文档库 最新最全的文档下载
当前位置:文档库 › 物理课后大题(已经整理)

物理课后大题(已经整理)

物理课后大题(已经整理)
物理课后大题(已经整理)

第九章

9.12 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.

解: 高斯定理0

d ε∑?=?q

S E s

取同轴圆柱形高斯面,侧面积rl S π2=

则 rl E S E S

π2d =??

对(1) 1R r <

0,0==∑E q

(2) 21R r R << λl q =∑

∴ r

E 0π2ελ

=

沿径向向外

(3) 2R r >

=∑q

∴ 0=E

题9.13图

9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ

,试求空间各处场

解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,

两面间, n E

)(21210

σσε-= 1σ面外, n E

)(21210

σσε+-

= 2σ面外, n E

)(21210

σσε+=

n

:垂直于两平面由1σ面指为2σ面.

9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.

解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).

(1) ρ+球在O 点产生电场010=E

ρ- 球在O 点产生电场'd

π4π3430320

OO r E ερ=

∴ O 点电场'd

33

030OO r E ερ

= ; (2) ρ+在O '产生电场'd

π4d 3430301OO E ερπ='

ρ-球在O '产生电场002='E

∴ O ' 点电场 0

03ερ='E 'OO

题9.14图(a) 题9.14图(b)

(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r

(如题8-13(b)图)

则 0

3ερr

E PO =,

3ερr E O P '

-=' ,

∴ 0

003'3)(3ερερερd

OO r r E E E O P PO P

=

='-=+=' ∴腔内场强是均匀的.

题9.17图

9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的

解: 如题9.17图示

0π41

ε=

O U 0)(=-R

q R q 0π41ε=

O U )3(R q R q -R

q 0π6ε-= ∴ R

q

q U U q A o C O 00π6)(ε=

-=

9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O

解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =

则θλd d R q =产生O 点E

d 如图,由于对称性,O 点场强沿y 轴负方向

题9.18图

θεθ

λπ

π

cos π4d d 22

2

0??-==R R E E y

R

0π4ελ

=

[)2sin(π-2sin π-]

R

0π2ελ

-=

(2) AB 电荷在O 点产生电势,以0=∞U

?

?===A

B

20

0012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π40

2ελ

=

U 半圆环产生 0

034π4πελ

ελ=

=

R R U ∴ 0

032142ln π2ελ

ελ+

=

++=U U U U O 9.22 三个平行金属板A ,B 和C 的面积都是200cm 2

,A 和B 相距4.0mm ,A 与C 相距2.0

mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7

C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ

题9.22图

(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴

2d d 21===AC

AB

AB AC E E σσ 且 1σ+2σS

q A

=

得 ,32S q A =

σ S

q A 321=σ 而 711023

2

-?-=-

=-=A C q S q σC C

10172-?-=-=S q B σ

(2) 30

1

103.2d d ?==

=AC AC AC A E U εσV

题9.27图 题9.28图

9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S

则 rlD S D S π2d )

(=??

当)(21R r R <<时,

Q q =∑

∴ rl

Q

D π2=

(1)电场能量密度 2222

2π82l r Q D w εε==

薄壳中 rl

r

Q rl r l r Q w W εευπ4d d π2π8d d 22222===

(2)电介质中总电场能量

?

?===2

1

1

22

2ln π4π4d d R R V

R R l Q rl r Q W W εε (3)电容:∵ C

Q W 22

=

∴ )

/ln(π22122R R l

W Q C ε=

=

第十章

题10.9图

10.9 如题10.9图所示,AB 、CD 为长直导线,C B

为圆心在O 点的一段圆弧形导线,其

半径为R .若通以电流I ,求O 点的磁感应强度.

解:如题10.9图所示,O 点磁场由AB 、C B 、CD 三部分电流产生.其中

AB 产生 01=B

CD 产生R

I

B 1202μ=

,方向垂直向里

CD 段产生 )23

1(2)60sin 90(sin 2

4003-πμ=-πμ=

??R I R I B ,方向⊥向里 ∴)6

231(203210π

πμ+-=

++=R I B B B B ,方向⊥向里. 题10.13图 题10.14图

10.14 两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题10.14图所示.求: (1)两导线所在平面内与该两导线等距的一点

A

(2)通过图中斜线所示面积的磁通量.(1r =3r =10cm,l

=25cm)

解:(1) 52

01

0104)

2

(2)

2

(2-?=+

=

d I d I B A πμπμ T

⊥纸面向外

(2)

r l S d d =

612010110102.23ln 31ln 23ln 2])(22[

12

11

-+?=π

μ=πμ-πμ=-πμ+πμ=?

l I l I l I ldr r d I r I r r r ΦWb

题10.18图题10.19图

10.18 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如题10.18图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小 解:

?

∑μ=?L

I l B 0d

(1)a r < 22

02R

Ir r B μπ=

2

02R Ir

B πμ=

(2) b r a << I r B 02μπ=

r

I

B πμ20=

(3)c r b << I b

c b r I r B 02

2

2

202μμπ+---= )

(2)

(22220b c r r c I B --=

πμ (4)c r > 02=r B π

0=B

题10.22图

10.22 如题10.22图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm (1)导线AB

(2)

解:(1)CD F

方向垂直CD 向左,大小

41

02100.82-?==d

I b

I F CD πμ N 同理FE F

方向垂直FE 向右,大小

51

02100.8)

(2-?=+=a d I b

I F FE πμ N

CF F

方向垂直CF 向上,大小为

?

+-?=+πμ=πμ=a d d

CF d

a

d I I r r I I F 5210210102.9ln 2d 2 N ED F

方向垂直ED 向下,大小为

5

102.9-?==CF ED F F N

(2)合力ED CF FE CD F F F F F

+++=方向向左,大小为

4102.7-?=F N

合力矩B P M m

?= ∵ 线圈与导线共面

∴ B P m

//

0=M

10.25 一长直导线通有电流1I =20A ,旁边放一导线ab ,其中通有电流2I =10A ,且两者共面,如题10.25图所示.求导线ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力

ab F ⊥

d 向上,大小为 r

I r

I F πμ2d d 1

02= F d 对O 点力矩F r M ?=d M

d 方向垂直纸面向外,大小为

r I I F r M d 2d d 2

10π

μ=

=

??

-?===b

a b

a

r I

I M M 62

10106.3d 2d π

μ m N ?

题10.25图

第十一章

题11.5图

11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压

N M U U -.

解: 作辅助线MN ,则在MeNM 回路中,沿v

方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ?

+-<+-=

=b

a b

a MN b

a b

a Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,

大小为

b

a b

a Iv -+ln 20πμ M 点电势高于N 点电势,即

b a b

a Iv U U N M -+=

-ln 20πμ

题11.6图

11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以t

I

d d 的变化率增大,求: (1)

(2)

解: 以向外磁通为正则 (1) ]ln [ln

π2d π2d π2000d

a

d b a b Il

r l r I

r l r I a

b b a

d d m +-+=

-=

??

++μμμΦ (2) t

I

b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线

圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s

-1

d =0.05m 时线圈中感应电动势的大小和方向.

题11.8图

解: AB 、CD 运动速度v

方向与磁力线平行,不产生感应电动势.

DA 产生电动势

?==??=A

D I vb vBb l B v d

2d )(01πμε

BC 产生电动势

)

(π2d )(02d a I

vb

l B v C

B

+-=??=?

με

∴回路中总感应电动势

8021106.1)11

(π2-?=+-=

+=a

d d Ibv μεεε V 方向沿顺时针.

题11.11图

11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3

l

磁感应强度B 平行于转轴,如图11.11所示.试求:

(1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ?

=

=

320

2

92d l Ob l B r rB ωωε 同理 ?

=

=

30

218

1

d l Oa l B r rB ωωε ∴ 226

1

)92181(l B l B Ob aO ab ωωεεε=+-

=+= (2)∵ 0>ab ε 即0<-b a U U

b 点电势高. 题11.13图

11.13 磁感应强度为B

的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位

置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当t

B

d d >0时,求:杆两端的感应电动势的大小和方向.

解: ∵ bc ab ac εεε+=

t

B

R B R t t ab d d 43]43[d d d d 21=--=-

=Φε =-=t ab

d d 2Φεt

B

R B R t d d 12π]12π[d d 22=--

∴ t

B

R R ac

d d ]12π43[22+=ε

0d d >t

B

∴ 0>ac ε即ε从c a →

第十三章

13.7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求:

(1) 若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2) 相邻两明条纹间的距离.

解: (1)由λk d D x =明知,λ22

.01010.63

??=, ∴ 3

10

6.0-?=λmm o

A 6000=

(2) 3106.02

.010133

=???=

=?-λd D x mm 13.10 一平面单色光波垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上.油的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到5000 o

A 与7000

o

A 这两个波长的单色光在反射中消失.试求油膜层的厚度.

解: 油膜上、下两表面反射光的光程差为ne 2,由反射相消条件有

λλ

)2

1

(2)

12(2+=+=k k k ne ),2,1,0(???=k ① 当50001=λo

A 时,有

2500)2

1

(21111+=+=λλk k ne ②

当70002=λo

A 时,有

3500)2

1

(22222+=+=λλk k ne ③

因12λλ>,所以12k k <;又因为1λ与2λ之间不存在3λ满足

33)2

1

(2λ+=k ne 式

即不存在 132k k k <<的情形,所以2k 、1k 应为连续整数,

即 112-=k k ④ 由②、③、④式可得:

5

1

)1(75171000121221+-=

+=+=

k k k k λλ 得 31=k

2112=-=k k

可由②式求得油膜的厚度为

673122500

11=+=n

k e λo A

13.12 在折射率1n =1.52的镜头表面涂有一层折射率2n =1.38的Mg 2F 增透膜,如果此膜适用于波长λ=5500 o

A 的光,问膜的厚度应取何值?

解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即

λ)2

1

(22+=k e n ),2,1,0(???=k

∴ 2

22422)21(n n k n k e λλλ

+=+=

)9961993(38

.14550038.125500+=?+?=k k o A 令0=k ,得膜的最薄厚度为996o

A . 当k 为其他整数倍时,也都满足要求.

13.13 如题13.13图,波长为6800o

A 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求:

(1) 两玻璃片间的夹角=θ?

(2) 相邻两明条纹间空气膜的厚度差是多少? (3) 相邻两暗条纹的间距是多少? (4) 在这0.12 m 内呈现多少条明条纹

?

题13.13图

解: (1)由图知,d L =θsin ,即d L =θ

故 43100.410

12.0048.0-?=?==

L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32

-?==

e m

(3)相邻两暗纹间距6

4101085010

0.421068002---?=???==θλl m 85.0= mm (4)141≈=

?l

L

N 条 13.16 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由1d =1.40

×10-2m 变为2d =1.27×10-2

m ,求液体的折射率. 解: 由牛顿环明环公式

2)12(21λ

R k D r -=

=

空 n

R k D r 2)12(22λ

-=

=

液 两式相除得n D D =21,即22.161

.196

.12221≈==D D n

13.18 把折射率为n =1.632的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为λ= 5000o

A ,求此玻璃片的厚度. 解: 设插入玻璃片厚度为d ,则相应光程差变化为

λN d n ?=-)1(2

∴ )

1632.1(2105000150)1(210

-??=

-?=-n N d λ5109.5-?=m 2109.5-?=mm

第十四章

14.12 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,

观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:

(1)入射光的波长; (2)P 点处条纹的级数;

(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带? 解:(1)由于P 点是明纹,故有2

)

12(sin λ

?+=k a ,???=3,2,1k

??sin tan 105.3400

4.13≈=?==-f x 故310

5.3126

.0212sin 2-??+?=+=

k k a ?λ

3102.41

21-??+=k mm 当 3=k ,得60003=λo

A

4=k ,得47004=λo

A

(2) 若60003=λo

A ,则P 点是第3级明纹;

若47004=λo

A ,则P 点是第4级明纹. (3)由2

)

12(sin λ

?+=k a 可知,

当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.

14.13 用5900=λo

A 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?

解:500

1=+b a mm 3100.2-?= mm 4100.2-?=o A

由λ?k b a =+sin )(知,最多见到的条纹级数max k 对应的2

π

?=,

所以有39.35900

100.24max ≈?=+=λ

b

a k ,即实际见到的最高级次为3max =k .

14.14 波长6000=λo

A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在

20.0sin 2=?与30.0sin 3=?处,第四级缺级.求:

(1)光栅常数;

(2)光栅上狭缝的宽度;

(3)在90°>?>-90°范围内,实际呈现的全部级数.

解:(1) 由λ?k b a =+sin )(式

对应于20.0sin 1=?与30.0sin 2=?处满足:

101060002)(20.0-??=+b a 101060003)(30.0-??=+b a

得 6

10

0.6-?=+b a m

(2) 因第四级缺级,故此须同时满足

λ?k b a =+sin )( λ?k a '=sin

解得 k k b

a a '?='+=

-6105.14

取1='k ,得光栅狭缝的最小宽度为6

105.1-?m

(3) 由λ?k b a =+sin )(

λ

?

sin )(b a k +=

当2

π

?=

,对应max k k =

∴ 1010

6000100.610

6max =??=+=

--λ

b

a k 因4±,8±缺级,所以在??<<-9090?范围内实际呈现的全部级数为

9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在?±=90k 处看不到).

14.17 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6

rad ,它们都发出波长为550nm 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式

D

λ

θ22

.1=

∴ 86.1310

84.4105.522.122.16

5

=???==--θλD cm

第十五章

15.9投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过30°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍? 解:由马吕斯定律有

0o 2018330cos 2I I I ==

0ο2024145cos 2I I I ==

0ο2038160cos 2I I I ==

所以透过检偏器后光的强度分别是0I 的83,41,8

1

倍.

15.10 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏

振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少?

解:由马吕斯定律

ο20160cos 2I I =

8

0I = 32

930cos 30cos 20ο2ο20I I I ==

25.24

9

1==I I 15.12 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少? 解:(1),1

40

.1tan 0=

i ∴'ο02854=i (2) 'ο0ο323590=-=i y

15.13 利用布儒斯特定律怎样测定不透明介质的折射率?若测得釉质在空气中的起偏振角为58°,求釉质的折射率. 解:由1

58tan ο

n

=,故60.1=n

第十六章

16.8若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量. 解:电子的静止质量m 0=9.11?10-31kg, h =6.63?10-34J·s 当hv =m 0c 2时, 则

2318220034

9.1110(310) 1.23610Hz 6.6310

m c v h --???===?? 122.427110m c

v λ-=

=?=0.0024271nm 2212.7310kg m s h

p λ

--==???

或 E=cp

231822009.1110310 2.7310kg m /s m c E p m c c c

--====???=??

16.19为使电子的德布罗意波长为0.1nm ,需要多大的加速电压? 解: 1.225

0.1nm nm U

λ=

=

25.12=U

∴ 加速电压 150=U 伏

16.23一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.

解:按测不准关系,h p x x ≥??,x x p m υ?=?,则

x m x h υ??≥,x h m x

υ?≥

? 这粒子最小动能应满足

222

2min

22

11()()2222x h h h E m m m x m x mL

υ=?≥==??

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理课后习题答案

第九章 静电场 (Electrostatic Field) 二、计算题 9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? 解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得 ()()()() 02222 0000(2)(2)??0041414141q q q q q q i i x x x x εεεε?-?-+=?+=π-π+π-π+ 即:2 610(3x x x m -+=?=±。因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得 () 223+=x m 9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度. 解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷 d q = λd l = 2Q d θ / π 它在O 处产生场强 θεεd 24d d 2 0220R Q R q E π=π= 按θ 角变化,将d E 分解成二个分量: θθεθd sin 2sin d d 2 02R Q E E x π= = θθεθd cos 2cos d d 2 02R Q E E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷 ?? ? ???-π=??π ππθθθθε2/2/0202d sin d sin 2R Q E x =0 2022/2/0202d cos d cos 2R Q R Q E y εθθθθεπ πππ-=?? ????-π-=?? 所以

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

油层物理(第二册)课后习题答案

第一章 储层岩石的物理特性 24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。 Log d i W Wi 图1-1 两岩样的粒度组成累积分布曲线 答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。一般储油砂岩颗粒的大小均在1~之间。 粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。上升段直线越陡,则说明岩石越均匀。该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。 曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。 30、 孔隙度的一般变化范围是多少常用测定孔隙度的方法有哪些影响孔隙度 大小的因素有哪些 答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。 3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。间接测定法影响因素多,误差较大。实验室内通过常规岩心分析法可以较精确地测定岩心的孔隙度。 # 4)对于一般的碎屑岩 (如砂岩),由于它是由母岩经破碎、搬运、胶结和压实而成,因此碎屑颗粒的矿物成分、排列方式、分选程度、胶结物类型和数量以

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

油层物理复习题答案

《油层物理》综合复习资料 一、名词解释 1、相对渗透率:同一岩石中,当多相流体共存时,岩石对每一相流体的有效渗透率与岩石绝对渗透率的比值。 2、润湿反转:由于表面活性剂的吸附,而造成的岩石润湿性改变的现象。 3、泡点:指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。 4. 流度比:驱替液流度与被驱替液流度之比。 5、有效孔隙度:岩石在一定的压差作用下,被油、气、水饱和且连通的孔隙体积与岩石外表体积的比值。 6、天然气的压缩因子:在一定温度和压力条件下,一定质量气体实际占有的体积与在相同条件下理想气体占有的体积之比。 7、气体滑动效应:在岩石孔道中,气体的流动不同于液体。对液体来讲,在孔道中心的液体分子比靠近孔道壁表面的分子流速要高;而且,越靠近孔道壁表面,分子流速越低;气体则不同,靠近孔壁表面的气体分子与孔道中心的分子流速几乎没有什么差别。Klinbenberg把气体在岩石中的这种渗流特性称之为滑动效应,亦称Klinkenberg效应。 8、毛管力:毛细管中弯液面两侧两相流体的压力差。 9、润湿:指液体在分子力作用下在固体表面的流散现象。 10、洗油效率:在波及范围内驱替出的原油体积与工作剂的波及体积之比。 11、束缚水饱和度:分布和残存在岩石颗粒接触处角隅和微细孔隙中或吸附在岩石骨架颗粒表面的不可能流动水的体积占岩石孔隙体积的百分数称为束缚水饱和度。 12、地层油的两相体积系数:油藏压力低于饱和压力时,在给定压力下地层油和其释放出气体的总体积与它在地面脱气后的体积之比。 13、吸附:溶质在相界面浓度和相内部浓度不同的现象。 二、填空题 1、1、润湿的实质是_固体界面能的减小。 2、天然气的相对密度定义为:标准状态下,天然气的密度与干燥空气的密度之比。 3、地层油的溶解气油比随轻组分含量的增加而增加,随温度的增加而减少;当压力小于泡点压力时,随压力的增加而增加;当压力高于泡点压力时,随压力的增加而不变。 4、常用的岩石的粒度组成的分析方法有:筛析法和沉降法。 5、地层水依照苏林分类法可分为氯化钙、氯化镁、碳酸氢钠和硫酸钠四种类型。 6、砂岩粒度组成的累计分布曲线越陡,频率分布曲线尖峰越高,表示粒度组成越均匀; 7、灰质胶结物的特点是遇酸反应;泥质胶结物的特点是遇水膨胀,分散或絮凝;硫酸盐胶结物的特点是_高温脱水。 8、天然气的体积系数远远小于1。 9、同一岩石中各相流体的饱和度之和总是等于1。 10、对于常规油气藏,一般,地层流体的B o>1,B w≈1,B g<< 1 11、地层油与地面油的最大区别是高温、高压、溶解了大量的天然气。 12、油气分离从分离原理上通常分为接触分离和微分分离两种方式。 13、吸附活性物质引起的固体表面润湿反转的程度与固体表面性质、活性物质的性质、活性物质的浓度等因素有关。

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

西南石油大学油层物理习题答案

第一章 储层岩石的物理特性 24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。 ∑Log d i W Wi 图1-1 两岩样的粒度组成累积分布曲线 答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。一般储油砂岩颗粒的大小均在1~0.01mm 之间。 粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。上升段直线越陡,则说明岩石越均匀。该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。 曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。 30、度的一般变化范围是多少,Φa 、Φe 、Φf 的关系怎样?常用测定孔隙度的方 法有哪些?影响孔隙度大小的因素有哪些? 答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。 2)由绝对孔隙度a φ、有效孔隙度e φ及流动孔隙度ff φ的定义可知:它们之间的关系应该是a φ>e φ>ff φ。 3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。间接测定法影响因素多,误差较大。实验室内通过常规岩心

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

油层物理习题 有答案 第二章

第二章油层物理选择题 2-1石油是()。 A.单质物质; B.化合物; C.混合物; D.不能确定 答案为C。 2-2 对于单组分烃,在相同温度下,若C原子数愈少,则其饱和蒸汽压愈(),其挥发性愈()。 A.大,强 B.大,弱 C.小,强 D.小,弱 答案为A 2-3 对于双组分烃体系,若较重组分含量愈高,则相图位置愈();临界点位置愈偏()。 A.高左; B.低,左; C.高,左; D.低,右 答案为D 2-4 多级脱气过程,各相组成将()发生变化,体系组成将()发生变化。 A.要,要; B.要,不 C.不,要; D.不,不。 答案为A 2-5 一次脱气与多级脱气相比,前者的分离气密度较(),前者的脱气油密度较()。 A.大,大; B.大,小; C.小,大; D.小,小 答案为A 2-6 单组分气体的溶解度与压力(),其溶解系数与压力()。 A.有关,有关; B.有关,无关; C.无关,有关; D.无关,无关。 答案为B 2-7 就其在相同条件下的溶解能力而言,CO 2、N 2 、CH 4 三者的强弱顺序为: >N 2>CH 4 ; >CH 4 >CO 2 >CO 2 >N 2 >CH 4 >N 2 答案为D 2-8 若在某平衡条件下,乙烷的平衡常数为2,此时其在液相中的摩尔分数为20%,则其在气相中的摩尔分数为()。

% % % % 答案为C 2-9 理想气体的压缩系数仅与()有关。 A.压力; B.温度; C.体积 D.组成 答案为A 2-10 在相同温度下,随压力增加,天然气的压缩因子在低压区间将(),在高压区间将()。 A.上升,上升; B.上升,下降; C.下降,上升; D.下降,下降。 答案为C 2-11 天然气的体积系数恒()1,地层油的体积系数恒()1。 A.大于,大于; B.大于,小于; C.小于,大于; D.小于,小于。 答案为C 2-12 天然气的压缩系数将随压力增加而(),随温度增加而()。 A.上升,下降; B.下降;上升 C.上升,上升 D.下降,下降答案为B 2-13 形成天然气水化物的有利条件是()。 A.高温高压; B.高温低压; C.低温高压; D.低温低压 答案为D 2-14 若地面原油中重质组分含量愈高,则其相对密度愈(),其API度愈()。 A.大,大; B.大,小; C.小,大; D.小,小 答案为B 2-15在饱和压力下,地层油的单相体积系数最(),地层油的粘度最()。A.大,大; B.大,小; C.小,大; D.小,小 答案为B 2-16地层油的压缩系数将随压力增加而(),随温度增加而()。 A.上升,上升; B.上升,下降; C.下降,上升; D.下降,下降

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理之习题答案

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

油层物理课后习题问题详解

第一章 1.将气体混合物的质量组成换算为物质的量的组成。气体混合物的质量组成如下: %404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。 解:按照理想气体计算: 2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。 解: 3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C , %83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。若地层压力为15MPa , 地层温度为50C O 。求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。 解:

(1)视相对分子质量 836.16)(==∑i i g M y M (2)相对密度 580552029 836 16..M M a g g == = γ (3)压缩因子 244.3624.415=== c r p p p 648.102 .19627350=+==c r T T T (4)地下密度 )(=) (3/95.11127350008314.084.0836.1615m kg ZRT pM V m g g +???=== ρ

(5)体积系数 )/(10255.6202735027315101325.084.0333m m T T p p Z p nRT p ZnRT V V B sc sc sc sc gsc gf g 标-?=++??=??=== (6)等温压缩系数 3.244 1.648 0.52 []) (== 1068.0648 .1624.452 .0-???= MPa T P T C C r c r gr g (7)粘度 16.836 50 0.0117

相关文档
相关文档 最新文档