算法构造如下。 (1)对给定的训练样本X 进行多元线性回归得到逻辑回归的输入向量h (x ): 011() i n n h x βββ=+x +...+x (2)对h (x )进行logit 变换,得到预测向量集P : () 1 1i i h x p e ?= +作者简介:刘开元(1991-),男,安徽宣城人,研究生。研究方向:数据挖掘与算法。 — 111 —

实验1分类预测模型_神经网络

实验1分类预测模型——神经网络 一、实验目的 1.了解和掌握神经网络的基本原理。 2.熟悉一些基本的建模仿真软件(比如SPSS、Matlab等)的操作和使用。 3.通过仿真实验,进一步理解和掌握神经网络的运行机制,以及其运用的场景,特别是在 分类和预测中的应用。 二、实验环境 PC机一台,SPSS、Matlab等软件平台。 三、理论分析 神经网络起源于生物神经元的研究,其研究的主要对象是人脑。人脑是一个高度复杂的、非线性的、并行处理系统,其中大约有1011个称为神经元的微处理单元。这些神经元之间互相连接,连接数目高达1015.人脑具有联想、推理、判决、和决策的能力,对人脑活动机理的研究一直是一种挑战。通常认为,人脑智能的核心在于其连接机制,即有大量简单处理单元(神经元)的巧妙连接,使得人脑称为一个高度复杂的大规模非线性自适应系统。人工神经网络(Artificial Neural Network, ANN)是一种人脑的抽象计算模型,是一种人脑思维的计算机建模方式。 神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则跟据网络的连接方式、权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 神经网络需要很长的训练时间,对于足够长的训练时间的应用更合适。同时,还需要大量的参数,通常主要靠经验确定,如网络拓扑或结构。神经网络常常因其可解释性差而受到批评。例如,人们很难解释网络中学习的权重和“隐藏单元”的符号含义。 然而,神经网络的优点包括其对噪声数据的高承受能力,以及对未经训练的数据的模式分类能力。因此,在缺乏属性与分类之间联系的知识时,仍然可以使用神经网络。而且,神经网络非常适合连续值的输入和输出,这是大多数决策树算法所不能比拟的。神经网络的算法是固有并行的,我们可以使用并行技术加快计算过程。 人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:

实验报告及分析_R中bagging回归与随机森林以及boosting回归

一、R中boosting回归 这个主要用R中的mboost包中的mboost函数来实现。但是作为铺助,还要加载party包。函数如下 mboost(formula, data = list(),baselearner = c("bbs", "bols", "btree", "bss", "bns"), ...) 其中的参数需要注意formula的输入格式。至于data也可以是数据框。我们用决策树的boosting方法。要注意查看formula的输入格式,参见下面的具体例子。 一个具体的例子 我们使用我的电脑上自带的数据,即E:\Documents\R中的mg文本文件中的数据。该数据无任何说明,知道它是由6个自变量和一个因变量构成。试验如下。 > library(party) > library(mboost) > w<-read.table('mg.txt',header=T) >B1<-mboost(y~btree(x1)+btree(x2)+btree(x3)+btree(x4)+btree(x5)+btre e(x6),data=w[-1,]) #构建分类器,用除掉第一个样本的数据做训练数据。>y0<-predict(B1,w[1,]) #用第一个样本作测试。 二、bagging回归

与boosting回归想法类似,bagging回归的做法就是不断放回地对训练样本进行再抽样,对每个自助样本都建立一棵回归树,对于每一个观测,每棵树给一个预测,最后将其平均。 使用到的函数包为ipred,使用函数为bagging(),用法如下:bagging(formula, data, subset, na.action=na.rpart, ...) 主要参数介绍: formula:回归方程形式 data:数据集(数据框) control:对树枝的控制,使用函数rpart.control(),可以控制诸如cp值,xval等参量。(注意必须加载过rpart包,才能找到rpart.control 函数) 下面是用bagging对iris数据进行测试的例子。 > data(iris) > ir<-iris > set.seed(124) > count.test<-round(runif(50,1,150)) > test<-ir[count.test,] > library(ipred) > reg<-bagging(Species~.,data=ir)

常见主流数据库的分类与详细比较

常见主流数据库分类 1、IBM 的DB2 DB2是IBM著名的关系型数据库产品,DB2系统在企业级的应用中十分广泛。截止2003年,全球财富500强(Fortune 500)中有415家使用DB2,全球财富100强(Fortune100)中有96家使用DB2,用户遍布各个行业。2004年IBM的DB2就获得相关专利239项,而Oracle 仅为99项。DB2目前支持从PC到UNIX,从中小型机到大型机,从IBM到非IBM(HP及SUN UNIX 系统等)的各种操作平台。 IBM绝对是数据库行业的巨人。1968年IBM在IBM 360计算机上研制成功了IMS这个业界第一个层次型数据库管理系统,也是层次型数据库中最为著名和最为典型的。1970年,IBM E.F.Codd发表了业界第一篇关于关系数据库理论的论文“A Relational Model of Data for Large Shared DataBanks”,首次提出了关系模型的概念。1974年,IBM Don Chamberlin和Ray Boyce通过System R项目的实践,发表了论文“SEQUEL:A Structured English Query Language”,我们现在熟知SQL就是基于它发展起来的。IBM 在1983年发布了DATABASE 2(DB2)for MVS(内部代号为“Eagle”),这就是著名的DB2数据库。2001年IBM以10亿美金收购了Informix的数据库业务,这次收购扩大了IBM分布式数据库业务。2006 DB2 9作为第三代数据库的革命性产品正式在全球发布。 作为关系数据库领域的开拓者和领航人,IBM在1977年完成了System R系统的原型,1980年开始提供集成的数据库服务器——System/38,随后是SQL/DSforVSE 和VM,其初始版本与SystemR研究原型密切相关。 DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。 2、Oracle Oracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的操作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。 Oracle公司是目前全球最大的数据库软件公司,也是近年业务增长极为迅速的软件提供与服务商。IDC(Internet Data Center)2007统计数据显示数据库市场总量份额如下:Oracle 44.1% IBM 21.3%Microsoft 18.3% Teradata 3.4% Sybase 3.4%。不过从使用情况看,BZ Research的2007年度数据库与数据存取的综合研究报告表明76.4%的公司使用了Microsoft

随机森林

随机森林 为了克服决策树容易过度拟合的缺点,Breiman(2001)提出了一种新的组合分类器算法——随机森林算法(Random Forests , RF)。他把分类决策树组合成随即森林,即在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果。随机森林在运算量没有显著提高的前提下提高了预测精度,对多元共线性不敏感,可以很好地预测多达几千个解释变量的作用,被称为当前最好的算法之一。 基本原理 1.随机森林的定义 随机森林是一个由决策树分类器集合{} θ构成的组合分类器模 x ,2,1 k h (= ), , k 型,其中参数集{} θ是独立同分布的随机向量,x是输入向量。当给定输入向量 k 时每个决策树有一票投票权来选择最优分类结果。每一个决策树是由分类回归树(CART)算法构建的未剪枝的决策树。因此与CART相对应,随机森林也分为随机分类森林和随机回归森林。目前,随机分类森林的应用较为普遍,它的最终结果是单棵树分类结果的简单多数投票。而随机回归森林的最终结果是单棵树输出结果的简单平均。 2.随机森林的基本思想 随机森林是通过自助法(Bootstrap)重复采样技术,从原始训练样本集N 中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本生成k决策树组成的随机森林。其实质是对决策树算法的一种改进,将多个决策树合并在一起,每棵树的建立依赖一个独立抽取的样本,森林中的每棵树具有相同的分布,分类误差取决于每一棵树的分类能力和它之间的相关性。 3.随机森林的生成过程 根据随机森林的原理和基本思想,随机森林的生成主要包括以下三个步骤:首先,通过Bootstrap方法在原始样本集S中抽取k个训练样本集,一般情况下每个训练集的样本容量与S一致; 其次,对k个训练集进行学习,以此生成k个决策树模型。在决策树生成过

数据库种类及其特点

大型数据库 一、Microsoft SQL Server 适用于入门者。 1、开放性:只能在windows上运行,没有开放性,操作系统的系统的稳定对数 据库是十分重要的,Windows9X系列产品是偏重于桌面应用。 2、伸缩性:并行实施和共存模型并不成熟,很难处理日益增多的用户数和数据 卷,伸缩性有限。 3、安全性:没有获得任何安全证书。 4、性能:多用户时性能不佳 5、客户端支持及应用模式:C/S结构,只支持windows客户,可以用ADO、DAO、 OLEDB、ODBC连接 6、操作性:操作简单,但只有图形界面。 7、使用风险:完全重写的代码,经历了长期的测试,不断延迟,许多功能需要 时间来证明。并不十分兼容。 二、Oracle 强大的功能和可配置、可管理能力。 1、开放性:能在所有主流平台上运行(包括 windows)。完全支持所有的工业 标准。采用完全开放策略。可以使客户选择最适合的解决方案。对开发商全力支持。 2、伸缩性与并行性:并行服务器通过使一组结点共享同一簇中的工作来扩展 windows NT的能力,提供高可用性和高伸缩性的簇的解决方案。如果windows NT不能满足需要,用户可以把数据库移到UNIX中。Oracle的并行服务器对各种UNIX平台的集群机制都有着相当高的集成度。 3、安全性:获得最高认证级别的ISO标准认证。 4、性能:性能最高,保持开放平台下的TPC-D和TPC-C的世界记录。 5、客户端支持及应用模式:多层次网络计算,支持多种工业标准,可以用ODBC、 JDBC、OCI等网络客户连接。 6、操作性:较复杂,同时提供GUI和命令行,在windows NT和unix下操作相

随机森林的直观理解

随机森林的直观理解 导语:对于那些认为随机森林是黑匣子算法的人来说,这篇帖子会提供一个不同的观点。接下来,我将从4个方面去理解随机森林模型。 1.我们的特征有多重要? 在sklearn随机森林中使用model.feature_importance来研究其重要特征是很常见的。重要特征是指与因变量密切相关的特征,并且对因变量的变化影响较大。我们通常将尽可能多的特征提供给随机森林模型,并让算法反馈对预测最有用的特征列表。但仔细选择正确的特征可以使我们的目标预测更加准确。 计算feature_importances的想法很简单,但却很有效。把想法分解成简单的几步:训练随机森林模型(假定有正确的超参数)找到模型的预测分数(称之为基准分数)多次(p 次,p为特征个数)计算预测分数,每次打乱某个特征的顺序,可见下图将每次预测分数与基准分数进行比较。如果随机调整特征顺序后预测分数小于基准分数,这意味着我们的模型如果没有这个特征会变得很糟糕。删除那些不会降低基准分数的特征,并用减少后的特征子集重新训练模型。 图1:计算特征重要性 注:将F4列打乱重新进行预测来判断特征F4的重要性

计算特征重要性的代码: 下面的代码将为所有特征提供一个结构为{特征,重要性}的字典。 图2:随机森ٹ 7;中的重要特_ 81;' role='presentation'> 图2:随机森林中的重要特征 输出:在上面的输出中,可以看出,YearMade将最大程度增加RMSE预测。所以它一定是最重要的特征。(上面的结果所对应的数据是从Kaggle competition获取的,这是链接——https://https://www.wendangku.net/doc/e46345625.html,/c/bluebook-for-bulldozers)2.我们对我们的预测有多大信心?一般来说,当企业想要有所预测时,他们的最终目的不是降低成本就是提高利润。在做出重大商业决策之前,企业十分热衷于去评估做出这个决定的风险的大小。但是,当预测结果并没有被展现在置信区间时,我们可能会无意中将企业至于更多的风险中,而不是降低风险。当我们使用线性模型(基于分布假设的一般模型)时,比较容易找到我们预测的置信水平。但是当谈到随机森林的置信区间时,找起来并不是那么容易。图3:偏差与方差的说明图 我想,任何上过线性回归课程的人都肯定看过这张图3。为了找到一个最佳线性模型,我们要去寻找偏差—方差最为折

随机森林算法

随机森林算法 1.算法简介 随机森林由LeoBreiman(2001)提出,它通过自助法(bootstrap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练样本集合,然后根据自助样本集生成k个分类树组成随机森林,新数据的分类结果按分类树投票多少形成的分数而定。其实质是对决策树算法的一种改进,将多个决策树合并在一起,每棵树的建立依赖于一个独立抽取的样品,森林中的每棵树具有相同的分布,分类误差取决于每一棵树的分类能力和它们之间的相关性。特征选择采用随机的方法去分裂每一个节点,然后比较不同情况下产生的误差。能够检测到的内在估计误差、分类能力和相关性决定选择特征的数目。单棵树的分类能力可能很小,但在随机产生大量的决策树后,一个测试样品可以通过每一棵树的分类结果经统计后选择最可能的分类。 2.算法原理 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。 随机森林模型的基本思想是:首先,利用bootstrap抽样从原始训练集抽取k 个样本,且每个样本的样本容量都与原始训练集一样;其次,对k个样本分别建立k个决策树模型,得到k种分类结果;最后,根据k种分类结果对每个记录进行投票表决决定其最终分类,如下图所示。 在建立每一棵决策树的过程中,有两点需要注意采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。

数学建模模型分类

模型类型: 一:关联分析类(回归分析、相关分析法、熵权法、归一化、主成分分析、聚类分析、典型相关分析、灰色关联度分析、层次分析法、判别分析法、小波分析、灵敏度分析、误差分析、残差检验、回归方程显著性检验) 二:预测类(时间序列、灰色预测、插值拟合) 三:图论模型(最短路问题、图片匹配类模型) 四:最优化类(遗传算法、神经网络、蚁群算法、线性规划、非线性规划、多目标规划、动态规划) 类别类别(2)模型名称关键点备注 参 考 书 目 复杂系统库存模型排队模型 可靠系统 差 分方程模型动力系统类 酵母菌增长模型 平衡点;平 衡点的分 类 地高辛衰减模型 战争模型 总量一定 时,对单量 的分配 竞争物种模型 不稳定平 衡:对初始 值敏感 比例性模型 钓鱼比赛模型 几何相似 性 身高、体重与灵活性模型 A 数据拟合模型最小二乘拟合 停止距离模型97 海湾收成模型 多项式拟合 磁带播放模型 高阶多项 式敏感度 很强 光滑化115 停止距离模型(2) 三阶样条 法。有自然 和强制样 条两种 134 A 预时间序列GM(1,1),指数平滑,线性平滑因果分析法

测 A 聚类分析灰色关联度分析聚类分析 因子分析 模 拟方法蒙特卡罗算法 硬币投掷模型149 汽油储存模型 逆线性样 条(可改变 随机数范 围) 155 港口系统模型 改变参数 时,改善情 况的分析 164 离 散概率模型马尔可夫链 汽车租赁模型 要结合蒙特卡 罗算法 176 投票趋势模型177 Markov决策 串联和并联系统模型178 线性规划模型 无约束类生产计划模型192取整数类载货模型194动态规划类197 多目标规划类投资问题 有时须对 目标进行 取舍。可采 取加权 系统层次分析196 冲突目标 Minmax与maxmin 机会约束 约束满足 概率性>P 矛盾约束 约束相互 矛盾 单纯形法木匠生产模型 注意步骤 性。 215组合模型 参数模型 动态规划决策法 背包问题 排序问题 多步骤形 的规划 数值搜索法工业流程优化 黄金分割 搜索法 还有二分搜索 法 233

分类选择模型

下载 在这一章里,我们要构造因变量包含两个或更多个分类选择的模型。这样的模型在调查数据分析中非常有价值。在大多数调查中,行为回答都是分类型的:人们在选举时投支持或否决票;乘地铁、公共汽车,或轿车;在业或失业,等等。 我们首先讨论三种二元选择模型的确认和估计问题。这三种二元选择模型是线性概率模型、p r o b i t 模型和l o g i t 模型。然后我们把注意力转向具有多元(而不是二元)选择的p r o b i t 模型和l o g i t 模型的推广。最后我们对c e n s o r e d 回归模型进行分析。 11.1 二元选择模型 如果回归模型中一个或多个解释变量只取两个不同的值,我们就可以把它们用虚拟变量表示,用第5章讲过的办法进行处理。但是,当因变量只取两个不同的值时,线性回归模型的应用就比较复杂了。二元选择模型(Binary-choice model)都面临二者挑一的选 择,并且其选择依赖于可分辨的特征。例如,假设我们希望预测人们对发行地方债券的态度。我们可以认为个体的收入是决定其态度的一个主要因素,并且(在其他条件相同的情况下)高收入的个体比低收入的个体更可能对地方债券的发行投赞成票。虽然有理由认为在收入和投票行为之间有一个直接的关系,但是我们无法确切地知道每一个个体会投什么票。一个更有道理的目标是预测具有给定收入水平的个体投赞成票的可能性。 因此,分类选择模型的目的是决定具有给定特征的个体做这种而不是那种选择的概率。一个合适的模型是能使我们做类似下列陈述的模型:“收入为15 000美元的个体对未来债券发行投赞成票的概率为0 . 6。”更一般地,我们希望寻找描述个体的一组特征与该个体做某一特定选择的概率之间的关系 为了简化讨论,我们假设个体做某一特定选择的概率是个体特征的一个线性函数。因为可以对决策过程的概率性质做各种假设,所以其他形式的模型也会出现。我们从最初等的二元选择模型—线性概率模型—的确认开始我们的讨论。 第 11章 ■分类选择模型

3.数据建模中分类与预测模型---张龙

数据建模中分类与预测模型 成文日期:2018/8/27 摘要: 随着计算机技术的兴起,当前社会已经进入大数据信息时代。资本市场随着投资者的不断涌入以及金融科技的不断发展,交易时所涉及到的信息也逐渐繁杂。如果还是利用过往的分析模式,个人的力量就显得愈加薄弱。因此,利用量化平台对多元化的数据进行提取,按照自身的分析模式搭建合理化的分析框架,自动化的得到针对基本面、技术面的分析结果的分析方法也开始逐渐火热起来,这个结果根据需求既可以是定量的,也可以是定性的,目前这种量化建模的方式也已经在众多私募、券商等中应用已久,但是对于大多数个体投资者而言,还是一个十分陌生的领域。 因此,本文基于上期数据预处理部分之后,介绍如何在清洗过后的数据基础之上建立分类与预测模型,为此种模型的构建方法进行简单介绍,辅助投资者对自身分析逻辑中的分析框架进行量化分析,方便其多元化的交易分析。 一、分类与预测的介绍 数据建模中分类与预测模型主要是寻求合适的分类模型并在此基础之上进行未来徽商期货研究所 程序化部 张 龙 量化分析师 从业资格号:F3047985 邮箱:840671808@https://www.wendangku.net/doc/e46345625.html,

预测。分类主要是预测分类标号(离散属性),通俗点而言就像在基本面分析中判定哪些是未来影响价格的因素,比如产量、季节因素、下游产品价格等,这些因素除了其自身属性的不同外还应该具备在同级影响因素中具备较低的相关性,也就是最终分类的因素都会对价格进行影响,但是彼此之间的影响相对较小。而预测主要就是建立连续值函数模型,预测给定自变量对应的因变量的值。 二、分析与预测模型的实现过程 1.分类 分类是构造一个分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到先定义好的类别。 分类模型建立在已有类标记的数据集上,模型在已有样本上的准确率可以方便地计算,所以分类属于有监督的学习。 2.预测 预测是指建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制。 3.实现过程 分类算法有两步过程:第一步是学习步,通过归纳分析训练样本集来建立分类模型得到分类规则;第二步是分类步,先用已知的测试样本集评估分类规则的准确率,如果准确率是可以接受的,则使用该模型对未知类标号的待测样本集进行预测。 预测模型的实现也有两步,第一步是通过训练集建立预测属性(数值型的)的函数模型,第二步在模型通过检验后进行预测或控制。 三、常用的分类与预测算法 常见的分类与预测算法如表1所示。由于对于新入学者而言,掌握人工神经网络、

相关文档