文档库 最新最全的文档下载
当前位置:文档库 › 模式识别 fisher判别

模式识别 fisher判别

模式识别   fisher判别
模式识别   fisher判别

南京理工大学

论文(设计)

《模式识别》

题目Fisher线性判别的基本原理及应用

学生姓名:李逵

学号:2009119898

院系:电子与信息工程学院

专业:模式识别

指导教师:刘谦

Fisher 判别准则

一、基本原理思想

Fisher 线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。

Fisher 线性判别分析,就是通过给定的训练数据,确定投影方向W 和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。

二、算法的实现及流程图 1 算法实现 (1)W 的确定

x 1m x, 1,2

i

i X i

i N ∈=

=∑各类样本均值向量mi

样本类内离散度矩阵和总类内离散度矩阵

T x S (x m )(x m ), 1,2

i

i i i X i ∈=--=∑

样本类间离散度矩阵

T

1212S (m m )(m m )b =--

在投影后的一维空间中,各类样本均值

。样本类内离散度和总类内离散度

。样本类间离散度。

Fisher 准则函数满足两个性质:

·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。 ·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。

根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W :。

(2)阈值的确定

采取的方法:【1】

【2】

【3】

(3)Fisher 线性判别的决策规则

对于某一个未知类别的样本向量x ,如果y=W T

·x>y0,则x ∈w1;否则x ∈w2。

2 流程图

归一化处理

载入训练数据

三、实验仿真

1.实验要求

试验中采用如下的数据样本集:

ω1类:(22,5),(46,33),(25,30),(25,8),(31, 3),(37,9),(46,7),(49,5),(51,6),(53,3)

(19,15),(23,18),(43,1),(22,15),(20,19),(37,36),(22,22),(21,32),(26,36),(23,39)(2 9,35),(33,32),(25,38),(41,35),(33,2),(48,37)

ω2类: (40,25),(63,33),(43,27),(52,25),(55,27),(59,22) ,(65,59),(63,27) (65,30),(66,38),(67,43),(52,52),(61,49) (46,23),(60,50),(68,55)

(40,53),(60,55),(55,55) (48,56),(45,57),(38,57) ,(68,24)

在实验中采用Fisher线性判别方法设计出每段线性判别函数。

2.算法程序(matlab编程)

%程序代码1在matlab中画出w1,w2类样本点

clear

clc

%w1,w2类两类样本点值

w1=[22,46,25,25,31,37,46,49,51,53,19,23,43,22,20,37,22,21,26,23,29,33,2 5,41,33,48;5,33,30,8,3,9,7,5,6,3,15,18,1,15,19,36,22,32,36,39,35,32,38, 35,2,37]';

N1=length(w1); %w1类样本点的个数

plot(w1(:,1),w1(:,2),'color','r','linestyle','none','marker','o','linew idth',1.5);

hold on;

w2=[40,63,43,52,55,59,65,63,65,66,67,52,61,46,60,68,40,60,55,48,45,38,6 8;25,33,27,25,27,22,59,27,30,38,43,52,49,23,50,55,53,55,55,56,57,57,24] ';

N2=length(w2); %w2类样本点的个数

plot(w2(:,1),w2(:,2),'color','b','linestyle','none','marker','+','linew idth',1.5);

hold on;

xlabel('x1');

ylabel('x2');

title('fisher准则的应用');

%程序代码2在matlab中画出w1,w2类样本点的投影方向

%计算w1,w2类的样本均值

average1=mean(w1);

average2=mean(w2);

%计算w1,w2类内离散度矩阵S1和S2和总类内离散度矩阵Sw

S1=zeros(2,2);

for i=1:N1

S1=S1+(w1(i,:)-average1)'*(w1(i,:)-average1); end

S2=zeros(2,2);

for j=1:N2

S2=S2+(w2(j,:)-average2)'*(w2(j,:)-average2); end

Sw=S1+S2;

%计算投影向量w

w=inv(Sw)*(average1-average2)';

%?3?1y?μ?μ?í?ó°??

k=w(2,1)/w(1,1);

x1=[-20:0.1:100];

x2=k*x1;

plot(x1,x2,'color','k');

hold on;

%程序代码3在matlab中画出w1,w2类样本点的投影点和分界线

for i=1:N1

x1=(w1(i,1)+k*w1(i,2))/(k*k+1);

x2=k*x1;

plot(x1,x2,'color','r','marker','o');

end

for j=1:N2

x1=(w2(j,1)+k*w2(j,2))/(k*k+1);

x2=k*x1;

plot(x1,x2,'color','b','marker','+');

end

x1=[0:0.1:100];

x2=(-1/k)*(x1-w1(16,1)+w2(22,1))+w1(16,2)+w2(22,2); plot(x1,x2,'color','k');

hold on;

x1=[0:0.1:100];

x2=(-1/k)*(x1-w1(10,1)+w2(4,1))+w1(10,2)+w2(4,2); plot(x1,x2,'color','k');

hold on;

经过fisher方法的第一次分割后,w1类和w2类共有10个样本点混合如上图所示。此时考虑对剩余的不可分样本点再利用fisher方法分割.如此往复,便可最终能够将w1类和w2类的所有样本分开。

%对剩余的样本点再利用fisher准则进行分割

new1=[46,51,53,37,41,48;33,6,3,36,35,37]';

new2=[40,43,52,46;25,27,25,23]';

average1=mean(new1);

average2=mean(new2);

S1=zeros(2,2);

for i=1:6

S1=S1+(new1(i,:)-average1)'*(new1(i,:)-average1);

end

S2=zeros(2,2);

for j=1:4

S2=S2+(new2(j,:)-average2)'*(new2(j,:)-average2);

end

Sw=S1+S2;

%求投影向量w

w=inv(Sw)*(average1-average2)';

%画出过原点的投影线

k=w(2,1)/w(1,1);

x1=[-20:0.1:100];

x2=k*x1;

plot(x1,x2,'color','k');

hold on;

%画出剩余样本点的投影点

for i=1:6

x1=(new1(i,1)+k*new1(i,2))/(k*k+1);

x2=k*x1;

plot(x1,x2,'color','r','marker','o');

end

for j=1:4

x1=(new2(j,1)+k*new2(j,2))/(k*k+1);

x2=k*x1;

plot(x1,x2,'color','b','marker','+');

end

重复以上步骤,直到w1类和w2类两类样本点最终分开为止。以此类推分割,代码有点冗余.不在此呈现。

matlab最终的仿真结果如下图所示。

四、实验总结

实验结果与预期的有点差距,在进行第二次分割后,投影的方向与心里所想的投影方向有点不同,经过多次修改程序,最终得出结果如上图,但仍然不是令人满意。从这次的试验中,我收获挺多的。要加深对课本的理解,更要上机动手实践,理论与实践相结合,才能达到最终深刻理解其中的含义。

matlab最终的仿真结果如下图所示。

四、实验总结

实验结果与预期的有点差距,在进行第二次分割后,投影的方向与心里所想的投影方向有点不同,经过多次修改程序,最终得出结果如上图,但仍然不是令人满意。从这次的试验中,我收获挺多的。要加深对课本的理解,更要上机动手实践,理论与实践相结合,才能达到最终深刻理解其中原理的含义。

Fisher判别分析原理详解

Fisher判别分析原理详解 说起Fisher判别分析,不得不提到一个大神级人物! Ronald Aylmer Fisher (1890~1962) 英国统计学家和遗传学家 主要著作有:《根据孟德尔遗传方式的亲属间的相关》、《研究者用的统计方法》、《自然选择的遗传理论》、《试验设计》、《近交的理论》及《统计方法和科学推理》等。他一生在统计生物学中的功绩是十分突出的。 ?生平 1890年2月17日生于伦敦,1962年7月29日卒于澳大利亚阿德莱德。 1912年毕业于剑桥大学数学系,后随英国数理统计学家J.琼斯进修了一年统计力学。他担任过中学数学教师,1918年任罗坦斯泰德农业试验站统计试验室主任。 1933年,因为在生物统计和遗传学研究方面成绩卓著而被聘为伦敦大学优生学教授。 1943年任剑桥大学遗传学教授。

1957年退休。 1959年去澳大利亚,在联邦科学和工业研究组织的数学统计部作研究工作。 大神解决的问题 ?Fisher 线性判别函数的提出: 在用统计方法进行模式识别时,许多问题涉及到维数,在低维空间可行的方法,在高维空间变得不可行。因此,降低维数就成为解决实际问题的关键。Fisher 的方法,就是解决维数压缩问题。 对xn的分量做线性组合可得标量 yn=wTxn,n=1,2,…,Ni 得到N个一维样本yn组成的集合。从而将多维转换到了一维。 考虑把d维空间中的数据点投影到一条直线上去的问题,需要解决的两个问题: (1)怎样找到最好的投影直线方向;(2)怎样向这个方向实现投影,这个投影变 换就是要寻求的解向量w*。这两个问题就是Fisher方法要解决的基本问题。?判别分析的一些基本公式 Fisher判别分析用于两类或两类以上间的判别,但常用于两类间判别。 Fisher判别函数表达式(多元线性函数式): 判别函数的系数是按照组内差异最小和组间差异最大同时兼顾的原则来确定判别函数的。 Fisher判别准则: 判别临界点: Fisher判别分析思想: 1. 类间差异大,类内变异小, 最大 2. 方差分析的思想:以下值最大 ?Fisher判别的原理 分析w1方向之所以比w2方向优越,可以归纳出这样一个准则,即向量w的方向选择应能使两类样本投影的均值之差尽可能大些,而使类内样本的离散程度尽可能小。这就是Fisher准则函数的基本思路。如下图:

随机算法学习心得-模式识别

模式识别 经过近10周的学习,学习了随机算法中有关模式识别的知识,对随机算法中模式识别的知识也有了较多的了解和认识,下面就谈谈自己对模式识别这方面的知识的学习心得和一些简单的总结。 首先,对于一个完整的模式识别系统,其基本上由三大部分组成,即数据采集、数据处理和分类决策或模型匹配。我们在设计模式识别是同时,需要注意模式类的定义、应用场合、模式表示、特征提取和选择、聚类分析、分类器的设计和学习、训练和测试样本的选取、行骗能评价等。针对不同的应用目的,模式识别系统三部分的内容可以有很大的差异,特别是数据处理和模式分类这两部分,为了提高识别结果的可靠性,往往需要加入知识库(规则)以对可能产生的错误惊醒修正,或通过引入限制条件大大缩小待识别模式在模型库中的搜索空间,以减少匹配计算量。在某些具体应用中,如机器视觉,除了要给出被识别对象时申明物体外,还要求给出该物体所处的位置和姿态以引导机器人的工作。 下面,主要谈谈自己对于模式识别方法的认识和理解。模式识别的方法大致可以分为模板匹配、统计模式识别、句法(结构)模式识别、模糊模式识别和人工神经元网络模式识别五个主要方法。 首先,对于模板匹配,该方法时最早出现,也是最简单的模式识别方法之一。模板匹配方法在字符识别、人脸识别等领域有广泛的应用,但该方法计算量非常大,而且该方法的识别率严重依赖于已知模板,如果已知模板产生变形,会导致错误的识别,为了改善这种情况,衍生出了可变形模板匹配方法。 统计模式识别方法,又称决策理论识别方法,该方法根据模式的统计特征,用一个n维特征空间(特征集)来描述每个模式,然后基于概率论、数理统计以及矩阵理论和向量代数的知识,利用合适的判别函数(每个模式类的特征值分布函数),将这个n维特征空间划分为m 个区域,即类别。特征值分布函数可以通过指定或学习得到。比如,字符识别器确定一个模式的类别为“a”到“z”26 类中的一个。同样地,在进行签名的有效性验证时,人们将某一签名确定为“真实”或“伪造”。统计模式识别技术对于解决分类问题非常有用。在统计模式识别中,贝叶斯决策规则从理论上解决了最优分类器的设计问题,但其实施却必须首先解决更困难的概率密度估计问题。 句法(结构)模式识别,1962 年,R.Narasimahan 提出了一种基于基元关系的句法模式识别方法,傅京孙在这个领域进行了卓有成效的工

Fisher判别分析

对案例中小企业的破产模型做Fisher判别分析 江义114113001059 一问题:对企业的运行状态利用Fisher判别进行分类 选取四个经济指标用于判断企业处于破产状态还是正常运行状态,具体数据如下,其中类别1表示破产状态,类别2表示正常运行状态 X1总负债率X2收益率指 标 X3短期 支付能 力 X4生产 效率指 标 类别 -0.45 -0.41 1.09 0.45 1 -0.56 -0.31 1.51 0.16 1 0.06 0.02 1.01 0.4 1 -0.07 -0.09 1.45 0.26 1 0.38 0.11 3.27 0.55 2 0.19 0.05 2.25 0.33 2 0.32 0.07 4.24 0.63 2 0.04 0.01 1.5 0.71 2 -0.06 -0.06 1.37 0.4 1 0.07 -0.01 1.37 0.34 2 -0.13 -0.14 1.42 0.44 1 0.15 0.06 2.23 0.56 2 0.16 0.05 2.31 0.2 2 0.29 0.06 1.84 0.38 带测定 0.54 0.11 2.33 0.48 带测定 二、程序如下:(R语言) > data=read.table("E:/bac/qiye.txt",header=T) > data1=c(rep(1,6),rep(2,7)) > data2=as.factor(data1) > data$class=data2 > attach(data) > names(data) [1] "X1" "X2" "X3" "X4" "class" > library(MASS) > data.lda=lda(class~X1+X2+X3+X4) > data.lda Call: lda(class ~ X1 + X2 + X3 + X4) Prior probabilities of groups: 1 2 0.4615385 0.5384615 Group means:

Fisher判别函数

Fisher 判别函数的使用具体步骤 Fisher 多类判别模型 假定事物由p 个变量描述, 即: x=(p x x x ,...,,21)T 该种事物有G 个类型, 从每个类型中顺次抽取p n n n ,...,,21个样品, 共计n= ∑=G i i 1 n 个样品。 即从第g 类取了g n 个样品, g=1,2,?, G, 第g 类的第i 个样品, 用向量: gi x =(pgi gi gi x x ,...,,x 21)T (1) ( 1) 式中, 第一个下标是变量号, 第二个下标是类型号,第三个下标是样品号。设判别函数为: T x p p v x v x v x v =+++=...y 2211 (2) 其中: V=(p v v v ,...,21)T 按照组内差异最小, 组间差异最大同时兼顾的原则, 来确定判别函数系数。(中间推导过程不在这里介绍了) 最终就有个判别函数:,y x V T j j =1,...,2,1s j = 一般只取前M=min(G- 1,p)个, 即: M j x v x v x v y p pj j j j ,...,2,1,...2211=+++= (3) 根据上述M 个判别函数, 可对每一个待判样品做出判别。 ),...,,(x 020100p x x x= 其过程如下: 1、把x0 代入式(3) 中每一个判别函数, 得到M 个数 ,,...,2,1,...y 202101j 0M j x v x v x v p pj j j =+++= 记:T M y y y y ),...,,(020100= 2、把每一类的均值代入式(3)得 G g y y y y G g M j x v x v x v y M g g g g pg pg g g g g j g ,...,2,1),,...,,(,...2,1,,...,2,1,...212211====+++= 3、计算:∑=-=M j j j g g y y D 1 2 02 )(,从这G 个值中选出最小值:)(min 212g G g h D D ≤≤=。这样就把0 x 判为h 类。

费希尔判别法理论

费希尔判别 费希尔判别(或称典型判别)的基本思想是投影(或降维):用p维向量 x (X i,X2, X p)的少数几个线性组合(称为费希尔判别函数或典型变量) y i a i x, y2 a?x, y x (—般r明显小于p )来代替原始的p个变量 X i,X2, X p,以达到降维的目的,并根据这r个判别函数y i,y2, *对样品的归属做出判别或将各组分离。成功的降维将使样品的归类或组的分离更为方便和有效,并且可以对前三个判别函数作图,从直观的几何图像上区别各组。 在降维的过程中难免会有部分有用信息的损失,但只要使用的方法得当,我们可以最大限度地减少这种损失,从而保留尽可能多的有用信息,即关于能够反 点画于直角坐标系上,一组的样品点用“肿表示,另一组的样品点用“c”表示。 假定我们希望将二维空间的点投影到某个一维空间,即一条直线上,然后再对两组进行判别,则投影到不同的直线上,判别的效果一般是不同的。从图中可见,

如果两组的点都投影到直线 z 上则这两组的投影点在该直线上的分布几乎无任 何差异,他们完全混合在一起,我们无法将这两组的点区别开来, 这样的降维把 反应两组间差异的信息都给损失了, 显然是不可取的。事实上,最好的投影是投 影到直线y 上,因为它把两组的投影点很清楚地区分了开来, 这种降维把有关两 组差异的信息很好地保留了下来,几乎没有任何损失,如此就完全可以在一维的 直线上作判别分析。 我们现考虑在R p 中将k 组的p 维数据向量投影到某个具有最佳方向的 a 上, 即投影到a 上的点能最大限度地显现出各组之间的差异。 设来自组i 的p 维观测值为X j ,j=1,2, ,n i ,i=l,2, ,k ,将它们共同投影 到某一 p 维常数向量a 上,得到的投影点可分别对应线性组合 y j =a x 0, j=1,2, ,n i ,i=1,2, ,k 。这样,所有的p 维观测值就简化为一维观测值。下面 我们用%表示组i 中y j 的均值,y 表示所有组k 组的y 0的总均值,即 对于任一用来投影的a ,我们需要给出一个能反映组之间分离程度的度量 比较图 中的上、下半图,上半图三组均值之间的差异程度与下半图是相同的, 而前者组之间的分离程度却明显高于后者, 原因就在于前者的组内变差要远小于 后者,后者组之间有较多重叠。因此,可以考虑将组之间的分离程度度量为相对 其组内变差的组间变差。在以下的讨论中,我们需假定各组的协方差矩阵相同,n i j i y j a X i 式中n X i 1 ni x ij , n j 1 a X i 1 k - n i X i o n i 1 n i n

模式识别实验报告

实验一Bayes 分类器设计 本实验旨在让同学对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。 1实验原理 最小风险贝叶斯决策可按下列步骤进行: (1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率: ∑== c j i i i i i P X P P X P X P 1 ) ()() ()()(ωωωωω j=1,…,x (2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑== c j j j i i X P a X a R 1 )(),()(ωω λ,i=1,2,…,a (3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策k a ,即 则k a 就是最小风险贝叶斯决策。 2实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=0.9; 异常状态:P (2ω)=0.1。

现有一系列待观察的细胞,其观察值为x : -3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 已知类条件概率密度曲线如下图: )|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,0.25)(2,4)试对观察的结果进 行分类。 3 实验要求 1) 用matlab 完成分类器的设计,要求程序相应语句有说明文字。 2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。 3) 如果是最小风险贝叶斯决策,决策表如下:

fisher判别式

Fisher 线性判别式 前面讲过的感知器准则、最小平方和准则属于用神经网络的方法解决分类问题。下面介绍一种新的判决函数分类方法。 由于线性判别函数易于分析,关于这方面的研究工作特别多。历史上,这一工作是从R.A.Fisher 的经典论文(1936年)开始的。我们知道,在用统计方法进行模式识别时,许多问题涉及到维数,在低维空间行得通的方法,在高维空间往往行不通。因此,降低维数就成为解决实际问题的关键。Fisher 的方法,实际上涉及维数压缩。 如果要把模式样本在高(d )维的特征向量空间里投影到一条直线上,实际上就是把特征空间压缩到一维,这在数学上容易办到。另外,即使样本在高维空间里聚集成容易分开的群类,把它们投影到一条任意的直线上,也可能把不同的样本混杂在一起而变得无法区分。也就是说,直线的方向选择很重要。 在一般情况下,总可以找到某个最好的方向,使样本投影到这个方向的直线上是最容易分得开的。如何找到最好的直线方向,如何实现向最好方向投影的变换,是Fisher 法要解决的基本问题。这个投影变换就是我们寻求的解向量* w 。 1.线性投影与Fisher 准则函数 在21/w w 两类问题中,假定有n 个训练样本),....,2,1(n k x k =其中1n 个样本来自i w 类型,2n 个样本来自j w 类型,21n n n +=。两个类型的训练样本分别构成训练样本的子集1X 和2X 。 令:k T k x w y =,n k ,...,2,1= (4.5-1) k y 是向量k x 通过变换w 得到的标量,它是一维的。实际上,对于给定的w ,k y 就是判决函数的值。 由子集1X 和2X 的样本映射后的两个子集为1Y 和2Y 。因为我们关心的是w 的方向,可以令1||||=w ,那么k y 就是k x 在w 方向上的投影。使1Y 和2Y 最容易区分开的w 方向正是区分超平面的法线方向。如下图: 图中画出了直线的两种选择,图(a)中,1Y 和2Y 还无法分开,而图(b)的选择可以使1Y 和2Y 区分开来。所以图(b)的方向是一个好的选择。 下面讨论怎样得到最佳w 方向的解析式。 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1,2,1=i (4.5-2) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (4.5-3) 映射后,各类样本“类内离散度”定义为: 2 2 () k i i k i y Y S y m ∈= -∑ ,2,1=i (4.5-4) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离散度越小越好。因此,定义Fisher

模式识别在信号处理中的应用

电子通信工程学院电子信息专业讲座报告 题目:模式识别在信号处理中的应用 专业电子信息工程 班级学号1313084 姓名 日期2016.06.05

1、模式识别技术的基本理论 1.1 模式识别的基本框架 模式识别是人工智能领域的基础,随着计算机和人工智能技术的发展,模式识别在图像处理中的应用日益广泛。近年来,模式识别也去的了很多让人瞩目的成就,有很多不可忽视的进展。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像是人类获取和交换信息的主要来源,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。基于模式识别的图像处理随着当今计算机和人工智能技术的发展,已经成为了图像识别领域的踪影研究方向。本文首先介绍了图像模式识别的基本理论和基本方法,然后阐述了模式识别在图像处理中应用理论,最后举例说明了模式识别在图像处理中的具体应用。 模式识别是通过计算机对信息进行处理、判别的一种分类过程,是信号处理与人工智能的一个重要分支。人工智能是专门研究用机器人模仿人的动作、感觉和思维过程与规律的一门学科,而模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术和人工智能的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。 在图像处理中,识别场景中的对象或区域是一个重要课题。图像模式识别的任务是从策略对象集的场景中识别对象。每个对象都是一种模式,并且策略值是模式的特征,同特征的相似对象集属于具体的模式类,测量特征的技术称为特征提取。模式识别是通过计算机对信息进行处理、判别的一种分类过程,是信号处理与人工智能的一个重要分支。人工智能是专门研究用机器人模仿人的动作、感觉和思维过程与规律的一门学科,而模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术和人工智能的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。 2 、基于模式识别技术的图像处理 2.1 基于模式识别技术的图像分割 把图像按相关度划分成各具特色的区域并提取出所需目标的技术和过程称为图像分割。分割的关键在于分割依据的确定。从模式识别技术理论上考虑图像分割问题,分割是针对图像所需分割的对象,根据图像的结构特性将图像的所有组成部分分成“分割”类和“非分割类”两类。对于任何一个事物都有与其他事物相互区别的一些本质特征,必然可以提取出本质特征能够与分割背景图像相区别并作为识别事物的依据,即为分割依据。在分割图像定位对象时,可以选择由特征组成的特征空间进行定位识别。因此,将分割对象视为模式识别的对象,图像分割的过程是为在模式识别中寻找特定模式类,并按照该模式类的特征,结合与其对应的分割技术进行分割。 图像识别是图像处理的高级阶段,其研究的是通过仪器对周围物体的视觉图像进行分析和识别,从而可得到有效的结论性判断。但是,为了使计算机系统也能认识

从模式识别认识数学

从模式识别出发解决数学问题 认知心理学家西蒙说:“人们在解决数学问题时,大多数是通过模式识别来解决的。首先要识别眼前的问题属于哪一类,然后以此为引索在记忆存储中提取相应的知识,这就是模式识别。” 我认为,运用模式识别解决数学问题的前提是,有大量的练习训练以及对理论知识的熟练把握,在头脑中将数学问题进行分类存储,在以后遇到数学问题时,就能很好地将其与记忆中的分类对号入座,迅速找到相应的解决方法。 模式识别包括:对象识别、结构识别、关系识别、句法识别、方法识别和特征识别六种。 假如拿到一个题目,关于解方程,首先要判断该方程属于一元一次方程或是一元二次方程,还是二元一次方程,然后才能确定用对应方程的解题步骤来解答。假如是关于函数,则先判断是属于正比例函数,反比例函数,二次函数,指数函数,幂函数中的哪一类,然后才能根据相关函数所具备的性质和解题思路来解决问题。这些是模式识别在数学问题解决的应用中最基本的,属于模式识别中的对象识别。 假如给定的题目是关于三角函数,先观察给出式子中是否含有特殊角,或者角度之间是否有什么联系,然后运用特殊角以及二倍角公式、两角和(或差)公式等进行解答。假若给的题目是关于不等式,考虑是否能运用一般不等式ab b a 222≥+套用解题,假如题目是关于数列,看看能否利用等差数列公式d n n na S d n a a n n 2)1(,)1(11-+ =-+=和等比数列公式q q a S q a a n n n n --==-1)1(,111进行解答。再比如要求证明三角形全

等或相似,可根据SSS 、SAS 、AAS 、HL 、AAA 等判定方法寻找必要的未知条件然后进行证明。这是运用模式识别中的结构识别和关系识别,在解决数学问题中,观察给出数据之间的关系、套用已知公式或者性质及判定方法也是一种解题途径。 假如给定的题目不易直接证明,分析法、归纳法、反证法等可以帮助我们另辟蹊径寻找解题的方法。那些能够用综合法直接证明的题目,则要根据题目的类型套用一般解题步骤,譬如解一元一次方程的程序,即去分母、去括号、移向、合并同类项、方程两边同除以未知数的系数;再比如求一次函数图像的单调性,根据“任取21,x x 属于定义域,判定)1(1) ()(),0(0)()(221<><>-或或x f x f x f x f x ”这一模式判断函数的单调性。这是模式识别中的方法识别,有些题目有固定的解题程序可以套用,这为解题提供了另一种途径。 模式识别在数学问题解决的应用中,有着很大的作用。掌握并且能熟练运用模式识别,对我们的解题能力的提高有很大的帮助。 当然,最主要的也是最基础的还是要有足够多的解题经验。假使没有练习的经历,就算掌握了理论知识,模式识别对于我们的解题过程而言也没有多大的用处。

Fisher线性判别分析实验(模式识别与人工智能原理实验1)

实验1 Fisher 线性判别分析实验 一、摘要 Fisher 线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。 Fisher 线性判别分析,就是通过给定的训练数据,确定投影方向W 和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。 二、算法的基本原理及流程图 1 基本原理 (1)W 的确定 各类样本均值向量mi 样本类内离散度矩阵i S 和总类内离散度矩阵w S 12w S S S =+ 样本类间离散度矩阵b S 在投影后的一维空间中,各类样本均值T i i m '= W m 。样本类内离散度和总类内离散度 T T i i w w S ' = W S W S ' = W S W 。样本类间离散度T b b S ' = W S W 。 Fisher 准则函数满足两个性质: ·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。 ·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。 根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W : -1w 12W = S (m - m ) 。 (2)阈值的确定 实验中采取的方法:012y = (m ' + m ') / 2。 (3)Fisher 线性判别的决策规则 对于某一个未知类别的样本向量x ,如果y=W T ·x>y0,则x ∈w1;否则x ∈w2。 x 1 m x, 1,2 i i X i i N ∈= =∑T x S (x m )(x m ), 1,2 i i i i X i ∈= --=∑T 1212S (m m )(m m )b =--

模式识别综述

模式识别综述 摘要:介绍了模式识别系统的组成及各组成部分包含的内容。就统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别等模式识别的基本方法进行简单介绍,并分析了其优缺点。最后列举了模式识别在各领域的应用,针对其应用前景作了相应分析。 关键字:模式识别系统、统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别 背景 随着现代科学技术的发展,特别是计算机技术的发展,对事物认识的要求越来越高,根据实际需求,形成了一种模拟人的各种识别能力(主要是视觉和听觉)和认识方法的学科,这个就是模式识别,它是属于一种自动判别和分类的理论。这一理论孕育于20世纪60年代,随着科学技术的发展,特别是20世纪70年代遥感技术的发展和地球资源卫星的发射,人们通过遥感从卫星取得的巨量信息,需要进行空前规模的处理、识别和应用,在此推动下,模式识别技术便得以迅速发展[1]。发展到现在,应用领域已经非常广阔,包括文本分类、语音识别、视频识别、信息检索和数据挖掘等。模式识别技术在生物医学、航空航天、工业生产、交通安全等许多领域发挥着重要的作用[2]。 基本概念 什么是模式呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或是否相似,都可以称之为模式。但模式所指的不是事物本身,而是我们从事物获取的信息。因此模式往往表现为具有时间或空间分布的信息[3]。 人们在观察各种事物的时候,一般是从一些具体的个别事物或者很小一部分开始的,然后经过长期的积累,随着对观察到的事物或者现象的数量不断增加,就开始在人的大脑中形成一些概念,而这些概念是反映事物或者现象之间的不同或者相似之处,这些特征或者属性使人们对事物自然而然的进行分类。从而窥豹一斑,对于一些事物或者现象,不需要了解全过程,只需要根据事物或者现象的一些特征就能对事物进行认识。人脑的这种思维能力视为“模式”的概念。 模式识别就是识别出特定事物,然后得出这些事物的特征。识别能力是人类和其他生物的一种基本属性,根据被识别的客体的性质可以将识别活动分为具体的客体与抽象的客体两类。诸如字符、图像、音乐、声音等是具体的客体,他们刺激感官,从而被识别。而思想、信仰、言论等则是抽象的客体,这些属于政治、哲学的范畴。我们研究的主要是一些具体客体的识别,而且仅限于研究用机器完

模式识别实验报告

模式识别与智能信息处理实践 实验一聚类分析 一、实验目的 通过聚类分析实验,加深对聚类分析基本思想、方法的理解和掌握。 二、实验内容 了解动态、静态聚类算法的特点; 熟练掌握k-均值算法或层次聚类算法; 编写能对实际模式样本正确分类的算法程序。 掌握动态聚类算法的基本思想; 认识类别数、初始类心的选择对k-均值算法聚类结果的影响; 编写能对实际模式样本正确分类的k-均值算法程序。 三、方法手段 设类别数为k,选取k个初始聚类中心,按最小距离原则将各模式分配到k类中的某一类, 不断地计算类心和调整各模式的类别使每个模式特征矢量到其所属类别中心的距离平方之和 最小。 四、k-均值算法 (1)从D中随机取k个元素,作为k个簇的各自的中心。 (2)分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。(3)根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。 (4)将D中全部元素按照新的中心重新聚类。 (5)重复第4步,直到聚类结果不再变化。 五、k-均值程序运行结果 (1)改变初始类心,观察对聚类结果的影响 若选初始类心是[1 2 3]时的结果为其分为1类共39个,分为2类共61个,分为3类共 50个,其中被分为第1类的样本为{51 53 78 101 103 104 105 106 108 109 110 111 112 113 116 117 118 119 121 123 125 126 129 130 131 132 133 135 136 137 138 140 141 142 144 145 146 148 149} 被分为第2类的样本为{52 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 102 107 114 115 120 122 124 127 128 134 139 143 147 150} 被分为第3类的样本为{1 2 3 4 5 6 7 8 9 10

判别分析中Fisher判别法的应用

1 绪论 1.1课题背景 随着社会经济不断发展,科学技术的不断进步,人们已经进入了信息时代,要在大量的信息中获得有科学价值的结果,从而统计方法越来越成为人们必不可少的工具和手段。多元统计分析是近年来发展迅速的统计分析方法之一,应用于自然科学和社会各个领域,成为探索多元世界强有力的工具。 判别分析是统计分析中的典型代表,判别分析的主要目的是识别一个个体所属类别的情况下有着广泛的应用。潜在的应用包括预测一个公司是否成功;决定一个学生是否录取;在医疗诊断中,根据病人的多种检查指标判断此病人是否有某种疾病等等。它是在已知观测对象的分类结果和若干表明观测对象特征的变量值的情况下,建立一定的判别准则,使得利用判别准则对新的观测对象的类别进行判断时,出错的概率很小。而Fisher判别方法是多元统计分析中判别分析方法的常用方法之一,能在各领域得到应用。通常用来判别某观测量是属于哪种类型。在方法的具体实现上,采用国广泛使用的统计软件SPSS (Statistical Product and Service Solutions),它也是美国SPSS公司在20世纪80年代初开发的国际上最流行的视窗统计软件包之一 1.2 Fisher判别法的概述 根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。Fisher 判别法是判别分析中的一种,其思想是投影,Fisher判别的基本思路就是投影,针对P维空间中的某点x=(x1,x2,x3,…,xp)寻找一个能使它降为一维数值的线性函数y(x):()j j x C y = x∑

然后应用这个线性函数把P 维空间中的已知类别总体以及求知类别归属的样本都变换为一维数据,再根据其间的亲疏程度把未知归属的样本点判定其归属。这个线性函数应该能够在把P 维空间中的所有点转化为一维数值之后,既能最大限度地缩小同类中各个样本点之间的差异,又能最大限度地扩大不同类别中各个样本点之间的差异,这样才可能获得较高的判别效率。在这里借用了一元方差分析的思想,即依据组间均方差与组均方差之比最大的原则来进行判别。 1.3 算法优缺点分析 优点:(1)一般对于线性可分的样本,总能找到一个投影方向,使得降维后样本仍然线性可分,而且可分性更好即不同类别的样本之间的距离尽可能远,同一类别的样本尽可能集中分布。 (2)Fisher 方法可直接求解权向量*w ; (3)Fisher 的线性判别式不仅适用于确定性模式分类器的训练,而且对于随机模式也是适用的,Fisher 还可以进一步推广到多类问题中去 缺点: (1)如果21M M =,0*=w ,则样本线性不可分; 21M M ≠,未必线性可分; w S 不可逆,未必不可分。 (2)对线性不可分的情况,Fisher 方法无法确定分类 2 实验原理 2.1 线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量:

改进的Fisher判别法

文章编号:1000-2243(2006)04-0473-05 改进的Fisher判别方法 黄利文1,2,梁飞豹1 (1.福州大学数学与计算机科学学院,福建 福州 350002;2.泉州师范学院理工学院,福建 泉州 362000)摘要:对Fisher判别方法进行了改进,其主要思想是改变Fisher判别中以临界值为准则的判别方法,而以各总体的投影值所确定的正态分布的密度函数作为样品归类准则,并形成多次判别.例子表明,该方法优于Fisher判别方法. 关键词:Fisher判别;临界值;判别分析 中图分类号:O212 文献标识码:A Improvement Fisher discriminant analysis method HUANG Li - wen1,2, LIANG Fei - bao1 (1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, China; 2. School of Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China) Abstract: Has improved the Fisher discriminant method, its main thought is to change the method of Fisher discriminant taking critical value as criterion, but the normal distribution function which deter- mined by various ensembles projection value took the sample classification criterion, and forms the multi- variate discriminate method. The example indicates this method is superior to Fisher discriminant. Keywords : Fisher discriminant; critical value; discriminant analysis

Fisher判别和Mahalanobis距离判别比较研究

龙源期刊网 https://www.wendangku.net/doc/e67312602.html, Fisher判别和Mahalanobis距离判别比较研究 作者:吴江 来源:《宁波职业技术学院学报》2017年第05期 摘要:将Fisher判别与Mahalanobis距离判别作比较,研究二者的关系,得出结论并给出解释与证明。基于二者的比较给出一种简单的Fisher判别程序(基于MATLAB),并做数值实验加以论证。 关键词:数据;样本; Fisher判别; Mahalanobis距离 中图分类号: O 213.9 文献标志码: A 文章编号: 1671-2153(2017)05-0091-04 0 引言 判别方法是根据所研究个体的观测值构建一个综合标准来推断个体属于已知种类中的哪一类的方法[1]。判别方法有很多,Mahalanobis距离判别是最典型的判别方法,Fisher判别是最 常用的判别方法之一[2]。目前对于Mahalanobis距离判别和Fisher判别的比较研究比较缺乏。本文简要阐述了Mahalanobis距离判别和Fisher判别的内容,然后对其进行比较研究,得出一些结论并给出一种简单的Fisher判别程序。 由于Fisher判别不需要对样本进行检验,而且有一定的正确率,因此它在实际中得到了广泛的应用[3]。 Mahalanobis距离判别简称马氏距离判别,从统计学角度考虑,采用Mahalanobis距离来衡量总体之间的距离比采用欧式距离来衡量总体之间的距更为科学。 1 Fisher判别与Mahalanobis距离判别的关系 2 基于MATLAB的Fisher判别程序 在MATLAB中,Mahalanobis距离判别的程序可以调用函数 classify(sample,training,group,'mahalanobis') 来实现,其中“sample”表示待测样本,“training”表示训练样本,“group”表示分组,“mahalanobis”表示使用的距离是Mahalanobis距离。从定理1知道Fisher判别是一种将数据经过一个线性映射处理后的Mahalanobis距离判别,所以先编写一个映射程序再结合classify函数

第4章 判别分析实验讲义

实验项目四判别分析的计算机实现 一、实验内容、目标及要求 (一)实验内容 选取140家上市公司作为样本,其中70家为由于“财务状况异常”而被交易所对其股票实行特别处理(Special Treatment,简称ST)的公司,另外70家为财务正常的公司。为了研究上市公司发生财务困境的可能性,以“是否被ST”为分组变量,选择资产负债率、总资产周转率和总资产利润率几个财务指标作为判别分析变量,这三个指标分别从上市公司的偿债能力、资产管理能力和获利能力三个不同的角度反映了企业的财务状况。(数据略) (二)实验目标 贝叶斯判别、费希尔判别法的计算机操作及结果分析。 (三)实验要求 要求学生能熟练应用计算机软件进行判别分析并对结果进行分析,培养实际应用能力。 二、实验准备 (一)运行环境说明 电脑操作系统为Windows XP及以上版本,所需软件为SPSS 16.0。 (二)基础数据设置说明 将数据正确导入SPSS,设置相应的变量值。 三、实验基本操作流程及说明 (一)系统界面及说明 同实验一。

(二)操作步骤 1. 选择菜单项Analyze→Classify→Discriminate,打开Discriminate Analysis对话框,如图4-1。将分组变量st移入Grouping V ariable列表框中,将自变量x1-x3选入Independents 列表框中。 选择Enter independents together单选按钮,即使用所有自变量进行判别分析。若选择了Use stepwise method单选按钮,则可以根据不同自变量对判别贡献的大小进行变量筛选,此时,对话框下方的Method按钮被激活,可以通过点击该按钮设置变量筛选的方法及变量筛选的标准。 图4-1 Discriminate Analysis对话框 2. 单击Define Range按钮,在打开的Define Range子对话框中定义分组变量的取值范围。本例中分类变量的取值范围为0到1,所以在Minimum和Maximum输入框中分别输入0和1。单击Continue按钮,返回主对话框。 3. 如果不想使用全部的样本进行分析,单击Select按钮,则Discriminate Analysis对话框下方会跳出一个Selection Variable列表框,将一个选择变量移入Selection Variable列表框,并单击Rule按钮,设置选择条件。这样,只有满足选择条件的观测才能参与判别分析。 4. 单击Statistics按钮,在跳出的Statistics子对话框中指定输出的描述统计量和判别函数系数。该对话框中各选项的含义如下: Descriptives选项栏:输出原始数据的描述性统计量 ◆Means:输出各类中所有自变量的均值、组内标准差以及总样本的均值和标准差; ◆Univariate ANOV A:进行单因素方差分析,检验的原假设为不同类别中自变量的均 值不存在显著差异; ◆Box’s M:对各类的协方差矩阵是否相等进行检验。 Matrices选项栏:输出各种不同的协差阵和相关系数矩阵 ◆Within-groups correlation matrix:平均组内相关系数矩阵,它是由平均组内协差阵 计算得到的; ◆Within-groups covariance matrix:平均组内协差阵,它是由各组的协差阵平均后得 到的; ◆Separate-groups covariance matrix:分别输出各个类的协差阵; ◆Total covariance matrix:总体协差阵。 Function Coefficients选项栏:输出不同的判别函数系数 ◆Fisher’s:给出Bayes线性判别函数的系数。(注意:这个选项不是要给出Fisher判 别函数的系数。这个复选框的名字之所以为Fisher’s,是因为按判别函数值最大进

模式识别

指挥自动化学院《人工智能》课程读书报告 模式识别 姓名:舒露华 队别:指院六队 学号: 3092008322 专业:计算机与科学专业(合训) 任课教员:赖俊 解放军理工大学指挥自动化学院 二〇一二年一月

目录 1.什么是模式 (1) 2.模式识别的概念 (1) 3.模式的分类 (2) 3.1有监督和无监督 (2) 3.2抽象和具体 (3) 4.模式识别方法的分类 (3) 4.1统计模式识别 (4) 4.2句法结构模式识别 (4) 4.3模糊模式识别 (4) 4.4人工神经网络识别 (5) 5.模式识别的应用 (5) 5.1文字识别 (5) 5.2语音识别 (5) 5.3指纹识别 (6) 5.4遥感 (6) 5.5医学诊断 (6) 6.发展前景 (6) 6.1语音识别技术 (6) 6.2生物认证技术 (7) 6.3数字水印技术 (7) 7.结语 (7)

1.什么是模式 什么是模式呢?广义地,存在于时间和空间中可观察的事物,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。但模式所指的不是事物本身,而是我们从事物获得的信息。因此,模式往往表现为具有时间或空间分布的信息。由于主要讨论的是用计算机进行模式识别,信息进人计算机之前通常要经过取样和量化,在计算机中具有时空分布的信息表现为向量即数组。数组中元素的序号可以对应时间与空间,也可以对应其他的标识。例如,医生根据各项化验指标判断疾病种类的模式识别过程中,各种化验项目并不对应实际的时间或空间。因此,对于上面所说的时间与空间应作更广义、更抽象的理解。 人们为了掌握客观事物,按事物相似的程度组成类别。模式识别的作用和目的就在于面对某一具体事物时将其正确地归人某一类别。例如,数字“4"可以有各种不同的字体或写法,但它们都属于同一类,即使我们看到从未见过的某种写法的“4”,也能正确地将其分到“4”这一类别中去。从不同角度看人脸,视网膜上的成像也不同,但我们可以识别出这个人是谁,把所有不同角度的像都归人某个人这一类。如果给每个类命名,并且用特定的符号来表达这个名字,那么模式识别可以看成是从具有时间和空间分布的信息向着符号所作的映射。 通常,我们把通过对具体的个别事物进行观泌所得到的具有时间和空间分布的信息称为模式.而把棋式所属的类别或同一类中模式的总体称为模式类(或简称为类)。也有人习惯于把模式类称为模式,而把个别具体的模式称为样本,这种用词的不同可以从上下文弄清其含义,井不会引起误解。 2.模式识别的概念 模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的

相关文档