文档库 最新最全的文档下载
当前位置:文档库 › 燃烧热的测定实验报告

燃烧热的测定实验报告

燃烧热的测定实验报告
燃烧热的测定实验报告

实验一、燃烧热的测定

【实验目的】

1.通过测定萘的燃烧热,掌握有关热化学实验的一般知识和技术。

2.掌握氧弹量热计的原理、构造及使用方法。

3.掌握高压钢瓶的有关知识并能正确使用。

【实验原理】

燃烧热是指1mol物质完全燃烧时的热效应。通过盖斯定律可用燃烧热数据间接求算,,测定燃烧热的氧弹式量热计是重要的热化学仪器,应用广泛。

燃烧反应如在定温定压且不做非体积功条件下进行,则燃烧热在量值上等于燃烧焓[变],Q p,m=?r H m(T),或Q p,m=?c H m(B,T)。若定温定压燃烧反应的压力不高或接近标准压力,则有Q p,m=?c H m (B,T)。如果燃烧反应是在定温定容不做非体积功条件下进行,则摩尔燃烧热在量值上等于定容摩尔燃烧焓[变]:Q V,m=?r U m(T),或Q V,m=?c U m(B,T)。定压摩尔燃烧热与定容摩尔燃烧热可以用下式相互换算:

Q p,m= Q V,m + ∑νB(g)RT

其中∑νB(g)指燃烧反应计量方程式中气体物质B的计量系数之代数和。

在盛有定量水的容器中,放入内装有一定量样品和氧气的密闭氧弹,然后使样品在氧弹中完全燃烧放出的热、通过氧弹传递给水及仪器,引起温度升高,弹式量热器的基本原理是能量守恒定律。测量介质在燃烧前后温度变化值(?T)。则可得到该样品的恒容燃烧热Q V,m。即

Q V,m = (M/m)·W?ΔT

W为水当量。(在实验测量中,燃烧丝、棉线的燃烧放热等因素都要考虑)。

本实验采用环境式量热计。

环境恒温式量热计属于密闭体系,没有物质的交换只有能量的交换,体系为样品等能燃烧的物质,体系燃烧产生的热量通过氧弹传到环境(水和仪器),使温度升高。做雷诺数校正图求出△T。就可求得样品燃烧热。

1)本实验由苯甲酸数据求出水当量W

Q总热量=Q样品·(m/M)+Q然丝·m燃丝+Q棉线·m棉线=W·ΔT

式中Q然丝=-1400.8J·g-1;Q棉线=-17479 J·g-1

2)将水当量值代入1)就可求出Q样品,再换算成Qv。

环境式量热器最外层是储满水的外筒,当氧弹中的样品开始燃烧时,内筒与外筒之间有少许热交换,因此不能直接测出初温和最高温度需要由温度-时间曲线进行确定。

仪器试剂

仪器:氧弹式量热计1套;氧气钢瓶(带氧气表)1个;台秤1只;电子天平1台(0.0001g)。

药品:苯甲酸(A.R.);萘(A.R.);燃烧丝;棉线。

【实验步骤】

1.量热计水当量的测定

1)、仪器预热将量热计及全部附件清理干净,将有关仪器通电预热,打开计算机。

2)、样品压片

用电子天平称0.6~0.7克干燥苯甲酸并压片,取约10cm长的燃烧丝和棉线各一根,分别在电子天平上称重;并用棉线把燃烧丝绑在苯甲酸片上准确称重。.

3)、装氧弹及充氧气

将氧弹的弹盖旋出,在氧弹中加入10mL水,把氧弹的弹头放在弹头架上,把燃烧丝的两端分别紧绕在弹头上的两根电极上,把弹头放入弹杯中拧紧(恰好拧严即可,不要太紧,否则造成橡胶垫没有弹性)。

首先开启氧气钢瓶,观察减压阀和压力表,然后对氧弹充气约1mim充氧1Mpa,迅速抬起充氧阀。将氧弹放入量热器放稳,并插稳电极

4)、调节水温首先观测外筒温度,然后准备一桶自来水调节水温低于外筒水温1℃,用大量筒量取3000ml已调温度水注入内筒,水面盖过氧弹。盖好盖子调节好搅拌头位置。

5)、测量水当量打开搅拌器,待温度稳定后,打开计算机工作界面,调节相应参数,输入相应数值,准备开始测量,当设置到外筒温度时,将放在外筒的恒温棒移至内筒进行切换置零。随后开始实验每隔30s记录一次,直到150s开始点火,不断点击点火按钮,当温度明显升高时说明点火成功,继续每30s记录一次到温度升至最高点约1000s时停止实验。

停止搅拌,取出氧弹,放出余气打开氧弹盖,若氧弹中无灰烬,则表示燃烧完全,将剩余燃烧丝称重,待处理数据时用。

2、测定萘燃烧热称取0.5~0.6g萘,重复上述步骤测定之。

【注意事项】

1)、内筒中加入一定体积水后者若有气泡溢出,说明氧弹漏气,设法排除。

2)、搅拌时不得有摩擦声,否则调节搅拌棒至摩擦声消失。

3)、燃烧样品萘时,内筒水要更换且需要重新调温。

4)、氧气瓶在开总阀前要检查减压阀是否关好;实验结束后要关上钢瓶总阀,注意排净余气,使指针回零。

【思考题】

1、在氧弹里加10ml蒸馏水起什么作用?

在燃烧过程中,当氧弹内存在微量空气时,N2的氧化会产生热效应。生成NO、NO2等,NO+NO2+H2O=HNO2,而后利用NaOH溶液对其滴定,以扣除N2燃烧引起的放热,若不加入蒸馏水,灰烬落在氧弹内较难清洗,加入水后灰烬落入水中,也便于氧弹清洗。2、在实验中,哪些为体系?哪些为环境?实验过程中有无热损耗,如何降低热损耗?

在本实验装置中,氧弹的内部是被测物质的燃烧空间,也就是燃烧反应体系。氧弹壳及环境恒温式量热计及内外筒内的水为环境。盛水桶、3000ml水(刚好可以淹没氧弹)和氧弹三部分组成了测量体系,测量体系与环境之间有热量的交换,因为理想的绝热条件是不可能达到的,同时影响热量的交换量大小的因素也比较多,与体系、环境的材质有关;与体系、环境的接触界面积大小有关;与体系、环境的温差有关。所以要定量准确地测量出体系与环境交换的热量是比较困难的。如果有净的热量交换的话,将会增大实验的测量误差。在本实验过程中,样品点火燃烧以后体系的温度肯定将高于环境的温度,体系将热传递给环境,因此就必须在样品点火燃烧以前使体系的温度低于环境的温度,使体系从环境处获得热量,并使体系获得的热量与传出的热量尽量抵消,这样测量的效果就相当于绝热体系的结果。

3、在环境恒温式量热计中,为什么内筒温度要比外筒温度低?低多少合适?

无法避免体系与环境之间有热量的交换,就希望体系与环境之间交换的热量为零或尽可能的小。在本实验过程中,样品点火燃烧以后体系的温度肯定将高于环境的温度,体系将热传递给环境,因此就必须在样品点火燃烧以前使体系的温度低于环境的温度,使体系从环境处获得热量,并使体系获得的热量与传出的热量尽量抵消,这样测量的效果就相当于绝热体系的结果。根据称样量范围,升温变化应在1.5~2度之间,所以选择起始水温低于环境1度左右,以减少因未采用绝热式热量计而引起的热辐射误差。

4、欲测定液体样品的燃烧热,你能想出测定方法吗?

采用药用胶囊装取液体试样装入氧弹进行测量。(计算时扣除胶囊的燃烧热)。

采用脱脂棉吸附液体试样方法。(计算时扣除脱脂棉的燃烧热)。

【实验心得】

本次实验利用氧弹制造密闭燃烧系统,同时利用环境恒温器氧弹式量热计对燃烧释放热量进行较为精确的测定,本实验要求质量测量精确,后续计算与质量测定精确与否有着至关重要的关系,通过本次实验我基本掌握了利用利用环境恒温器氧弹式量热计对固体样品燃烧热进行测定的方法,数据处理方法,同时也思考了关于液体燃烧热的测量方法,实验过程受益颇深。

08级化学 团团1372 200800 物化实验 第九组 11月22日

【数据处理】

2)萘的测定 外筒温度:21.18℃ 内筒温度:20.08℃ 相差在0.5~1.2℃之间。 室温:22.7℃

室内大气压:101.56Kpa

水当量的测定:

由图可知,点C C 近似重合,则可知△T=1.11K

由反应方程式可知△n = 7 – 15/2 = -0.5 mol

所以Q V= Q P- △nRT = △H - △nRT = -3226.9×103+ 0.5×8.314×(20 + 273.15)

= -3.2257×106J?mol-1

Q总热量= Q V (m/M) + Q燃丝?m燃丝+ Q棉线?m棉线= W?△T

W =(-3.2257×106×0.5889/122 – 1.4008×106×(0.0103 - 0.0064)/1000 –

1.7479×107×0.0092/1000)/1.11K

=-1.4177×104 J?K-1

萘燃烧热的测定:

如图知,AA’ CC’近似重合则可测知△T=1.6393K

由反应方程式可知△n = 10 – 12 = -2 mol

= Q V (m/M) + Q燃丝?m燃丝+ Q棉线?m棉线= W?△T

则由Q

总热量

由图一计算得水当量W=-1.4177×104 J?K-1

= Q V (m/M) + Q燃丝?m燃丝+ Q棉线?m棉线= W?△T

带入上述计算Q

总热量

Q V = [W?△T—(Q燃丝?m燃丝+ Q棉线?m棉线)] ×M/m

=[-1.4177×104 ×1.6393+1.4008×106×(0.0099 - 0.0067) /1000+ 1.7479×107×0.0067/1000] ×128.18/0.5852

=-5.0638×106J?mol-1

Q P = Q V + △nRT = -5.0638×106J?mol-1 +(-2)×8.314×(273.15+20)=-5.0687×106J?mol-1标准值为-5153.8 kJ?mol-1

误差为:-1.74%

误差原因分析:

本次试验未拍空气,空气中少量N2燃烧造成误差;绑样品片时可能抖落部分样品,

使质量发生变化产生误差;燃烧丝部分氧化,造成质量误差。

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

燃烧焓的测定_物化实验

图1 量热氧弹 实验四 燃烧焓的测定 冷向星 2010011976 材03班(同组实验者:琦) 实验日期:2012-4-5 带实验的老师:春 1 引言 有机化合物的生成焓难以直接从实验中测定,然而有机化合物易于燃烧,含碳、氢和氧等三种元素的有机化合物完全燃烧时生成二氧化碳和水。从有机化合物燃烧的热效应数据也可以估算反应热效应。 通常燃烧焓在等容条件下测定(即称为“氧弹”的不锈钢容器中燃烧),所得数据为值,经换算后可得出值。 1.1实验目的 1.使用弹式量热计测定萘的燃烧焓。 2.了解量热计的原理和构造,掌握其使用方法。 3.掌握热敏电阻测温的实验技术。 1.2实验原理 当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m 。通常,C 、H 等元素的燃烧产物分别为CO 2(g)、H 2O(l)等。由于上述条件下ΔH=Q p ,因此ΔC H m 也就是该物质燃烧反应的等压热效应Q p 。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q V (即燃烧反应的摩尔燃烧能变ΔC U m )。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔC H m 和ΔC U m 的关系为: p V Q Q nRT =+? (1) 测量热效应的仪器称作量热计,量热计的种类很多,一般测量燃烧焓用弹式量热计。本实验是用氧弹式量热计进行萘的燃烧焓的测定,结构如图1。实验过程中外水套保持恒温,水桶与外水套之间以空气隔热。同时,还把水桶的外表面进行了电抛光。这样,水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成了一 个绝热系统。 将待测燃烧物质装入氧弹中,充入足够的氧气。氧弹放入装有一定量 水的桶中,盖好外桶盖。以电控部分各开关控制搅拌并实现燃烧点火,用 热敏电阻作为测温元件,用电子自动平衡记录仪连续记录桶水温度的变化。 当某样品连同辅助物质棉线、金属丝燃烧后,下式成立:

物化实验报告:燃烧热的测定_苯甲酸_萘

华南师范大学实验报告 课程名称 物理化学实验 实验项目 燃烧热的测定 【实验目的】 ①明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。 ②掌握量热技术的基本原理,学会测定奈的燃烧热。 ③了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。 ④学会雷诺图解法校正温度改变值。 【实验原理】 燃烧热是指1摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧热称为恒容燃烧热(O v ),恒容燃烧热这个过程的内能变化(ΔU )。在恒压条件下测得的燃烧热称为恒压燃烧热(Q p ),恒压燃烧热等于这个过程的热焓变化(ΔH )。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列关系式: ?c H m = Q p =Q v +Δn RT (1) 本实验采用氧弹式量热计测量蔗糖的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。 氧弹是一个特制的不锈钢容器(如图)为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。 但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确测量,而必须经过作图法进行校正。 放出热(样品+点火丝)=吸收热 (水、氧弹、量热计、温度计) 量热原理—能量守恒定律 在盛有定水的容器中,样品物质的量为n 摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C (通常称为仪器的水当量,即量热计及水每升高1K 所需吸收的热量),假设系统与环境之间没有热交换,燃烧前、后的温度分别为T 1、T 2,则此样品的恒容摩尔燃烧热为: n T T C Q m V ) (12,-- = (2) 式中,Qvm 为样品的恒容摩尔燃烧热(J·mol -1);n 为样品的摩尔数(mol);C 为仪器的总热容(J·K -1或J / oC)。上述公式是最理想、最简单的情况。

溶解热的测定实验报告

溶解热测定 姓名 学号 班级 实验日期 1 实验目的 (1)了解电热补偿法测定热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。 (3)掌握用微机采集数据、处理数据的实验方法和实验技术。 2 实验原理 溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。 积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。用s Q 表示。 微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1 2n n Q ???? ????表示。 冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。 积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。 微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应, 以21n n Q ???? ????或2 0n s n Q ???? ????表示。 它们之间关系可表示为: s Q n Q =2 令021n n n = 2 1002n s n s n Q n n Q Q ???? ????+???? ????= ()()0201n s n s d Q Q Q -= 积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热 (即OC )。显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

燃烧焓的测定-2006030027

燃烧焓的测定 吴大维 2006030027 生64 同组实验者:王若蛟 实验日期:2008年3月7日提交报告日期:2008年3月21日 助教:卢晋 1引言 1.1 实验目的 1.使用弹式量热计测定萘的燃烧焓。 2.了解量热计的原理和构造,掌握其使用方法。 3.掌握热敏电阻测温的实验技术。 1.2 实验原理 当产物的温度与反应物的温度相同,在反应过程中只做体积功而不做其它功时,化学反应吸收或放出的热量,称为此过程的热效应,通常亦称为“反应热”。热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m。通常,C、H等元素的燃烧产物分别为CO2(g)、H2O(l)等。由于上述条件下ΔH=Q p,因此ΔC H m也就是该物质燃烧反应的等压热效应Q p。 在实际测量中,燃烧反应常在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q V(即燃烧反应的摩尔燃烧内能变ΔC U m)。若反应系统中的气体物质均可视为理想气体,根据热力学推导,ΔC H m和ΔC U m的关系为: (1)式中,T为反应温度(K);ΔC H m为摩尔燃烧焓(J·mol-1);ΔC U m为摩尔燃烧内能变(J·mol-1);v B(g)为燃烧反应方程中各气体物质的化学计量数。产物取正值,反应物取负值。通过实验测得Q V值,根据上式就可计算出Q p,即燃烧焓的值ΔC H m。 测量热效应的仪器称作量热计,量热计的种类很多,一般测量燃烧焓用弹式量热计。本实验是用氧弹式量热计进行萘的燃烧焓的测定,结构如上图。

实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还把内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成了一个绝热系统。 量热仪的外桶盖为提升式。将其向上提到限位高度,顺时针旋转约90度,便可停放住。点火电极的上电极触头、内水桶搅拌器及测温器件均固定在外桶盖上,当把桶盖旋转到适当位置降下时,它们便都处于预定位置。搅拌器的马达也固定在外桶盖上,其电源线及点火电极连线经桶盖内部与量热仪的电控部分连通。氧弹的另一极经弹杯、内水桶及外水套与电控部分连通。 将待测燃烧物质装入氧弹时,充入足够的氧气。氧弹放入装有一定量水的内桶中,盖好外桶盖。以电控部分各开关控制搅拌并实现燃烧点火,用热敏电阻作为测温元件,用电子自动平衡记录仪连续记录内桶水温度的变化。 当温度变化不大时,可以认为热敏电阻阻值变化与温度变化成正比;当阻值变化不大时,电桥的不平衡电势U 与阻值变化成正比。所以U ∞?T 由于U 与记录仪的记录曲线峰高?h 成正比,故 ?T=a ?h (2) 式中a 为比例常数。设系统(包括所有内水桶中的物质)的热容C 为常数,则当某样品连同辅助物质棉线、金属丝燃烧后,下式成立: B c B B m U C T Ca h K h M ??=?=?=?∑ (3) 式中:c B U ?--------物质B 的摩尔燃烧内能变,J ·mol -1 B m ---------物质B 的质量 ,kg B M ---------物质B 的摩尔质量 ,kg ·mol -1 C-----------系统热容,也称能当量或水当量 J ·K -1 K-----------仪器常数,J ·mm -1 h ?---------记录仪记录曲线峰高, mm 先燃烧已知燃烧焓的物质(如苯甲酸),标定仪器常数K ,再燃烧未知物质,便可由上式计算出摩尔燃烧内能变。 2 实验操作 2.1 实验药品、仪器型号及测试装置示意图 实验仪器: GR3500型弹式量热计1套; 热敏电阻1支(约2k Ω); 大学化学实验计算机接口; 温度计1支; 2000ml ,1000ml 容量瓶各1个; 3000ml 装水盆1个; 镊子1把。 压片机、镍丝、棉线、万用表、台秤、分析天平、剪刀、尺子、氧气瓶功用。

物化实验报告燃烧热的测定

华南师范大学实验报告 一、实验目的 1、明确燃烧热的定义,了解定压燃烧热与定容燃烧热的差别。 2、掌握量热技术的基本原理;学会测定萘的燃烧热 3、了解氧弹量热计的主要组成及作用,掌握氧弹量热计的操作技术。 4、学会雷诺图解法校正温度改变值。 二、 实验原理 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()p V Q Q RT n g =+? (1) ()V W W Q Q C W C M +=+样品21总铁丝铁丝水水(T -T ) (2) 用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?。 便可据上式求出K ,再用求得的K 值作为已知数求出待测物(萘)的燃烧热。 三、仪器和试剂 1.仪器 SHR-15氧弹量热计1台;贝克曼温度计;压片机 2台;充氧器1台;氧气钢瓶1个;1/10℃温度计;万能电表一个;天平 2.试剂 铁丝;苯甲酸(AR);萘(AR );氧气 四、实验步骤 1、测定氧氮卡计和水的总热容量 (1)样品压片:压片前先检查压片用钢模,若发现钢模有铁锈油污或尘土等,必须擦净后,才能进行压片,用天平称取约0.8g 苯甲酸,再用分析天平准确称取一根铁丝质量,从模具的上面倒入己称好的苯甲酸样品,徐徐旋紧 压片机的螺杆,直到将样品压成片状为止。抽出模底的托板,再继续向下压,使模底和样品一起脱落,然后在分析天平上准确称重。 分别准确称量记录好数据,即可供燃烧热测定用。 (2)装置氧弹、充氧气:拧开氧弹盖,将氧弹内壁擦净,特别是电极下端的不锈钢接线柱更应擦十净,将点火丝的两端分别绑紧在氧弹中的两根电极上,选紧氧弹盖,用万用表欧姆档检查两电极是否通路,使用高压钢瓶时必须严格遵守操作规则。将氧弹放在充氧仪台架上,拉动板乎充入氧气。 (3)燃烧温度的测定:将充好氧气后,再用万用表检查两电极间是否通路,若通路将氧弹放入量热计内简。用量筒称3L 自来水,倒入水桶内,装好搅拌轴,盖好盖子,将贝克曼温度计探头插入水中,此时用普通温度计读出水外筒水温和水桶内的水温。接好电极,盖上盖了,打开搅拌开关。待温度温度稳定上升后,每个半分钟读取贝克曼温度计一次,连续记

物理化学实验报告_溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(ee ee2)e 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热(ee ee1) e2 或(eee ee0 ) e2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无 限量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=(ee ee1) e2 ee1+( ee ee2 ) e1 ee2 上式在比值e1 e2 恒定下积分,得: e=(ee ee1 ) e2 e1+( ee ee2 ) e1 e2 ee2=ee,令:e1 n2 =e0,则有: ( ?Q ?n1 )=[ ?(n2Q s ?(n2n0) ]=( ?Q s ?n0 ) Q d=(ee)e01?(ee)e02 其中积分溶解热ee可以直接由实验测定,其他三种可以由ee?e0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。

燃烧热的测定实验报告

实验二 燃烧热的测定 一、目的要求 1.用氧弹量热计测定萘的燃烧热。 2.了解氧弹量热计的原理、构造及使用方法。 二、实验原理 1摩尔物质完全氧化时的反应热称为燃烧热。所谓完全氧化是指C 变为CO 2(气),H 变为H 2O(液),S 变为SO 2(气),N 变为N 2(气),如银等金属都变成为游离状态。 例如:在25℃、1.01325×105Pa 下苯甲酸的燃烧热为-3226.9kJ/mol ,反应方程式为: 1.01325105165222225C H COOH()+7O ()7CO H O Pa s g g l ??????→℃ ()+3() 3226.9kJ/mol c m H O ?=- 对于有机化合物,通常利用燃烧热的基本数据求算反应热。燃烧热可在恒容或恒压条件下测定,由热力学第一定律可知:在不做非膨胀功的情况下,恒容燃烧热V Q U =?,恒压燃烧热p Q H =?。在体积恒定的氧弹式量热计中测得的燃烧热为Q V ,而通常从手册上查得的数据为Q p ,这两者可按下列公式进行换算 ()p V Q Q RT n g =+? (2-1) 式中,Δn(g)——反应前后生成物和反应物中气体的物质的量之差; R ——气体常数; T ——反应温度,用绝对温度表示。 通常测定物质的燃烧热,是用氧弹量热计,测量的基本原理是能量守恒定律。一定量被测物质样品在氧弹中完全燃烧时,所释放的热

量使氧弹本身及其周围的介质和量热计有关附件的温度升高,测量介质在燃烧前后温度的变化值T ?,就能计算出该样品的燃烧热。 ()V W W Q Q C W C M + =+样品 21总铁丝铁丝水水(T -T ) (2-2) 式中,W 样品,M ——分别为样品的质量和摩尔质量; Q V ——为样品的恒容燃烧热; W 铁丝,铁丝Q ——引燃用的铁丝的质量和单位质量的燃烧热 (-16.69kJ g Q =?铁丝); C W 水水,——分别为水的比热容和水的质量; C 总——是量热计的总热容(氧弹、水桶每升高1K ,所需的总 热量); 21T T -——即T ?,为样品燃烧前后水温的变化值。 若每次实验时水量相等,对同一台仪器C 总不变,则(C W C +总水水)可视为定值K ,称为量热计的水当量。 水当量K 的求法是:用已知燃烧热的物质(本实验用苯甲酸)放在量热计中燃烧,测其始末温度,求出T ?,便可据式2-2求出K 。 三、仪器和药品 1.仪器 SHR-15氧弹量热计1台;SWC-ⅡD 精密温度温差仪1台;压片机 1台;充氧器1台;氧气钢瓶1个。部分实验仪器如图2.1和图2.2所示。

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

燃烧热的测定实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:燃烧热的测定

一、 实验预习(30分) 1. 实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2. 实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3. 预习报告(10分) 指导教师______(签字)成绩 (1) 实验目的 1.用氧弹量热计测定蔗糖的燃烧热。 2.掌握恒压燃烧热与恒容燃烧热的概念及两者关系。 3.了解氧弹量热计的主要结构功能与作用;掌握氧弹量热计的实验操作技术。 4.学会用雷诺图解法校正温度变化。 (2) 实验原理 标准燃烧热的定义是:在温度T 、参加反应各物质均处标准态下,一摩尔β相的物质B 在纯氧中完全燃烧时所放出的热量。所谓完全燃烧,即组成反应物的各元素,在经过燃烧反应后,必须呈显本元素的最高化合价。如C 经燃烧反应后,变成CO 不能认为是完全燃烧。只有在变成CO 2时,方可认为是完全燃烧。同时还必须指出,反应物和生成物在指定的温度下都属于标准态。如苯甲酸在298.15K 时的燃烧反应过程为: (液)(气)(气)(固)O H CO O COOH H C 22 256372 15 +?+ 由热力学第一定律,恒容过程的热效应Q v ,即ΔU 。恒压过程的热效应Q p ,即ΔH 。它们之间的相互关系如下: nRT Q Q V P ?+= (1) 或nRT U H ?+?=? (2) 其中Δn 为反前后气态物质的物质的量之差。R 为气体常数。T 为反应的绝对温度。本实验通过测定蔗糖完全燃烧时的恒容燃烧热,然后再计算出蔗糖的恒压燃烧ΔH 。在计算蔗糖的恒压

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

有机物燃烧焓的测定。实验报告

有机物燃烧焓的测定 一.实验目的 1.明确燃烧焓的定义,了解恒压热效应与恒容热效应的关系。 2.掌握有关热化学实验的一般知识和技术。 3.用氧弹式量热计测定有机物的燃烧焓。 二.实验原理 热化学中定义:在指定温度和压力下,一摩尔物质完全燃烧成指定产物的焓变,称为该物质在此温度下的摩尔燃烧焓,记作ΔC H m 。通常,C 、H 等元素的燃烧产物分别为CO 2(g)、H 2O(l)等。由于上述条件下ΔH=Q p ,因此ΔC H m 也就是该物质燃烧反应的等压热效应Q p,m 。 在适当的条件下,许多有机物都能迅速而完全地进行氧化反应,这就为准确测定它们的燃烧焓创造了有利条件。 在实际测量中,燃烧反应常在恒容条件下进行,如在弹式量热计中进行,这样直接测得的是反应的恒容热效应Q V (即燃烧反应的热力学能变ΔC U )。若将应系统中的气体物质视为理想气体,根据热力学推导可得ΔC H m 和ΔC U m 的关系为: )(g RT U H B B m c m c ν∑+?=? 或 )(,,g RT Q Q B B m v m p ν∑== (1) 式中,T 为反应温度(K);ΔC H m 为摩尔燃烧焓(J·mol -1);ΔC U m 为摩尔燃烧热力学能变(J·mol -1 );v B (g)为燃烧反应方程中各气体物质的化学计量数,规定生产物取正值,反应物取负值。 通过实验测得Q V,m (J·mol -1 )值,根据上式就可计算出Q p,m (J·mol -1 ),即燃烧焓的值ΔC H m 。 本实验是用氧弹式量热计进行萘的燃烧焓的测定。量热计结构如图1所示,氧弹结构如图2所示。 实 验中,设质量为m a (g )的待测物质(恒容燃烧热为Q v,m )和质量为m b (g )的点火丝(恒容燃烧热为q ,J·g -1 )在氧弹中燃烧,放出的热可使质量为w m 的水(比热容为c w ,J·K -1 ·g -1 )及量热器本身(热容为C m ,J·K -1)的温度由T 1升高到T 2,则根据能量守恒定律可得到热平衡关系 )()]().[(1212,T T K T T w c C m q M m Q m w m b a m -?=-?+-=?+? ν (2) 式中,M 为该待测物的摩尔质量;规定系统放热时Q 取负数;K= -( C m +c w · w m ),同一套仪器、当内筒中的水量一定时,K 值恒定,称K 为仪器常数或水当量(J·K -1 ),常用已知燃烧热值Q v 的苯甲酸来测定。求

燃烧热的测定 实验报告

燃烧热的测定 一、实验目的 ●使用氧弹式量热计测定固体有机物质(萘)的恒容燃烧热,并 由此求算其摩尔燃烧热。 ●了解氧弹式量热计的结构及各部分作用,掌握氧弹式量热计的 使用方法,熟悉贝克曼温度计的调节和使用方法 ●掌握恒容燃烧热和恒压燃烧热的差异和相互换算 二、实验原理 摩尔燃烧焓?c H m 恒容燃烧热Q V ?r H m = Q p ?r U m = Q V 对于单位燃烧反应,气相视为理想气体 ?c H m = Q V +∑νB RT=Q V +△n(g)RT 氧弹中 放热(样品、点火丝)=吸热(水、氧弹、量热计、温度计) 待测物质 QV-摩尔恒容燃烧热Mx-摩尔质量 ε-点火丝热值bx-所耗点火丝质量q-助燃棉线热值cx-所耗棉线质量 K-氧弹量热计常数?Tx-体系温度改变值

三、仪器及设备 标准物质:苯甲酸待测物质:萘 氧弹式量热计 1-恒热夹套2-氧弹3-量热容器4-绝热垫片5-隔热盖盖板6-马达7,10-搅拌器8-伯克曼温度计9-读数放大镜11-振动器12-温度计

四、实验步骤 1.量热计常数K的测定 (1) 苯甲酸约1.0g,压片,中部系一已知质量棉线,称取洁净坩埚放置样片前后质量W1和W2 (2)把盛有苯甲酸片的坩埚放于氧弹内的坩埚架上,连接好点火丝和助燃棉线 (3) 盖好氧弹,与减压阀相连,充气到弹内压力为1.2MPa为止 (4)把氧弹放入量热容器中,加入3000ml水 (5) 调节贝克曼温度计,水银球应在氧弹高度约1/2处 (6) 接好电路,计时开关指向“1分”,点火开关到向“振动”,开启电源。约10min后,若温度变化均匀,开始读取温度。读数前5s振动器自动振动,两次振动间隔1min,每次振动结束读数。 (7)在第10min读数后按下“点火”开关,同时将计时开关倒向“半分”,点火指示灯亮。加大点火电流使点火指示灯熄灭,样品燃烧。灯灭时读取温度。 (8)温度变化率降为0.05°C·min-1后,改为1min计时,在记录温度读数至少10min,关闭电源。先取出贝克曼温度计,再取氧弹,旋松放气口排除废气。 (9)称量剩余点火丝质量。清洗氧弹内部及坩埚。 实验步骤 2. 萘的恒容燃烧热的测定 取萘0.6g压片,重复上述步骤进行实验,记录燃烧过程中温度

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

燃烧热的测定实验报告

燃烧热实验报告 一、实验目的 1、明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的区别。 2、掌握量热技术的基本原理,学会测定奈的燃烧热。 3、了解氧弹卡计主要部件的作用,掌握氧弹量热计的实验技术。 4、学会雷诺图解法校正温度改变值。 二、实验原理 燃烧热是指1摩尔物质完全燃烧时所放出的热量。在恒容条件下测得的燃烧 热称为恒容燃烧热(Q v,m ),恒容燃烧热这个过程的内能变化(Δ r U m )。在恒压条 件下测得的燃烧热称为恒压燃烧热(Q p,m ),恒压燃烧热等于这个过程的热焓变化 (Δ r H m )。若把参加反应的气体和反应生成的气体作为理想气体处理,则有下列 关系式: c H m = Q p,m =Q v,m +ΔnRT (1) 本实验采用氧弹式量热计测量萘的燃烧热。测量的基本原理是将一定量待测物质样品在氧弹中完全燃烧,燃烧时放出的热量使卡计本身及氧弹周围介质(本实验用水)的温度升高。 氧弹是一个特制的不锈钢容器。为了保证化妆品在若完全燃烧,氧弹中应充以高压氧气(或者其他氧化剂),还必须使燃烧后放出的热量尽可能全部传递给量热计本身和其中盛放的水,而几乎不与周围环境发生热交换。 但是,热量的散失仍然无法完全避免,这可以是同于环境向量热计辐射进热量而使其温度升高,也可以是由于量热计向环境辐射出热量而使量热计的温度降低。因此燃烧前后温度的变化值不能直接准确测量,而必须经过雷诺矫正作图法进行校正。 放出热(样品+点火丝)=吸收热 (水、氧弹、量热计、温度计) 量热原理—能量守恒定律 在盛有定水的容器中,样品物质的量为n摩尔,放入密闭氧弹充氧,使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶,氧弹本身、测温器件、搅拌器和水)的总热容为C(通常称为仪器的水当量,

冰的熔解热的测定实验报告

学院:信息工程学院 班级:通信152 学号:6102215051 姓名:潘鑫华 实验时间:第六周星期二下午八九十节

T T' θ J K T 1 T 1' 实验名称 测定冰的熔解热 一、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 二、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 A 和一个已知热容的系统 B 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 C (C =A +B ).这样 A (或 B )所放出的热量,全部为 B (或 A )所吸收。因为已知热容的系统在实验过程中所传递的热量 Q ,是可以由其温度的改变 △T 和热容 C 计算出来,即 Q = C △T ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 Q 放 ,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 Q 吸。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T 1,其中热水质量为m2(比热容为c0)。冰的质量为m1(冰的温度和冰的熔点均认为是0℃,设为T 0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为T ℃(此时应低于室温10℃左右),冰的溶解热由L 表示,根据(1)式有 ML +m1c0(T - T 0)=m2c0(T 1- T ) 因T r=0℃,所以冰的溶解热为: L=[m2c0(T1-T2)-T2c0m1]/m1 (2) 综上所述,保持实验系统为孤立系统是混合量热法所要求的基本实验条件。为此整个实验在量热器内进行,但由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。所以当实验过程中系统与外界的热量交换不能忽略

热分析实验方案

一、实验目的 1.了解热分析法的种类、仪器装置及使用方法。 2.掌握几种热分析法的基本原理、测试技术及影响测量准确性的因素。 3.掌握热分析法在聚合物结晶中的分析原理,并能对实验结果做出解释。 二、方法简介: 1. 热重分析法 热重分析法( TG )是在程序温度控制下,测量物质的质量随温度变化的一种实验技术。一般有静态法和动态法两种类型:静态法是在恒温下测定物质质量变化与温度的关系,将试样在各给定温度加热至恒重,该法用来研究固相物质热分解的反应速率和测定反应速度常数。动态法是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。 由热重分析记录的质量变化对温度的关系曲线称为热重曲线( TG 曲线)。 曲线横坐标为温度,纵坐标为质量,如热分解反应 A(s) → B(s)+ C(g) 的热重 曲线如图 1 所示。图中 T i 为起始温度,即累积质量变化达到热天平可检测的温度;

Tf 为终止温度,即累积质量变化达到最大值时的温度;热重曲线上质量基本不变的部分称为基线或平台。若试样初始质量为 W0 ,失重后试样质量为 W1 ,测失重百分数为 2.差示扫描量热法(DSC) DSC的技术方法是按照程序改变温度,使试样与标样之间的温度差为零。测量两者单位时间的热能输入差。就是说,使物转移过程中的温度和热量能够加以定量物质在加热过程中会在某温度下发生分解、脱水、氧化、还原和升华等一系 列的物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随物 质的结构和组成而异,因此可以利用物质的热重曲线来研究物质的热变化过程,推测反应机理及产物。 将实验以一定的升温速度加热至熔点以上,恒温一定时间,以充分消除试样的热历史,然后,迅速降温至测试温度进行等温结晶。由于结晶时放出结晶潜热,所以出现一个放热峰,见图。基线开始向放热方向偏离时,作为开始结晶的时间(t0),重新回到基线时,作为结晶结束的时间(t=t∞),则t时刻的结晶程度为 式中 xt、x∞是结晶时间为t及无限大时非晶态转变为晶态的分数;At、A∞为0~t时间及0~∞时间DSC曲线所包含的面积。

相关文档
相关文档 最新文档