文档库 最新最全的文档下载
当前位置:文档库 › 14概率论复习指南

14概率论复习指南

14概率论复习指南
14概率论复习指南

概率论复习指南

1.概率、条件概率的性质和计算,事件的独立性,全概率公式、贝叶斯公式

2.分布律、概率密度的基本性质(非负性、归一性)

3.重要分布(0-1分布、二项分布、泊松分布、均匀分布、指数分布、正态分

布)的概率分布、性质、期望、方差、变异系数

4.期望、方差、协方差、相关系数的定义、性质、计算

5.一维随机变量分布律、概率密度、分布函数、事件概率

6.一个随机变量函数的分布

7.两个随机变量的函数的分布(Z=X+Y),满足可加性的分布

8.二维随机变量,联合、边缘、条件分布,条件期望,事件概率,独立性

9.大数定律及证明

10.中心极限定理,求概率和已知概率求n

11.特征函数的定义、性质、计算(单点分布加六种重要分布(同上))

12.常用统计量(样本均值、样本方差)的定义和结论

13.三大抽样分布的定义、性质

14.正态总体的抽样分布(一个总体和两个总体共六个分布)

15.矩估计法、极大似然估计法

16.估计量的评选标准

17.一个正态总体的双侧置信区间

18.一个正态总体的假设检验(u检验,t检验)

题型、题量和分数分布

一、判断题 5*2=10

二、填空题 5*3=15

三、选择题 5*3=15

四、计算题 4*8=32

五、统计推断题 2*8=16

六、证明题 2*6=12

送福利了:

1 全概率公式贝叶斯公式计算概率

2 一维连续唯一性期望方差

3 二维连续求边缘事件概率

4 中心极限定理计算概率

5 一个参数的矩估计

6 一个正态总体均值的假设检验

7 一个随机变量的函数的分布证明题

8 大数定律证明题

概率论与数量统计作业本_全

第1次作业 一、填空题 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: ⑴ A 发生,B 与C 不发生为 ABC ; ⑵ A 与B 都发生,而C 不发生为 ABC ; ⑶ A 、B 、C 中至少有一个发生为 A B C U U ; ⑷ A 、B 、C 都发生为 ABC ; ⑸ A 、B 、C 都不发生为 ABC ; ⑹ A 、B 、C 中不多于一个发生为 AB AC BC U U ; ⑺ A 、B 、C 中不多于两个发生为 A B C U U ; ⑻ A 、B 、C 中至少有两个发生为 AB AC BC U U 。 2.设{}1,2,3,4,5,6Ω=,{}2,3,4A =,{}3,5B =,{}4,6C =,那么A B =U {1,2,3,4,6} ,A B = {1,6} ,()A BC = Φ 。 二、选择题 1.设A 、B 为两个事件,则A B +=( C )。 A. A B + B. A B - C. AB D. AB 2.设A 、B 为两个事件,若A B ?,则下列结论中( C )恒成立。 A. A 、B 互斥 B. A 、B 互斥 C. A 、B 互斥 D. A 、B 互斥 3.用A 表示“甲产品畅销,乙产品滞销”,则A 表示( C )。 A. “甲产品滞销,乙产品畅销”; B. “甲、乙产品都畅销”; C. “甲产品滞销或乙产品畅销”; D. “甲、乙产品都滞销”。 三、计算题 1.写出下列随机试验的样本空间: ⑴ 记录一个小班一次数学考试的平均分数(设以百分制记分); 0,1,,100i S i n n ?? ==? ??? L ,其中n 为小班人数; ⑵ 生产产品直到有10件正品为止,记录生产产品的总件数; {}10,11,S =L ;

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

统计概率经典例题(含(答案)和解析)

统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a和b所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统 计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小 型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的 2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜 色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下 颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题: (1)求实验总次数,并补全条形统计图; (2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度? (3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%. 类别科普类教辅类文艺类其他册数(本)128 80 m 48 (1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数; (2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本? 5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。 (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(3分) (2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;(3分)(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的

概率论与数理统计的题目

1 .掷一颗均匀骰子,设A表示所掷结果为“四点或五点”,B表示所 P(A)和P(B)。 2.货架上有外观相同的商品15件,其中12件来自甲产地,3件来自乙产地。先从15件商品中随机的抽取两件,求这两件商品来自同一产地的概率。 3.一批灯泡共100只,其中10只是次品,其余是正品。作不放回抽取,每次取一只,求第三次取到正品的概率。 4.8只步枪中有5只已校准过,3只未校准。一名射手用校准过的枪射击时,中靶的概率为0.8;用未校准的枪射击时,中靶的概率为0.3.现从8只步枪中任取一只用于射击,结果中靶。求所用的枪是校准过的概率。 5.甲乙两射手独立地射击同一目标,他们击中目标的概率分别是0.9和0.8。求每人射击一次后,目标被射中的概率。 6.写出下列随机试验的样本空间:(2)掷一颗均匀的骰子两次,观察前后两次出现的点数之和;(3)观察某医院一天内前来就诊的人数;(5)检查两件产品是否合格; 7.设A,B,C为三事件,用A,B,C的运算关系表示下列各事件: (1)A与B都发生,但C 不发生; (2)A发生,且B与C 至少有一个发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 中恰有一个发生; (5)A,B,C中至少有两个发生;

(6)A,B,C中至多有一个发生; (7)A,B,C中至多有两个发生; (8)A,B,C中恰有两个发生; 8.若W表示昆虫出现残翅,E表示昆虫有退化性眼睛,且P(W)=0.125,P(E)=0.075,P(WE)=0.025,求下列事件的概率: (1)昆虫出现残翅或退化性眼睛; (2)昆虫出现残翅,但没有退化性眼睛; (3)昆虫未出现残翅,也无退化性眼睛; 9.计算下列各题: (1)设P(A)=0.5,P(B)=0.3,P(AB)=0.6,求P(AˉB); (2)设P(A)=0.8,P(A-B)=0.3,求P(ˉAB); 10.掷一颗均匀的骰子两次,求前后两次出现的点数之和为3,4,5的概率各是多少? 11.在整数0,1,2....9中任取三个数,求下列事件的概率: (1)三个数中最小的一个是5; (2)三个数中最大的一个是5; 13.12个乒乓球中有4只是白色的,8只是黄色的。现从这12只乒乓球中随机的取出两只,求下列事件的概率: (1)取到两只黄球;(2)取到两只白球;(3)取到一只白球,一只黄球。 14.已知P(A)=0.7,P(B)=0.4 ,P(AˉB)=0.5,求P(AuB|B). 15.已知P(A)=0.6,P(B)=0.4 ,P(A|B)=0.5,计算下列二式:

概率及其计算

第十三章概率与统计本章知识结构图 统计 随机抽样 抽签法 随机数表法 简单随机抽样 系统抽样 分层抽样 共同特点:抽样 过程中每个个体 被抽到的可能性 (概率)相等用样本估计总体 样本频率分布 估计总体 总体密度曲线 频率分布表和频率分布直方图 茎叶图 样本数字特征 估计总体 众数、中位数、平均数 方差、标准差 变量间的相关关系 两个变量的 线性相关 散点图回归直线 正态分布 列联表(2×2)独立性分析 概率 概率的基本性质互斥事件对立事件 古典概型 几何概型 条件概率 事件的独立性 用随机模拟法求概率 常用的分布及 期望、方差 随机变量 两点分布 X~B(1,p) E(X)=p,D(X)=p(1-p) 二项分布 X~B(n,p) E(X)=np,D(X)=np(1-p) X~H(N,M,n) E(X)=n M N D(X)= nM N? ? ? ? 1- M N N-n N-1 n次独立重复试验恰好 发生k次的概率为 P n(k)=C k n p k(1-p)n-k 超几何分布 若Y=aX+b,则 E(Y)=aE(X)+b D(Y)=a2D(X) P(A+B)=P(A)+P(B) P(?A)=1-P(A) P(A B)=P(A)·P(B) P(B | A)= P(A B) P(A)

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

概率论与数理统计学1至7章课后标准答案

第五章作业题解 5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率. 解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得 )2100|7300(|)94005200(<-=<

概率论与数理统计教学大纲(48学时)

概率论与数理统计课程教学大纲(48学时) 撰写人:陈贤伟编写日期:2019 年8月 一、课程基本信息 1.课程名称:概率论与数理统计 2.课程代码: 3.学分/学时:3/48 4.开课学期:4 5.授课对象:本科生 6.课程类别:必修课 / 通识教育课 7.适用专业:软件技术 8.先修课程/后续课程:高等数学、线性代数/各专业课程 9.开课单位:公共基础课教学部 10.课程负责人: 11.审核人: 二、课程简介(包含课程性质、目的、任务和内容) 概率论与数理统计是描述“随机现象”并研究其数量规律的一门数学学科。通过本课程的教学,使学生掌握概率的定义和计算,能用随机变量概率分布及数字特征研究“随机现象”的规律,了解数理统计的基本理论与思想,并掌握常用的包括点估计、区间估计和假设检验等基本统计推断方法。该课程的系统学习,可以培养学生提高认识问题、研究问题与处理相关实际问题的能力,并为学习后继课程打下一定的基础。 本课程主要介绍随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验等。 体现在能基于随机数学及统计推断的基本理论和方法对实验现象和数据进行分析、解释,并能对工程领域内涉及到的复杂工程问题进行数学建模和分析,且通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。 三、教学内容、基本要求及学时分配 1.随机事件及其概率(8学时) 理解随机事件的概念;了解样本空间的概念;掌握事件之间的关系和运算。理解概率的定义;掌握概率的基本性质,并能应用这些性质进行概率计算。理解条件概率的概念;掌握概率的加法公式、乘法公式;了解全概率公式、贝叶斯公式;理解事件的独立性概念。掌握应用事件独立性进行简单概率计算。理解伯努利试验;掌握二项分布的应用和计算。 2.随机变量及其分布(6学时) 理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质;掌握应用概率分布计算简单事件概率的方法,掌握二项分布、泊松分布、正态分布、均匀分布和指数分布和应用,掌握求简单随机变量函数的概率分布的方法。 3.多维随机变量及其分布(7学时)

概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题答案 高等教育出版社 习题解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点 数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1(ΛΛΛΛ=Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1(Λ=+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -.

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件) =0;0

概率论和数理统计带答案

单选 题(共 40 分) 1、在假设检验问题中,犯第一类错误的概率α的意义是( ) (C) A、在H0不成立的条件下,经检验H0被拒绝的概率 B、在H0不成立的条件下,经检验H0被接受的概率 C、在H0成立的条件下,经检验H0被拒绝的概率 D、在H0成立的条件下,经检验H0被接受的概率 2、设,AB是两个事件,且P(A)≤P(A|B),则有 (C) A、P(A)=P(A|B) B、P(B)>0 C、P(A|B)≥P(B) D、设,AB是两个事件 3、某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )(A) A、1/6. B、1/5. C、1/4. D、1/3. 4、设,,ABC是三个相互独立的事件,且0(B) A、AUB与c B、AC与C C、A-B与C D、AB与C 5、设随机事件A与B相互独立,P(A)=0.5,P(B)=0.6则P(A-B)= (D) A、1/2. B、1/5. C、1/4. D、1/12. 6、将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为 (A) A、4/7. B、4/9. C、5/11. D、6/7. 7、设事件,AB满足ABBB,则下列结论中肯定正确的是( )(D) A、AB互不相容 B、AB相容 C、互不相容 D、P(A-B)=P(A) 8、已知P(B)=0.3,P(AUB)=0.7,且A与B相互独立,则P(A)=(D) A、0.2 B、0.3 C、0.7 D、0.5 9、若事件A和事件B相互独立, P(A)==,P(B)=0.3,P(AB)=0.7,则则 (A) A、3/7. B、4/7. C、5/7. D、6/7. 10、,设X表示掷两颗骰子所得的点数,则EX =(D) A、2 B、3 C、4 D、7 ?多选 题(共 20 分) 1、甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(D) A、0.3 B、0.5 C、0.6 D、0.8

第一讲_概率论概述

第一讲 概率论概述 1. 概率空间 定义 (概率空间)称一个三元组(,,)P ΩF 是概率空间,其中,Ω是样本空间,F 是Ω 上的一个σ代数,而P 是?上的一个概率测度。 关于σ代数 定义 (代数和σ代数)集合Ω的一个子集类?被称为代数,如果满足条件, (1) ?∈φΩ,;(2) ?∈21B B ,?∈-21B B ,?∈?i B ,2,1=i 。 如果一个代数对可列并运算封闭,则称其为σ代数。 为什么要引入σ代数? 以掷骰子为例:{1,2,3,4,5,6}Ω=,所有子集构成一个σ代数。但是,如感兴趣的问题是出现的点数是偶数还是奇数,那么考虑的事件集只有两个:{1,3,5},{2,4,6}A B ==,包含它们的最小σ代数为{,,,}A B ΩΦ?=。因此,只要限制在?上研究问题。 关于概率测度 定义 (σ代数上的概率测度)一个概率测度是满足如下条件的映射]]1,0[:→?P : (1) 可列可加性:∑∞ =∞ == 1 1)()(n n n n A P A P ,n m A A A n m n ≠=?∈?,,φ ; (2) 规一性:1)(=ΩP 。 概率测度一般化的意义:涵盖了可能出现的各种问题。 以抛硬币为例:{0,1}S =,那么直观上的概率1 ({0})({1})2 P P ==只是可能出现的情况中的一个:硬币是均匀的。硬币不均匀,则完全可能有其它选择。 例 古典概率模型。 关于可列可加性 可列的含义。 可列可加不能用于任意个集合的并:例如[0,1]Ω=,均匀投点,取每一点的概率为0,但其总和仍为1。 概率函数的一些性质 概率函数P 显然可视为可测空间上的一个测度,所以测度的许多性质也可用于概率。 序列极限意义下的连续性:可列可加性蕴涵了概率函数的连续性。 定理 若}1,{≥n A n 是单调增加序列(或减小序列),则 )lim ()(lim n n n n A P A P ∞ →∞ →=。 关于集合序列极限的定义 单调上升序列的极限:1 lim n n n n A A ∞→∞ == ;

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

概率统计的数学计算解析

概率流程图的数学计算:瀑布算法、圆桌算法、混合算法 概率流程图的数学计算:瀑布算法、圆桌算法、混合算法解析 攻击判定流程研究:瀑布算法、圆桌算法、混合算法解析 攻击判定流程几乎是所有包含战斗玩法的游戏都无法绕过的一块内容,常见的攻击判定流程有瀑布算法、圆桌算法以及混合算法三种。本文简述了这三种判定流程的特征,以实例对比分析了瀑布算法与圆桌算法各自的优点,以期为后续其他战斗数值设计内容的论述提供一定的基础。 攻击判定流程概述 自此开始正文内容的叙述——让我们直接代入一个实例: 在一款游戏中,攻击方有命中率和暴击率两个攻击属性,而防守方有闪避率、招架率和格挡率三个防御属性。于是相应的,一次攻击有可能产生6种判定结果:未命中、普通命中、闪避、招架、格挡和暴击。当采用不同的判定流程进行攻击结算时,6种判定结果出现的频率会截然不同。 1. 瀑布算法 顾名思义,在瀑布算法中,各事件的判定顺序如同瀑布一般自上而下。如果“水流”在某个位置被截断,则后面的流程都将不再继续进行。据我所知,瀑布算法是大多数游戏所采用的攻击判定算法。 上述实例若采用瀑布算法,则会以如下方式进行判定: 瀑布算法流程图 由此我们可以得出: 先判定攻方是否命中再判定是否被守方闪避再判定是否被守方招架再判断是否被守方格挡最后判定该次攻击是否为暴击 瀑布算法特征1:多次掷骰,一次掷骰只判定单个事件的发生与否 瀑布算法特征2:后置判定依赖于前置判定的通过 注:有的游戏会将命中和闪避合并在一次掷骰中判定,这意味着将攻方命中率与守方闪避率合并计算出实际击中概率后再进行掷骰判定,仍是瀑布算法

我们再代入一些具体的数值,设攻守双方角色的面板属性如下: 攻方命中率=90% 攻方暴击率=25% 守方闪避率=20% 守方招架率=15% 守方格挡率=30% 按照上述的流程判定,6种判定结果将会按如下的概率分布: 实际未命中概率=1-命中率=1-90%=10% 实际闪避概率=命中率*闪避率=90%*20%=18% 实际招架概率=命中率*(1-闪避率)*招架率=90%*(1-20%)*15%=10.8% 实际格挡概率=命中率*(1-闪避率)*(1-招架率)*格挡率 =90%*(1-20%)*(1-15%)*30%=18.36% 实际暴击概率=命中率*(1-闪避率)*(1-招架率)*(1-格挡率)*暴击率 =90%*(1-20%)*(1-15%)*(1-30%)*25%=10.71% 实际普通命中概率=命中率*(1-闪避率)*(1-招架率)*(1-格挡率)*(1-暴击率)=90%*(1-20%)*(1-15%)*(1-30%)*(1-25%)=32.13% 瀑布算法的判定结果分布 由此我们可以得出: l 瀑布算法特征3:各事件出现的概率符合经典的概率计算方法 l 瀑布算法特征4:掷骰轮次越偏后的属性衰减程度越大,但不会出现无效的属性 2.圆桌算法 将所有可能出现的事件集合抽象成一个圆桌桌面,便是圆桌算法这一称呼的由来。圆桌算法的实质,是将所有可能发生的事件状态按优先级依次放上桌面,直至所有事件被放完或

概率论与数量统计-公式

第1章随机事件及其概率 (1)排列组合公式 从m 个人中挑出n 个人进行排列的可能数。 从m 个人中挑出n 个人进行组合的可能数。 (2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题 (4)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用来表示。 基本事件的全体,称为试验的样本空间,用表示。 一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算 ①关系: 如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):如果同时有, ,则称事件A 与事件B 等价,或称A 等于B : A=B 。 A、B 中至少有一个发生的事件:A B ,或者A +B 。 属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也 可表示为A-AB 或者 ,它表示A 发生而B 不发生的事件。 A、B 同时发生:A B ,或者AB 。A B=?,则表示A 与B 不可能同时发 生,称事件A 与事件B 互不相容或者互斥。基本事件是互不相容的。

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

概率论与统计学的重要公式和解题思路

一、基本概率公式及分布 1、概率常用公式: P(A+B)=P(A)+P(B)-P(AB) ;P(A-B)=P(A)-P(AB) ; 如A、B独立,则P(AB)=P(A)P(B) ; P()=1-P(A) ; B发生的前提下A发生的概率==条件概率:P(A|B)=; 或记:P(AB)=P(A|B)*P(B) ; 2、随机变量分布律、分布函数、概率密度 分布律: 离散型X的取值是x k(k=1,2,3...), 事件X=x k的概率为: P{X=x k}=P k, k=1,2,3...; --- 既X的分布律; X X1 X2 .... xn Pk P1 P2 ... pn X的分布律也可以是上面的表格形式,二者都可以。 分布函数: F(x)=P(X), -; 是概率的累积! P(x1

二、常用概率分布: ①离散:二项分布:事件发生的概率为p,重复实验n次,发生k 次的概率(如打靶、投篮等),记为B(n,p) P{X=k}=,k=0,1,2,...n; E(X)=np, D(X)=np(1-p); ②离散:泊松分布:X~Π(λ) P{X=k}=,k=0,1,2,...; E(X)=λ, D(X)=λ; ③连续型:均匀分布:X在(a,b)上均匀分布,X~U(a,b), 则:密度函数:f(x)= 分布函数F(x)==

④连续型:指数分布,参数为,f(x)= F(x)=; ⑤连续型:正态分布:X~N(most importment! 密度函数f(x),表达式不用记!一定要记住对称轴x=μ, E(X)=μ,方差D(X)=; 当μ=0,时,N(0,1)称标准正态,图形为: 分布函数F(x)为密度函数f(x)从(-∞,x)围成的面积。当X~N(0,1),F(x)=Φ(x)(换个叫法), 由对称性有Φ(-a)=1-Φ(a); 看到X~N(,求概率的题,一定要变成标准正态N(0,1); 既把X变成;则~N(0,1); 例题:已知X~N(;求P(-1

概率论第四讲

第2章随机变量及其分布 §1 随机变量 定义1(随机变量)设是一个概率空间,称可测函数为该空间上的一个随机变量。 例1 在箱中编号为1到20的球中不放回随机取出3个球。那么球的最大号码 是一个随机变量,其值域空间为。并且,给定值域空间中的一点,其原像对应于一个随机事件。例如,,对应于事件,,以及其所有可能的轮换。因此,可以认为本身是样本空间上的一个随机事件。以后我们经常需要讨论的是类似事件的概率。 例2考虑等候公共汽车的时间,显然。 这里必须强调,对任意的,。 定义2(分布函数)设是概率空间上的一个随机变量。对任意,称函数为分布函数。 分布函数满足如下性质 (1)是非降右连续函数;(2),。 §2 离散型随机变量及其分布律 1.离散型随机变量 离散型随机变量是一个比较特殊的情形。 定义1(离散型随机变量)如果随机变量的值域空间是一个由有限或可列个值构成的集合,就称之为离散型随机变量。 例伯努利试验;泊松分布等。 2.离散随机变量的分布律 对离散随机变量,由于其值域空间是离散的,因此其分布函数是一个阶梯函数,我们也可用另一种等价方式来刻画。 定义2 (分布律)设随机变量的值域本空间为,那么称为其分布律。 显然分布律和分布函数是相互唯一确定的。 分布律显然满足。 3. 常见的离散随机变量 (1)分布 如果,且其分布律为,,其中。 例1 抛掷硬币,出现反面时令,正面时,则其服从分布。 (2)几何分布 连续不断抛掷硬币,令是首次出现正面时已抛掷的次数。那么,其值域空间为,而分布律。 (3)二项分布 连续抛掷硬币(可以解释为伯努利试验)次。成功的次数记为,那么其值域空间为,而其分布律。 (4)泊松分布 设分布律为的随机变量。 例2如果内,某事件的发生次数。那么下面的假设是合理的: (1)在时间内,发生一次事件的概率为; (2)发生两次或两次以上事件的概率为; (3)事件发生具有独立性。 下面证明此时。 把等份,,。 那么,在假定发生事件的总数是时,其中是每个区间至多只发生一次事件的事件组成,是至少有一个区间事件发生的次数有两次或两次以上的事件组成。那么 。

相关文档
相关文档 最新文档