文档库 最新最全的文档下载
当前位置:文档库 › 选修4-5 柯西不等式讲义(2015年真题)

选修4-5 柯西不等式讲义(2015年真题)

选修4-5  柯西不等式讲义(2015年真题)
选修4-5  柯西不等式讲义(2015年真题)

金牌数学高二(选修4-5)专题系列之 不等式选讲(二)

——柯西不等式

不等式中常考公式:

1.(基本不等式)

2

a b

+≥ ()a b R +∈,,(当且仅当a b =时取到等号).

变形公式: a b +≥ 2

.2a b ab +??≤ ???

用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. 2.0,2b a ab a b >+≥若则

(当仅当a =b 时取等号)0,2b a

ab a b

<+≤-若则(当仅当a =b 时取等号) 3.220;a x a x a x a x a >>?>?<->当时,或 22

.x a x a a x a

4.绝对值三角不等式.a b a b a b -≤±≤+

5.幂平均不等式:2

2

2

212121

...(...).n n a a a a a a n

+++≥+++ 柯西不等式:

1.二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.

2.三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++

3.一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++

题型一:选择题

例1.【2015高考陕西】设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1

(()())2

r f a f b =+,则下列关系式中正确的是( )

A .q r p =<

B .q r p =>

C .p r q =<

D .p r q =>

1.【2014·江西卷】对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( )

A .1

B .2

C .3

D .4 2.【2013年高考安徽数学】已知一元二次不等式()<0f x 的解集为{}1|<-1>2

x x x 或,则(10)>0x f 的解集为(

A .{}|<-1>lg2

x x x 或 B .{}|-1<-lg2x x D .{}|<-lg2x x

3.【2014四川】若0a b >>,0c d <<,则一定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b

d c

<

题型二:填空题

例2.【2014陕西】设,,,a b m n R ∈,且2

2

5,5a b ma nb +=+=________.

拓展变式练习 1.【2013·陕西】已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +a n)的最小值为________.

2.【2013年高考湖南卷】已知,,,236,a b c a b c ∈++=则2

2

2

49a b c ++的最小值________.

3.【2013·重庆】若a ,b ,c ∈(0,+∞),且a +b +c =1,则a +b +c 的最大值为________.

题型三 :综合解答

例3.【15年陕西】已知关于x 的不等式x a b +<的解集为{|24}x x << (I)求实数,a b 的值;

(II).

1.【15年福建】已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4. (Ⅰ)求a b c ++的值; (Ⅱ)求222

1149

a b c ++的最小值.

2.【2014?福建】已知定义域在R 上的函数f (x )=|x +1|+|x ﹣2|的最小值为a . (Ⅰ)求a 的值;

(Ⅱ)若p ,q ,r 为正实数,且p +q +r =a ,求证:p 2+q 2+r 2≥3.

典型高考

【2014新课标I 】(本小题满分10分)选修4—5:不等式选讲

若0,0a b >>,且

11

a b

+=(Ⅰ) 求3

3

a b +的最小值;

(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.

1.【2014?漳州三模】设函数f(x)=|x﹣4|+|x﹣3|,

(Ⅰ)求f(x)的最小值m

(Ⅱ)当a+2b+3c=m(a,b,c∈R)时,求a2+b2+c2的最小值.

2.【2014?福建模拟】已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2.(Ⅰ)求整数m的值;

(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

3.【2014?泉州模拟】设函数f(x)=+的最大值为M.

(Ⅰ)求实数M的值;

(Ⅱ)求关于x的不等式|x﹣1|+|x+2|≤M的解集.

4.【2014?河南模拟】已知a,b,c∈R,a2+b2+c2=1.

(Ⅰ)求证:|a+b+c|≤;

(Ⅱ)若不等式|x﹣1|+|x+1|≥(a﹣b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.

5.【2014?泉州模拟】已知不等式|t+3|﹣|t﹣2|≤6m﹣m2对任意t∈R恒成立.

(Ⅰ)求实数m的取值范围;

(Ⅱ)若(Ⅰ)中实数m的最大值为λ,且3x+4y+5z=λ,其中x,y,z∈R,求x2+y2+z2的最小值.

课堂过手训练

姓名:_____________ 得分:_____________

1.【15高考山东,5】不等式152x x ---<的解集是 .

2.【15年江苏】不等式|23|3x x ++≥的解集是 .

3.【14湖南】x 的不等式23ax -<的解集为5133x x ??

-

<

,则a = .

4.【13重庆】若关于实数x 的不等式|x -5|+|x +3|

5.【15高考江苏,7】不等式22

4x x

-<的解集为 .

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

高中数学教学论文 柯西不等式的证明与应用

柯西不等式的证明及其应用 摘要:柯西不等式是一个非常重要的不等式,本文用六种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 Summar y: Cauchy's inequality is a very important inequality, this article use six different methods to prove the Cauchy inequality, and gives some Cauchy inequality in inequality, solving the most value, solving equations, trigonometry and geometry problems in the areas of application, the last used it proved that point to the straight line distance formula, better explains the Cauchy inequality. Keywords :Cauchy inequality, proof application 不等式是数学的重要组成部分,它遍及数学的每一个分支。本文主要介绍著名不等式——柯西不等式的证明方法及其在初等数学解体中 的应用。柯西不等式是一个非常重要的不等式,本文用几种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

选修4-5文科数学基本不等式练习题及答案

2016年04月15日基本不等式 一.选择题(共14小题) 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A.B.2 C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为()A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为()A.7 B.8 C.9 D.10 4.(2016?山东模拟)已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实 数m的取值范围是() A.m>﹣10 B.m<﹣10 C.m>﹣8 D.m<﹣8 5.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 6.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 7.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 8.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 9.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为() A. B.8 C.9 D.12 10.(2015?浙江模拟)函数y=a x+1﹣3(a>0,a≠1)过定点A,若点A在直线mx+ny=﹣2(m>0,n>0)上,则+的最小值为() A.3 B.2 C.D. 11.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4

不等式知识点详解

考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ §06. 不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +≤(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

(完整word版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

2019-2020学年高中数学 1.2基本不等式导学案新人教版选修4-5.doc

2019-2020学年高中数学 1.2基本不等式导学案新人教版选修4-5 【学习目标】1.了解两个正数的算术平均数和几何平均数的定义; 2.使学生理解并掌握基本不等式; 3.利用基本不等式及其变形证明不等式或求最值. 【重点难点】均值不等式的应用,“等号”是否取到的问题. 一、自主学习 要点1:定理1:如果R b a ∈,,那么 ,当且仅当 时,等号成立.要点2:(基本不等式)如果0,>b a ,那么ab b a ≥+2 ,当且仅当 时,等号成立. 注:应用定理2的条件:一正、二定、三相等. 要点3:如果b a ,都是正数,我们就称 为b a ,的算术平均, 为b a ,的几何平均.于是,基本不等式可以表述为: 要点4.已知b a ab b a ++,,22中一个为定值,其他两个的最值的求法. 二、合作,探究,展示,点评 题型一.利用基本不等式证明不等式: 例1.2log log ≥+a b b a 成立的必要条件是( ) A.1,1>>b a , B.10,0<<>b a C.()()011>--b a , D.以上都不正确 思考题1:已知+∈R c b a ,,,且1=++c b a .求证:8111111≥??? ??-??? ??-??? ??-c b a . 题型二.利用基本不等式求函数最值: 例2.设0>x ,则函数x x y 133- -=的最大值是 . 思考题2:已知2lg lg =+y x ,则 y x 11+的最小值为 .

题型三.基本不等式的实际应用: 例3.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站多远处? 思考题3:在对角线有相同长度的所有矩形中,怎样的矩形周长最长,怎样的矩形面积最大? 【课堂小结与反思】:

二维形式的柯西不等式知识点梳理

课题:二维形式的柯西不等式 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式. (2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效. 4、容易出现的问题: 在二维形式的柯西不等式相关要点中,对式子(a2+b2)(c2+d2)≥(ac+bd)2取等号的条件容易忽略,由于式子过长容易弄错各个数据之间的对应关系,使用公式时容易混淆公式中数据之间的关系,数据位置易出错。 5、解决方法:

人教A版高中数学选修4-5_《不等式选讲》全册教案

选修4--5 不等式选讲

一、课程目标解读 选修系列4-5专题不等式选讲,内容包括:不等式的基本性质、含有绝对值的不等式、不等式的证明、几个著名的不等式、利用不等式求最大(小)值、数学归纳法与不等式。通过本专题的教学,使学生理解在自然界中存在着大量的不等量关系和等量关系,不等关系和相等关系都是基本的数学关系,它们在数学研究和数学应用中起着重要的作用;使学生了解不等式及其证明的几何意义与背景,以加深对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析问题解决问题的能力。 二、教材内容分析 作为一个选修专题,虽然学生已经学习了高中必修课程的5个模块和三个选修模块,教材内容仍以初中知识为起点,在内容的呈现上保持了相对的完整性.整个专题内容分为四讲,结构如下图所示: 第一讲是“不等式和绝对值不等式”,为了保持专题内容的完整性,教材回顾了已学过的不等式6个基本性质,从“数与运算”的思想出发,强调了比较大小的基本方法。回顾了二元基本不等式,突出几何背景和实际应用,同时推广到n个正数的情形,但教学中只要求理解掌握并会应用二个和三个正数的均值不等式。 对于绝对值不等式,借助几何意义,从“运算”角度,探究归纳了绝对值三角不等式,并用代数方法给出证明。通过讨论两种特殊类型不等式的解法,学习解含有绝对值不等式的一般思想和方法,而不是系统研究。 第二讲是“证明不等式的基本方法”,教材通过一些简单问题,回顾介绍了证明不等式的比较法、综合法、分析法,反证法、放缩法。其中,用反证法和放缩法证明不等式是新的课程标准才引入到中学数学教学中的内容。这些方法大多在选修2-2“推理与证明”已经学过,此处再现也是为了专题的完整性,对于新增的放缩法,应通过实际实际例子,使学生明确不等式放缩的几个简单途径和方法,比如舍掉或加进一些项,在分式中放大或缩小分子或分母,应用基本不等式进行放缩等(见分节教学设计)。本讲内容也是本专题的一个基础内容。 第三讲是“柯西不等式和排序不等式”。这两个不等式也是本专题实质上的新增内容,教材主要介绍柯西不等式的几种形式、几何背景和实际应用。其中柯西不等式及其在证明不等式和求某些特殊类型函数极值中的应用是教材编写和我们教学的重点。事实上,柯西不等式和均值不等式在求最值方面的简单应用,二者同样重要,在某些问题中,异曲同工。比如课本P41页,习题3.2 第四题。

不等式选讲知识点归纳及近年高考真题

不等式选讲知识点归纳及近年高考真题 考点一:含绝对值不等式的解法 例1.(2011年高考辽宁卷理科24)已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集. 解:(I )3, 2,()|2||5|27,25,3, 5.x f x x x x x x -≤?? =---=-<+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{} 1-≤x x ,求a 的值。

柯西不等式的证明及其应用

柯西不等式的证明及其应用 赵增林 (青海民族大学,数学学院,青海,西宁,810007) 摘要:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,并 给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 柯西不等式 定理:如果1212,,,;,,,n n a a a b b b …………为两组实数,则 2222222 11221212()()()n n n n a b a b a b a a a b b b +++≤++++++……………… (*) 当且仅当12211331110n n a b a b a b a b a b a b -=-==-=……时等号成立。 若120,0,,0n b b b ≠≠≠……,则不等式的等号成立的条件是 12 12n n a a a b b b ===……。 我们称不等式(*)为柯西不等式。 柯西不等式的证明: 一)两个实数的柯西不等式的证明: 对于实数1212,,,a a b b ,恒有22222 11221212()()()a b a b a a b b +≤++,当且仅当 12210a b a b -=时等号成立。如果120,0b b ≠≠则等式成立的条件是12 12 a a b b =。 证明:对于任意实数1212,,,a a b b ,恒有 2222 22121211221221()()()()a a b b a b a b a b a b ++=++-,而21221()0a b a b -≥, 故2222211221212()()()a b a b a a b b +≤++。 当且仅当12210a b a b -=时等号成立。 不等式的几何意义如图1所示,在直角坐标系中有 异于原点O 的两点12(,)P a a ,12(,)Q b b ,由距离公式 得:|OP |=,|OQ |=

基本不等式柯西不等式知识点复习

基本不等式及应用 一、考纲要求: 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 3.了解证明不等式的基本方法——综合法. 二、基本不等式 三、常用的几个重要不等式 (1)a 2+b 2 ≥2ab (a ,b ∈R) (2)ab ≤(a +b 2)2(a ,b ∈R) (3)a 2 +b 2 2≥(a +b 2)2(a ,b ∈R) (4)b a +a b ≥2(a ,b 同号且不为零) 上述四个不等式等号成立的条件都是a =b. 四、算术平均数与几何平均数 设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的 算术平均数不小于它们的几何平均数. 四个“平均数”的大小关系; a , b ∈R+: 当且仅当a =b 时取等号. 五、利用基本不等式求最值:设x ,y 都是正数. (1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P. (2)如果和 x +y 是定值S ,那么当x =y 时积xy 有最大值14 S 2 . 强调:1、 “积定和最小,和定积最大”这两个结论时,应把握三点:“一正、二定、三相等、四最值”.当条件不完全具备时,应创造条件. 正:两项必须都是正数; +≤≤2 a b ≤+2ab a b

定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。 等:等号成立的条件必须存在. 2、当利用基本不等式求最大(小)值等号取不到时,如何处理?(若最值取不到可考虑函数的单调性.) 想一想:错在哪里? 3、已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1 y )的最小值为________. 解一:因为对a>0,恒有a +1a ≥2,从而z =(x +1x )(y +1 y )≥4,所以z 的最小值是4. 解二:z =2+x 2y 2 -2xy xy =(2 xy +xy)-2≥2 2 xy ·xy -2=2(2-1),所以z 的最小值是2(2-1). 【错因分析】 错解一和错解二的错误原因是等号成立的条件不具备,因此使用基本不等式一定要验证等号成立的条件,只有等号成立时,所求出的最值才是正确的. 【正确解答】 z =(x +1x )(y +1y )=xy +1xy +y x +x y =xy +1xy +x +y 2 -2xy xy =2 xy +xy -2, 令t =xy ,则0-+ =x x x x f 33 ()222 23326f x x x x x x x x x =+ ≥? -->?? =?=?-? 解:当且仅当即时,函数 的最小值是23x =+大家把代入看一看,会有 什么发现?用什么方法求该函数的 最小值?

《选修4-5 不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲 最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法. 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|0)?-a

不等式知识结构及知识点

不等式知识结构及知识点总结 一.知识结构 二.知识点 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性) a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则)b a b a b a b a 1 10;110>?<<> 2、几个重要不等式 ①()2 2 2a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2 a b ab +≤

②(基本不等式) 2 a b +≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. ③(三个正数的算术—几何平均不等式) 3 () a b c R +∈、、(当且仅当a b c ==时取到等号). ④()2 2 2 a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤333 3(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦ b a n b n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 2 2 .x a x a a x a

二维形式的柯西不等式知识点梳理(经典系统全面知识点梳理)

课题:二维形式的柯西不等式 学科:数学年级:高三班级: 主备教师:沈良宏参与教师:郭晓芳、龙新荣、刘世杰、刘德清审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式.

柯西不等式的证明

柯西不等式的证明

————————————————————————————————作者:————————————————————————————————日期:

柯西不等式的证明及应用 (河西学院数学系01(2)班 甘肃张掖 734000) 摘要:柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。本文在证明不等式,解三角形相关问题,求函数最值,解方程等问题的应用方面给出几个例子。 关键词:柯西不等式 证明 应用 中图分类号: O178 Ident ificatio n a nd ap pli cation of Cau chy ine quali ty Ch en B o (dep artment of mat hem atics , Hexi uni versi ty zhangye ga nsu 734000) A bstract : Cauchy-ine quali ty is a v ery imp ortant in equ ati on, flex ib le inge ni ous application it, can make some compar atively difficul t p robl ems easily sol ved . This text p ro ve inequality , s olv e triangle relev ant pro blem, is it worth most to ask, t he app lica tio n whi ch solve s such questio ns as the eq uat ion ,etc. prov ides severa l examp les. K eyw ord :inequat ion p rove ap plication 柯西(Cauc hy )不等式 [][]12 ()22211n n b a b a b a +++ ()()222221222221n n b b b a a a ++++++≤ ()n i R b a i i 2,1,=∈ 等号当且仅当021====n a a a 或i i ka b =时成立(k 为常数,n i 2,1=)现将它的证明介绍如下: 证明1:构造二次函数 ()()()2 222211)(n n b x a b x a b x a x f ++++++= =()()()22222121122122n n n n n n a a a x a b a b a b x b b b ++ +++++++++ 22120n n a a a +++≥ ()0f x ∴≥恒成立 ()()()2222211221212440n n n n n n a b a b a b a a a b b b ?=++ +-++++++≤ 即()()()2222211221212n n n n n n a b a b a b a a a b b b +++≤++++++ 当且仅当()01,2 i i a x b x i n +== 即1212n n a a a b b b ===时等号成立 证明(2)数学归纳法 (1)当1n =时 左式=()211a b 右式=()2 11a b

(完整word版)高中数学不等式知识点总结

选修 4--5 知识点 1、不等式的基本性质 ①(对称性) a b b a 同向可加性) a b,c ⑧(倒数法则) 2、几个重要不等式 用基本不等式求最值时(积定和最小,和定积最大) 三相等” . a b c 时取到等号) ④ (可积性) a b ,c ac bc a b ,c 0 ac bc ⑤ (同向正数可乘性) a b 0,c d 0 ac bd b 0,0 cd ab (异向正数可除性) cd ⑥ (平方法则) a b n a b n (n N,且n 1) 异向可减性) a b,c d N,且 n b 1) 0 a n a n b(n ③(三个正数的算术—几何平均不等式) abc 3 3 abc (a 、b 、 c R ) (当且仅当 ②(传递性) a b,b c ac ③(可加性) a b acbc ⑦(开方法则) 11 a b ;a 22 ① a 2 b 2 2ab a , ,(当且仅当 b 时取 " " 号) . 变形公式: ②(基本不等式) ab a , 变形公式: a 2 ab ab a b 2 ab ,(当且仅当 a b 时取到等号) a 2 b 2 2 ,要注意满足三个条件“一正、二定、

(a 2 b 2)(c 2 d 2) (ac bd )2 (a,b,c,d R ).当且仅当 ad bc 时,等号 成立 2 ax ⑨绝对值三角不等式 3、几个著名不等式 ②幂平均不等式: ④ 二维形式的柯西不等式: 2 ④ a b 2 2 c ab bc ca a , b R (当且仅当 a b c 时取到等号) . 3 ⑤ a b 3 3 c 3abc(a 0,b 0,c 0) (当且仅当 a b c 时取到等号) . 若ab ⑥ 0,则 ba 2 ab (当仅当 a=b 时取等 号) 若ab b 0,则 a a 2 b ( 当仅当 a=b 时取等号) b b m 1 an bn a ⑦a a m b ,(其中 a b 0, 规律: 小于 1 同加则变大, 大于 1 同加则变小 . ⑧ 当a 0时,x 22 a x a x a 或 x a; m 0, n 0) 1 (a 1 n ③二维形式的三角不等式: 22 a 1 a 2 2 a n a 2 a n ) 2 . 22 x 1 y 1 22 x 2 y 2 (x 1 x 2)2 (y 1 y 2)2 (x 1,y 1,x 2,y 2 R). a. b. ①平均不等式: 2 11 ab ab b a 2 b 2 , (a,b R ,当且仅当 a b 时取 " " 号) . (即调和平均 变形公 几何平均 算术平均 平方平均) . ab a b 22 ab b 2 (a b)2 2

柯西不等式的证明

柯西不等式的证明及应用 (河西学院数学系01(2)班 甘肃张掖 734000) 摘要:柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。本文在证明不等式,解三角形相关问题,求函数最值,解方程等问题的应用方面给出几个例子。 关键词:柯西不等式 证明 应用 中图分类号: O178 Identification and application of Cauchy inequality Chen Bo (department of mathematics , Hexi university zhangye gansu 734000) Abstract : Cauchy-inequality is a very important in equation, flexible ingenious application it, can make some comparatively difficult problems easily solved . This text prove inequality, solve triangle relevant problem, is it worth most to ask, the application which solves such questions as the equation ,etc. provides several examples. Keyword :inequation prove application 柯西(Cauchy )不等式[][]12 ()22211n n b a b a b a +++ ()()222221222221n n b b b a a a ++++++≤ ()n i R b a i i 2,1,=∈ 等号当且仅当021====n a a a 或i i ka b =时成立(k 为常数,n i 2,1=)现将它的证 明介绍如下: 证明1:构造二次函数 ()()()2 222211)(n n b x a b x a b x a x f ++++++= =()()()22222121122122n n n n n n a a a x a b a b a b x b b b +++++++++++ 22120n n a a a +++≥ ()0f x ∴≥恒成立 ()()()2222211221212440n n n n n n a b a b a b a a a b b b ?=+++-++++++≤ 即()()()2222211221212n n n n n n a b a b a b a a a b b b +++≤++++++ 当且仅当()01,2i i a x b x i n +== 即 1212n n a a a b b b === 时等号成立 证明(2)数学归纳法 (1)当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式

相关文档
相关文档 最新文档