文档库 最新最全的文档下载
当前位置:文档库 › 轴承特征频率计算公式

轴承特征频率计算公式

轴承特征频率计算公式

1)滚动轴承的特征频率

滚动体 fb=D/2d (1-d2cos2α/D2) 外环

fi=Zn/2(1-dcos α/D ) 内环

fo=Zn/2(1+dcos α/D ) 保持架

f=n/2(1-dcos α/D ) fb--滚动体频率 fi--内环频率

fo--外环频率

f--保持架频率 d--滚动体直径

D--节园直径 α--接触角

Z--滚动体数 n--

轴频 (f = 0.381 * n fb = 1.981 * n fo = 3.047 * n fi= 4.952 *n

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

轴承故障特征倍频公式推导

轴承故障特征倍频公式 推导 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

滚动轴承可能由于润滑不良、载荷过大、材质不当、轴承内落入异物、锈蚀等原因,引起轴承工作表面上的剥落、裂纹、压痕、腐蚀凹坑和胶合等离散型缺陷或局部损伤。当滚动轴承另一工作表面通过某个缺陷点时,就会产生一个微弱的冲击脉冲信号。随着转轴的旋转,工作表面不断与缺陷点接触冲击,从而产生一个周期性的冲击振动信号[5]。缺陷点处于不同的元件工作表面,冲击振动信号的周期间隔也即频率是不相同的,这个频率就称为冲击的间隔频率或滚动轴承的故障特征频率[4,6]。可以根据轴承的几何参数和其转速计算轴承元件的故障特征频率[4,6,10]。 a.速度关系 b.几何关系 图 滚动轴承中个元件的运动关系 如图所示,设外圈和内圈滚道上分别有一接触点A 和B ,假设为理想状态,径向游隙为零,则A 点和B 点的圆周速度分别为 e e e n D v 60π= (4-1) i i i n D v 60π= (4-2) 式中 e v 、i v ——外圈、内圈滚道接触点处的圆周速度,[mm/s]; e D 、i D ——外圈、内圈滚道接触点处的直径,[mm]; e n 、i n ——外圈、内圈的转速,[r/min]。 令 αγcos m D d = (4-3) 式中 d ——滚动体直径,[mm]; m D ——滚动体中心圆直径,[mm]; α——接触角,指接触面中心与滚动体中心连线和轴承径向平面之间的夹角,[弧度或角度]。 由图4-1(b )可见 e D =)1(cos γα+=+m m D d D 滚动体围绕轴承中心线的公转线速度乃是i v 和e v 的平均值,即

典型轴承故障的4个发展阶段及频谱分析

典型轴承故障的4个发展阶段及频谱分析 解调频谱作为一个早期指示故障的测量参数,检查正常频谱和解调频谱: 1.都没有故障频率,状态良好,作为基线继续监测; 2.只在解调频谱存在故障频率,早期故障指示或需要润滑; 3.在两种频谱中存在谱峰值,计划下一次维修时更换轴承; 4.只在正常频谱中存在谱峰值,同时在解调频谱中噪声水平升高,应立即更换。 轴承故障劣化发展不是按线性规律,而是按指数规律变化!

轴承故障发展的四个阶段频谱 I.初始阶段 a.噪声正常 b.温度正常 c.可用超声、振动解调谱、声发射测量出来; d.轴承外环有缺陷 e.振动总量比较小,无离散的轴承故障频率尖峰 f.轴承剩余寿命大于B-10规定的10%

II.第二阶段 a.噪声略增大 b.温度正常 c.超声、声发射、振动解调频谱明显增大,轴承外环有缺陷 d.振动总量略增大(振动加速度总量和振动速度总量) e.对数刻度频谱上可清楚看到轴承故障频率,线性刻度频谱上难得看到,噪声地平明显提高 f.轴承剩余寿命大于B-10规定的5% III.第三阶段 a.可听到噪声 b.温度略升高 c.非常高的超声、声发射,解调频谱通频值,轴承外环有故障 d.振动加速度总量和振动速度总量有大的增加 e.在线性刻度的频谱上清楚地看出轴承故障频率及其谐波和边带

f.振动频谱噪声地平明显提高 g.轴承剩余寿命大于B-10规定的1% IV.第四阶段 a.噪声的强度改变 b.温度明显升高 c.超声,声发射,振动尖峰能量迅速增大,随后逐渐减小 d.轴承外环处在损坏之前故障状态 e. 振动速度总量和振动位移总量明显增大,振动加速度总量减小 f. 较低的轴承故障频率占优势的振动尖峰,振动频谱中噪声地平非常高 g.轴承剩余寿命大于B-10规定的0.2% 综上所述,通过对影响,缩短股东轴承寿命的分析,得出不同轴承故障的解决、预防措施,根据滚动轴承解调分析原理得到轴承故障频谱曲线,结合滚动轴承故障发展的四个阶段特征,判断轴承工作状态,能很好的监控滚动轴承的运行状况及时准确地判断滚动轴承更换周期,确保设备的正常维修及运行。

滚动轴承故障诊断频谱分析

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷等其它 原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

轴承信号分析基本理论

轴承信号分析基本理论 1. 采样定理 定义:每秒钟采样的次数。(例如每0.01秒采样一次,即在1秒钟内有100次等时距的采样,因此这次采样的采样频率为100Hz 。) 根据采样定律:采样频率必须不低于信号最高频率的两倍,否则会产生频混现象(频谱混叠效应)。即f s >2f h 2. 加窗 定义:截断信号过长的时间历程,即将信号乘以时域的有限宽窗函数。 A 对周期信号进行整周期的截取,就无“泄漏”现象。 对周期信号进行非整周期的截取,会出现“泄漏”现象。 (在实际处理过程中,由于信号并不一定是周期信号,也并不一定是整周期截取,所以,加窗以后的信号在频谱图上除了有主要的频率以外,还出现了其他附加频率,从而造成能量不是集中于确定的主要频率上,而是部分泄漏到其他频率中。这种由于时域上的截断所导致频域内附加一些成分,引起能量泄漏,称为泄漏误差,又叫做截断误差。) B 为了减少泄漏误差,选择的窗函数应要求旁瓣高度与主瓣高度之比尽量要小,并且主瓣宽度要窄,旁瓣幅度要小。因为窄的主瓣可以提高分辨率,小的旁瓣可以减小泄漏。然而,事实上窗函数的选取往往是牺牲分辨率来换取泄漏的减少。 3. 平均 定义:在采集信号的过程中不可避免的会将噪声同时被采集入内,噪声是随机的,有时上升,有下降。这些噪声在经过数量足够多的平均后,可以相互抵消。 4. 倒谱 定义:这里轴承信号的分析,都采用实倒谱。实倒频谱)(τx C 即功率谱对数谱的模,也就是说,在傅里叶正变换后,不考虑相位信息。 [])(log )()(1f S F C C x x -==ττ 在所研究的信号中,其故障频率附近总是存在多族频率,习惯上把它们成为边频。倒频谱能够分离和提取出密集边频信号中的周期成分,将原来频谱图上成簇的边频带谱线简化为单根谱线。倒频谱在进行功率谱的对数转换时,给幅值较小的分量有较高的加权。 4. 细化谱 4.1.1全频段细化过程

转动设备常见振动故障频谱特征及其案例解析分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

滚动轴承的振动信号特征分析报告

南昌航空大学实验报告 课程名称:数字信号处理 实验名称:滚动轴承的振动信号特征分析实验时间: 2013年5月14日 班级: 100421 学号: 10042134 姓名:吴涌涛 成绩:

滚动轴承的振动信号特征分析 一、实验目的 利用《数字信号处理》课程中学习的序列运算、周期信号知识、DFT 知识,对给定的正常轴承数据、内圈故障轴承数据、外圈故障轴承数据、滚珠故障轴承数据进行时域特征或频域特征提取和分析,找出能区分四种状态(滚动轴承的外圈故障、内圈故障、滚珠故障和正常状态)的特征。 二、实验原理 振动机理分析:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。 振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。 相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。 在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。 提取振动信号的幅域、时域、频域、时频域特征,根据特征进行故

障有无、故障类型和故障程度三个层次的判断。 三、 实验内容 Step1、使用importdata ()函数导入振动数据。 Step2、把大量数据分割成周期为单元的数据,分割方法为: 设振动信号为{x k }(k =1,2,3,…,n )采样频率为f s ,传动轴的转动速率为V r 。 采样间隔为: 1 s t f ?= (1) 旋转频率为: 60 r r V f = (2) 传动轴的转动周期为: 1 r T f = (3) 由式(1)和(3)可推出振动信号一个周期内采样点数N : 1 1s r r s f f T N t f f = ==? (4) 由式(2)可得到传动轴的转动基频f r =29.95Hz ,再由式(3)可得到一个周期内采样点数N=400.67,取N =400。 Step3、提取振动信号的特征,分析方法包括: 1、时域统计分析指标(波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标(Impulse Factor)、裕度指标(Clearance Factor)、峭度指标(KurtosisValue) )等,相关计算公式如下: (1)波形指标: P f X WK X = (5) 其中,P X 为峰值,X 为均值。p X 计算公式如下:

轴承故障特征倍频公式推导

滚动轴承可能由于润滑不良、载荷过大、材质不当、轴承内落入异物、锈蚀等原因,引起轴承工作表面上的剥落、裂纹、压痕、腐蚀凹坑和胶合等离散型缺陷或局部损伤。当滚动轴承另一工作表面通过某个缺陷点时,就会产生一个微弱的冲击脉冲信号。随着转轴的旋转,工作表面不断与缺陷点接触冲击,从而产生一个周期性的冲击振动信号[5]。缺陷点处于不同的元件工作表面,冲击振动信号的周期间隔也即频率是不相同的,这个频率就称为冲击的间隔频率或滚动轴承的故障特征频率[4,6]。可以根据轴承的几何参数和其转速计算轴承元件的故障特征频率[4,6,10]。 a.速度关系 b.几何关系 图4.1 滚动轴承中个元件的运动关系 如图4.1所示,设外圈和内圈滚道上分别有一接触点A 和B ,假设为理想状态,径向游隙为零,则A 点和B 点的圆周速度分别为 e e e n D v 60 π= (4-1)

i i i n D v 60 π= (4-2) 式中 e v 、i v ——外圈、内圈滚道接触点处的圆周速度,[mm/s]; e D 、i D ——外圈、内圈滚道接触点处的直径,[mm]; e n 、i n ——外圈、内圈的转速,[r/min]。 令 αγcos m D d = (4-3) 式中 d ——滚动体直径,[mm]; m D ——滚动体中心圆直径,[mm]; α——接触角,指接触面中心与滚动体中心连线和轴承径向平面之间的夹角,[弧度或角度]。 由图4-1(b )可见 e D =)1(cos γα+=+m m D d D )1(c o s γα-=-=m m i D d D D 滚动体围绕轴承中心线的公转线速度乃是i v 和e v 的平均值,即 )]1()1([120 2γγπ ++-=+= e i m e i m n n D v v v 滚动体的公转线速度也就是保持架中心圆的线速度。保持架中心圆上某一点的线 速度为 m m m n D v 60 π= 由上两式得保持架的转速为 )]1()1([2 1 γγ++-=e i m n n n (4-4) 内圈相对于保持架的转速为 ()()γ+-=-=12 1 e i m i im n n n n n (4-5) 假设保持架上有z 个滚动体,内圈上某一点滚动体滚过频率为 ()()z n n z n n N e i m i i γ+-=-=12 1 )( 外圈相对于保持架的转速为 ()()γ--=-=12 1 i e m e em n n n n n (4-6) 外圈上某一点滚动体滚过频率为

滚动轴承故障诊断

第二组实验 轴承故障数据: 数据打开后应采用X105_DE_time作为分析数据,其他可作为参考,转速1797rpm 轴承型号:6205-2RS JEM SKF, 深沟球轴承 采样频率:12k Hz 1、确定轴承各项参数并计算各部件的故障特征频率 通过以上原始数据可知次轴承的参数为: 轴承转速r=1797r/min;滚珠个数n=9;滚动体直径d=; 轴承节径D=39mm;:滚动体接触角α=0 由以上数据计算滚动轴承不同部件故障的特征频率为: 外圈故障频率f1=r/60 * 1/2 * n(1-d/D *cosα)= 内圈故障频率f2=r/60 * 1/2 * n(1+d/D *cosα)= 滚动体故障频率f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2(α)]= 保持架外圈故障频率f4=r/60 * 1/2 * (1-d/D *cosα)= 2.对轴承故障数据进行时域波形分析 将轴承数据导入MATLAB中直接做FFT分析得到时域图如下:并求得时域信号的各项特征:

(1)有效值:;(2)峰值:; (3)峰值因子:;(4)峭度:; (5)脉冲因子:;(6)裕度因子:: 3.包络谱分析 对信号做EMD模态分解,分解得到的每一个IMF信号分别和原信号做相关分析,找出相关系数较大的IMF分量并对此IMF分量进行Hilbert变换。 由图中可以看出经过EMD分解后得到的9个IMF分量和一个残余量。IMF分量分别和原信号做相关分析后得出相关系数如下: 由上表得:IMF1的相关系数明显最大,所以选用IMF1做Hilbert

包络谱分析。所得Hilbert包络谱图如下: 对包络谱图中幅值较大区域局部放大得到下图 由以上包络图的局部放大图中可以看出包络图中前三个峰值最大也最明显,三个峰值频率由小到大排列分别为、、。把这三个频率数值和前文计算所得的理论值进行比较可知:频率值最大为和内圈的故障理论计算特征频率f2=相近,说明此轴承的故障发生在轴承的内圈。 clc 程序1:原始信号时域分析及小波去噪处理 clear all z=importdata('C:\Users\wangkun\Desktop\轴承诊断\'); x1=(1:4096); clear z; N=4096; fs=12000; n=0:N-1; t=n/fs; f=n*fs/N; figure(1); plot(t,x1); xlabel('t'); ylabel('幅值'); title('原信号时域图') %小波去噪 [thr,sorh,keepapp]=ddencmp('den','wv',x1); xd=wdencmp('gbl',x1,'db3',2,thr,sorh,keepapp); figure(2); plot(t,xd); xlabel('t');

滚动轴承频谱分析及故障诊断实验报告

广州大学学生实验报告 开课学院及实验室: 526室2015年12月26日 学院机械与电气工 程学院 年级、专 业、班 机械121 姓名吴海明学号1207200014 实验课程名称机械故障诊断技术成绩 实验项目名称滚动轴承频谱分析及故障诊断指导 老师 郑文 一、实验目的 1、进一步熟悉常用信号分析仪器的使用; 2、了解常规滚动轴承的结构、特征频率及安装; 3、掌握滚动轴承的振动测量及分析方法。 通过运用振动分析手段,完成滚动轴承振动信号的测量及分析,从而提高学生进行数据采集、滚动轴承振动分析及状态评估、故障判断等方面的能力。 二、实验设备 1、列出所用振动分析仪器、软件、传感器、温度测试仪器的名称、型号、用途等; ●正常滚动轴承型号为:NTN6201 ●加速度传感器 ●Data line数据采集器; ●ODYSSEY系统; 2、振动试验台。 轴承故障模块: 故障模块中使用的是6024轴承,并利用特殊方法对轴承进行了故障处理。轴承模块也设计成方便安装的方式(如图所示),可以快速方便的安装在齿轮箱的输入轴上。在轴承故障模块的顶部有一个英制螺孔(1/4”-28),用来安装传感器。 轴承模块安装图如下: 1、齿轮箱体 2、输入轴 3、故障轴承 4、轴承盖 5、M8紧固螺钉 6、压紧垫片 7、轴承基座 8、加载螺钉 9、橡胶垫片 图轴承故障模块安装示意图三、实验要求 1.熟悉实验流程及安全操作要求,实验前正确校准系统。 2.实验过程要清楚各轴承所对应参数的故障频率测量。 3.实验后各轴承按次放回原来位置。 4、绘出振动试验台的结构简图,列出主要结构参数,如电机参数、轴承型号、传动比等。 5、画出测试系统的连接框图。 6、绘出振动试验台测点布置图,说明测量的位置、方向及传感器安装方法等。 7、计算各特征频率,如转速,不平衡、对中不良及轴承损坏等的特征频率。 四、实验操作过程 1、仪器连接; 2、测试参数选择,如频率范围(要求能测量滚动轴承的各主要频率成分) 3、调整齿轮箱大齿轮的位置,使其处于非啮合状态。拧紧紧固螺钉,防止齿轮碰撞; 4、松开齿轮箱输入轴联轴器的螺钉,并按箭头方向推动联轴器的一半,使其完全与另一半脱开。拧紧联轴器螺钉; 5、取轴承模块MD711X一块,套在齿轮轴上; 6、将压紧垫片置于轴承的内环侧面,用紧固螺钉将其压紧,从而固定轴承模块,防止轴承内环在轴承上转动; 7、将加载螺栓通过固定承载板拧在轴承模块下方的M8螺孔内,并适当的加载。注意加载的力度,过大的加载将使故障轴承模块发热以至于使轴承“咬死”,同时也会使故障信息失真,故障轴承的频率分量不清晰; 8、将传感器安装在轴承模块上方的英制螺孔内,连接到数据采集器/频谱分析仪进行数据采集、分析; 9、启动试验台; 10、测量各测点的时域波形、频谱,并存储于分析仪中; 11、用软件将测量结果传输至计算机,并显示、打印(要求用线性坐标),标出各频谱图中主要频率峰值的频率、幅值。 五、实验结果及分析 实验过程滚动轴承的转速n=900r/min,则频率为f=15Hz 1、在实验室滚动轴承标号为7111,测出的是滚动轴承外环的故障特征频率,由频谱图可以知 外环频率为f1,=47.05Hz。

滚动轴承故障诊断(附MATLAB程序)

第二组实验 轴承故障数据: Test2.mat 数据打开后应采用X105_DE_time作为分析数据,其他可作为参考,转速1797rpm 轴承型号:6205-2RS JEM SKF, 深沟球轴承 采样频率:12k Hz 1、确定轴承各项参数并计算各部件的故障特征频率 通过以上原始数据可知次轴承的参数为: 轴承转速r=1797r/min;滚珠个数n=9;滚动体直径d=7.938mm; 轴承节径D=39mm;:滚动体接触角α=0 由以上数据计算滚动轴承不同部件故障的特征频率为: 外圈故障频率f1=r/60 * 1/2 * n(1-d/D *cosα)=107.34Hz 内圈故障频率f2=r/60 * 1/2 * n(1+d/D *cosα)=162.21Hz 滚动体故障频率f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2(α)]=70.53Hz 保持架外圈故障频率f4=r/60 * 1/2 * (1-d/D *cosα)=11.92Hz 2.对轴承故障数据进行时域波形分析 将轴承数据Test2.mat导入MATLAB中直接做FFT分析得到时域图如下:

并求得时域信号的各项特征: (1)有效值:0.2909;(2)峰值:1.5256;(3)峰值因子:5.2441;(4)峭度:5.2793;(5)脉冲因子:7.2884;(6)裕度因子:9.1083:

3.包络谱分析 对信号做EMD 模态分解,分解得到的每一个IMF 信号分别和原信号做相关分析,找出相关系数较大的IMF 分量并对此IMF 分量进行Hilbert 变换。 s i g n a l Empirical Mode Decomposition i m f 1 i m f 2 i m f 3 i m f 4 i m f 5 i m f 6 i m f 7 i m f 8 r e s . 由图中可以看出经过EMD 分解后得到的9个IMF 分量和一个残余量。IMF 分量分别和原信号做相关分析后得出相关系数如下: EMD 分量 IMF1 IMF2 IMF3 IMF4 IMF5 相关系数 0.9596 0.1990 0.1096 0.0062 0.0230 EMD 分量 IMF6 IMF7 IMF8 IMF9 IMF10 相关系数 0.0032 0.0045 0.0055 0.0060 0.0062 由上表得:IMF1的相关系数明显最大,所以选用IMF1做Hilbert 包络谱分析。所得Hilbert 包络谱图如下:

傅里叶分析滚动轴承的故障诊断

作业名称:傅里叶分析滚动轴承的故障诊断 院系:机械工程系 学号: 姓名: 指导教师: 20XX年XX月 XXXXXXXXX校区

傅里叶分析滚动轴承的故障诊断 摘要:简要介绍了快速傅里叶变换(FFT)在滚动轴承故障分析中的应用,滚动轴承在机械设备中使用非常广泛,其工作状态直接影响整个设备的运行品质。对滚动轴承进行状态监测与故障诊断,能够避免重大事故的发生,获得较大的经济和社会效益。通过快速傅里叶变换(FFT)对滚动轴承运行时的实时数据信号进行分析,可以实现对滚动轴承的状态监测和故障诊断。同时,采用对正常轴承和故障轴承信号对比分析、各种故障轴承之间信号的对比分析,加深了快速傅里叶变换(FFT)对轴承实时信号分析的运用和理解,能够更好的对轴承进行状态监测和故障分析。 关键词:快速傅里叶变换(FFT);滚动轴承;故障诊断;状态监测 Abstract:This paper describes a fast Fourier transform (FFT) in the rolling bearing failure analysis applications, bearing in machinery and equipment is widely used, and its working status directly affects the quality of the operation of the entire device. Rolling element bearing condition monitoring and fault diagnosis, able to avoid major accidents and achieve greater economic and social benefits. Through Fast Fourier Transform (FFT) for real-time data bearing signal runtime analysis can be achieved on the rolling bearing condition monitoring and fault diagnosis. Meanwhile, the use of normal bearings and bearing fault signal comparative analysis of various fault signals comparative analysis between the bearings and deepened the fast Fourier transform (FFT) of the bearing using real-time signal analysis and understanding of the bearing can be better condition monitoring and fault analysis. Keywords: fast Fourier transform (FFT); Rolling; fault diagnosis; condition monitoring 一、概述 通过对快速傅里叶变换(FFT)的原理的理解和学习,利用MATLAB软件编程应用快速傅里叶变换(FFT)的方法,对滚动轴承的1组正常数据和2组故障数据

滚动轴承故障诊断频谱分析

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量得滚动轴承。一般说来,滚动轴承都就是机器中最精密得部件。通常情况下,它们得公差都保持在机器得其余部件得公差得十分之一。但就是,多年得实践经验表明,只有10%以下得轴承能够运行到设计寿命年限。而大约40%得轴承失效就是由于润滑引起得故障,30%失效就是由于不对中或“卡住”等装配失误,还有20%得失效就是由过载使用或制造上缺陷 等其它原因所致。 如果机器都进行了精确对中与精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器得实际寿命也会接近其设计寿命。然而遗憾得就是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。您得工作就是要检测出早期症状并估计故障得严重程度。振动分析与磨损颗粒分析都就是很好得诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同得振动分量——换言之,它们不就是同步得分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能就是轴承出现故障得警告信号。 振动分析人员应该马上诊断并排除就是否就是其它故障引起得这些不同步分量。 如果瞧到不同步得波峰,那极有可能与轴承磨损相关。如果同时还有谐波与边频带出现,那么轴承磨损得可能性就非常大——这时候您甚至不需要再去了解轴承准确得扰动频率。 2、扰动频率计算 有四个与轴承相关得扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)与球得自旋频率(BS)。轴承得四个物理参数:球得数量、球得直径、节径与接触角。其中,BPI与BPO得与等于滚珠/滚柱得数量。例如,如果BPO等于3、2 X,BPI等于4、8 X,那么滚珠/滚柱得数量必定就是 8。

什么是轴承的特征频率

什么是轴承的特征频率? 轴承失效四个阶段, 第一阶段(超声频率) 轴承问题的最早期表现在超声频率的异常,从250kHz 到350kHz范围;此后随故障的发展,异常频率逐步下移到20kHz到 60kHz范围,可由冲击包络监测到,一般可达到0.5gE ,实际值与测点位置、轴承型号和机器转速相关; 可采集加速度包络频谱确认轴承是否进入第一失效阶段 第二阶段(轴承固有频率) 轴承产生轻微缺陷,激起轴承部件固有频率(fn)振动或 轴承支承结构共振,一般在500Hz到2kHz范围; 在第二阶段末期,固有频率周围开始出现边频带; 第三阶段(轴承缺陷频率及其倍频) 在第三阶段,轴承缺陷频率及其倍频出现;随着轴承内磨损的发展,更多的缺陷频率倍频开始出现,围绕这些倍频以及 轴承部件固有频率的边频带的数量也逐步上升,冲击包络值继续上升 第四阶段(随机宽带振动) 在第四阶段,轴承失效接近尾声,甚至工频1X 也受影响而上升, 并产生许多工频的倍频原先离散的轴承缺陷频率和固有频率开始“消失”,取而代之是随 机的宽带高频“噪声振动” 轴承缺陷频率: 轴承缺陷频率术语/ Terms of Defect Freqs 1. BPFI: Ball Pass Frequency on Inner race 内圈缺陷频率 2. BPFO:Ball Pass Frequency on Outer race 外圈缺陷频率 3. BSF: Ball Spin Frequency 滚珠缺陷频率 4. FTF: Fundamental Train Frequency 保持架缺陷频率 轴承缺陷频率与轴承部件尺寸及轴的转速相 轴承缺损频率计算/Compute Defect Freqs BPFI=Nb/2*S(1+(Bd/Pd)*cosA) BPFO=Nb/2*S(1-(Bd/Pd)*cosA) BSF=(Pd/2Bd)*S*(1-(Bd/Pd)*CosA)2 FTF=S/2*(1-(Bd/Pd)*CosA Nb: the number of balls/轴承滚子数 S:speed/轴转速 Bd:ball diameter/滚子直径 Pd: Pitch diameter/滚子分布圆直径 A: the contact angle( degrees)/接触角(度)

基于EMD包络功率谱滚动轴承故障诊断

基于EMD的包络功率谱滚动轴承故障诊断

摘要 本文简要介绍了滚动轴承的故障特征及判定方法,并基于经验模态分解EMD(Empirical Mode Decomposition)与功率谱相结合的方法。将原始信号分解成不同尺度的固有模态函数IMF(Intrinsic Mode Function),求取IMF分量的包络,计算其包络功率谱,得到轴承的故障特征频率,进行诊断。 关键词:滚动轴承;故障诊断;EMD;包络功率谱

Abstract This paper briefly introduces the method of judging and fault features of rolling bearing, and based on empirical mode decomposition EMD (Empirical Mode Decomposition) method combined with power spectrum. The original signal is decomposed into different scales of intrinsic mode function IMF (Intrinsic Mode Function), the envelop take IMF components, calculate the envelope power spectrum, get the fault characteristic frequency of bearing, diagnosis. Keywords: rolling bearing; fault diagnosis; EMD; envelope power spectrum

滚动轴承故障诊断分析-专家版

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷等其它原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可靠。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。(非转频的倍数峰值疑似为故障信息) 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波(基频的倍频)和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)(外圈,内圈,保持架,滚动体特征频率)。轴承的四个物理参数:球的数量、球的直径、节径(滚柱圆心对应轴承的半径D)和接触角。其中,BPI和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X(转频),BPI等于4.8 X,那么滚珠/滚柱的数量必定是8。 轴承扰动频率的计算公式如下:

滚动轴承故障诊断

滚动轴承故障诊断 ――摘自互联网 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷等其它原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可靠。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。

2、扰动频率计算 有四个与轴承相关的扰动频率:滚子过内圈频率(BPI )、滚子过外圈频率(BPO )、保持架频率(FT )和滚子的自旋频率(BS )。轴承的四个物理参数:滚子的数量、滚子的直径、节径和接触角。其中,BPI 和BPO 的和等于滚珠/滚柱的数量。例如,如果BPO 等于3.2 X ,BPI 等于4.8 X ,那么滚珠/滚柱的数量必定是8。 Defect on inner race (BPI)=)cos 1(21αD d n + ――滚子过内圈频率 Defect on outer rac e (BPD)= )cos 1(21αD d n ?――滚子过外圈频率 Defect an cag e (FT)= )cos 1(21αD d ? ――保持架频率 Defect on ball (BS)= α22cos )(121????? ??D d d D ――滚子自旋频率 Where: d = Ball diameter (滚子直径) D = Pitch diameter (节圆直径) n = Number of balls (滚子数量) α = Contact angle (接触角) 注意:BS 的值可能会加倍,因为所给的公式针对的是球撞击内圈或外圈的情况。如果有庇点的滚球/滚柱同时撞击内圈和外圈,那么其频率值应该加倍。 需要说明的是由于受到各种实际情况如滑动、打滑、磨损、轴承各参数的不精确(如直径可能不完全精确)等的影响,我们所计算出来的频率值可能会与真实值有小范围的差异。 在检查过程中你可能会经常涉及到滚珠的数目,对于轴承而言你所能了解到的信息可能只有滚珠(或滚柱)的数目。如果能够根据频谱(或其它地方)确定其中一个的扰

相关文档
相关文档 最新文档