文档库 最新最全的文档下载
当前位置:文档库 › 初中生几何解题能力的培养策略

初中生几何解题能力的培养策略

初中生几何解题能力的培养策略
初中生几何解题能力的培养策略

初中生几何解题能力的培养策略

平面几何证明是初等数学学习的难点之一,其难就难在如何寻找证明思路。

几何解题

一、初中生几何解题出错的原因分析

1、概念理解错误造成的思维障碍

概念是思维的细胞,是思维的基本单位.几何概念是几何教学的核心,是构成判断、推理的要素,概念明确是思维合乎逻辑的基本要求.如果几何概念不清,就容易陷入思维混乱,在学生的解题过程中会造成各种各样的思维障碍,究其原因是概念的理解不深刻。

2、定理理解肤浅造成的思维障碍

定理是平面几何中进行推理论证的依据,要达到对定理的深刻理解,并在证题过程中能够灵活运用.如果对定理的理解肤浅,不能领会其实质,不能完整地掌握定理的条件、结论、适用范围,在证明过程中就会出现这样或那样的思维障碍,使解题过程出错。

3、发散思维不流畅造成的思维障碍

发散思维是指从同一材料探求不同答案的思维过程,思维发散于不同的方向,即从不同的方面进行思考.在几何学习中发散思维表现为依据定义、定理、公式和已知条件,思维朝着各种可能的方向前进,不局限于既定的模式,从不同的角度寻找解决问题的各种可能的途径.发散思维的流畅性,是指思维者心智活动畅通无阻、迅速灵活,善于联想,能在较短的时间内表达较多的概念和原理.流畅性是发散思维的基础。

4、思维定势造成的思维障碍

所谓思维定势,就是按照积累的思维活动经验和已有的思维规律,在反复使用中所形成的比较稳定的思维路线、方式、程序、模式。有些学生往往在学完全等三角形后,形成了一定的解题思维,在进入等腰三角形的学习后,难以放弃全等三角形的解题经验,导致思维僵化,不能利用等腰三角形的三线合一知识灵活解题。

二、提高初中生几何解题能力的策略

1、注重培养学生的几何功底。

如何培养学生的解题能力

如何培养学生的解题能力 中学数学教学的目的,归根结底在于培养学生的解题能力,提高数学解题能力是数学教学中一项十分重要的任务。提高学生解题能力始终贯穿于教学始终,我们必须把它放在十分重要的位置。那么,如何才能提高学生的解题能力,具体方法上讲主要可以从以下几方面入手: 一、培养“数形”结合的能力“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小两个属性,就交给了教学去研究了。初中数学两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是研究代数要借助“形”,研究几何要借助“数”,“数形整合”是一种趋势,越学下去,“数”与“形”越密不可分。到了高中就出现了专门用代数方法研究几何问题的一门课,叫做“解析几何”。在七年级建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。 二、培养“方程”的思维能力数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如匀速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度ⅹ时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而七年级则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。八年级、九年级我们还将学习解二元一次方程组、分式方程、一元二次方程,到了高中我们还将学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大

立体几何新题型的解题技巧

立体几何新题型的解题技巧 立体几何新题型的解题技巧 【命题趋向】 在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略 邮编:422200 作者:湖南隆回一中 邹启文 数学竞赛中最值问题,有一定难度,但只要我们去认真的分析,仔细地思考,不管问题再难,其实万变不离其宗,总离不开所学过的知识点和基本方法。如不等式法(包含非负数性质a ≥0,2a ≥0, a ≥0,一元二次方程判别式△≥0,整体大于部分等等),公式法(包括二次函数顶点坐标公式、三角函数公式、完全平方公式等等),区间取值法(包括一次函数线段端点取值与曲线在某区间内的最值求取等等),在求解方法上也有其规律性,如夹逼法、递推法、枚举法、放缩法、排序法,还有转化为几何图形法等等。近两年来的各级各类初中数学竞赛中的最值问题,在题型上已呈现出一个崭新的形势,其变化之多、涉及面之广、形式之灵活可谓达到了空前的程度,同时最值的求法也有了较大的拓展,打破了原有的思维定势,但仍然是有章可循的。 例1:已知设1x 、2x 、3x 、……n x 均为连续正整数,且1x <2x <3x <……<n x , 1x +2x +, 3x +……+n x =2005,则n x 的最大值是____最小值____(2005年 自编题) 分析:这是一道须利用不等式求解的试题,由于有1x +2x +3x +……+n x =2005,所以应当想到这些数的平均数必与中位数接近,于是可由此确定3x 的数值或范围。然后再求n x 的最大与最小数值。 解:由题意可设1x +2x +3x +……+n x =1+2+3+……+n =2005,由高斯求和公式可 得 ()200521=+n n ,解得63≈n ,但当63=n 时()()201632632 1636321=?=+=+n n 当62=n 时()()195363312 1626221=?=+=+n n ,∵1953≤2005≤2016,且n 是整数,∴n ≠62或63,我们又观察到平均值()?=++++n n n x x x x 13211ΛΛ40152005?=,

初中数学教学中解题能力的培养的实践研究-开题报告

《初中数学教学中解题能力的培养的实践研究》开题报告 靖边县第六中学艳郭怀成 一、对课题理论价值和实践价值的论证 1.自主解题能力的定义 自主解题能力是指学生个体在学习过程中一种积极自觉的学习行为,是学生在教师有目的、有计划、有组织的引导下,发现问题,调查研究,动手操作并进行自我支配、自我调节和控制,从而获取知识、技能和态度的学习方式和学习过程。 2.课题提出的社会背景 人类社会进入新的世纪,知识、信息正以前所未有的速度增长,社会对教育、对教师、对人才培养提出了更高的要求。在新一轮课程改革的浪潮中,自主学习解题能力已经成为现代教学方法中的一个最基本的原则。如何建立与新课程教学理念相适应的教学方式,是当前中学地理新课程改革急需解决的一个现实问题。本课题研究的主要目的就是为了使数学新课程教学理念能够真正贯彻到初中数学课堂教学之中,为我国初中数学课堂教学模式的研究提供一定的理论依据和建议。 3.选题的意义和研究的价值 早在上世纪,联合国教科文组织就提出了二十一世纪人们生存需要的四个学会,即学会求知,学会做事,学会共处,学会做人。其中把学会求知放在首要位置,而学会求知的核心就是自主学习。许许多多我们熟知的伟人、名人、成功人士,无一不是终生学习者,自主学

习是他们的自觉行为,是他们日常生活的重要组成部分,而这些都得益于他们从学生时代就养成的自主学习的意识和能力。那种不讲究教学方法和手段,靠教师和学生加班加点提高质量的做法已不能适应新形势的要求,提高教学效率已成为教学质量不滑坡的重要保证。而不论课外学习效率的提高还是课教学效率的提高,都离不开学生主体性的充分发挥。也就是说,学生自主学习解题能力的培养已成为新形势下决定教学质量提高的重要因素。 自主解题能力的培养是当前学校教育中急需解决的突出问题,在课程改革的浪潮推动下,一些课堂教学已经向有利于自主性学习的方向改变。但是,传统的讲授式教学依然十分流行,以教师为中心的讲授式教学带来的实际后果是令人担忧的。研究表明,直到高中阶段,我国的自主性学习能力的发展总体水平还不高,各种自主学习能力的发展还很不平衡,亟待通过有效的教育手段来提高学生的自主学习能力迫在眉睫!我们小组选择了对初中生自主学习解题能力培养的研究。 二.对课题所达目标和主要意义的论证 1.课题研究的目标 通过研究、调查、分析,探索如何有效的培养学生的自主学习能力,切实有效的为社会的建设和发展输送研究型、创新型人才 (1)掌握学生解题能力的状况 (2)探讨学生解题能力的培养途径与方法 (3)创建培养学生解题能力的教学模式

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

走进2018年中考数学专题复习几何最值问题解题策略

走进2018年中考数学专题复习第七讲几何最值问题解题策略【专题分析】 最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题. 【知识归纳】 1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可. 2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可. 【题型解析】 题型1: 三角形中最值问题 例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0) 【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标. (方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标. 【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示. 令y=x+4中x=0,则y=4, ∴点B的坐标为(0,4); 令y=x+4中y=0,则x+4=0,解得:x=﹣6,

初中学生物理计算题解题能力的培养和提高

初中学生物理计算题解题能力的培养和提高 天祝县松山初中安永华 计算题是每年中考必考的题型,它具有较强的综合性,能将所学的诸多概念、规律融合在一起加以综合运用,是考察学生综合能力的一种较好的手段,也是学生比较畏惧的题型。每年中考,计算题的得分率都很低,甚至部分学生根本动不了笔。造成这种现象的原因是由于学生思维活动的不健全,对物理知识的理解不到位,缺乏综合运用物理知识和灵活运用物理思维方法的能力。因此,提高学生计算题的解答能力,对于培养学生的物理思维方法,提高物理学习的综合能力,将会起到很大的作用。本文谈谈我在提高学生计算题解题能力的过程中采用的教学方法及体会。 一、从物理基础知识入手,全面透彻地理解物理公式 物理概念和规律是物理学的根本。只有透彻地理解了物理概念和物理规律,才能灵活地运用物理公式,才能在答题时找到解决问题的依据,做到举一反三,触类旁通。 理解物理公式,主要从以下四个方面进行: (1)理解公式中每个字母所代表的物理量及其物理意义; (2)理解公式的适用范围; (3)同一性:理解公式中的每一个物理量都是针对同一个研究对象或同一工作状态而言的; (4)统一性:运用公式进行计算的时候,各物理量的单位要对应统一。 因此,对于教材中所涉及到的每一个公式,老师都要有意识地引导学生从以上四个方面来理解,久而久之,这种引导会对学生产生潜移默化的作用,使学生在运用一个物理公式进行计算的时候,形成一种条件反射,自然而然地从上述四个方面对题目的信息进行正确判断,对公式进行正确的选择,避免在使用公式的过程中,张冠李戴,生搬硬套。 二、掌握有效的解题方法,培养学生的思维 1、一题多解,培养学生思维的广泛性“一题多解”是指通过不同的思维途径,采用多种解题方法解决同一个实际问题的教学方法。它有利于引导学生从多角度、多方位观察和思考问题,扩大视角,开阔思路,避免思维的局限性,提高学生的应变能力。 例如:在一次爆破中,使用长96cm燃烧速度是s的导火线引爆炸药,如果点火工人点火后以5m/s的速度跑开,他能否在爆炸前跑到离爆炸点500m的安全区域?这是一道多条件、答案确定而解题途径和策略不唯一的开放性试题,可以通过比时间、比路程、比速度等方法来判断点火工人能否到达安全区域,而在比路程和比速度的过程中,从不同的角度思考,又可以各得出两种不同的解法。老师在讲解过程中,应该让学生充分发言,鼓励他们说出自己的想法,同时引导他们思考有没有其他解法,能不能再换一个角度来思考问题?例如:在比路程时,我们可以以导火线的长度为标准进行比较,能不能换一个角度,以爆破点到安全区域的距离为标准来进行比较呢?这样使学生改变思维方法和角度,不断发现新的解题路径,解题思路越来越广阔,越来越灵活。而且每发现一种新的解法,都会让学生产生惊喜,从中体验解题的乐趣,享受成功的感觉。 2、一题多变,培养学生思维的灵活性“一题多变”是指从多角度、多方位对例题进行变化,引出一系列与本例题相关的题目,形成多变导向,达到熟悉并灵活应用与题目相关知识的目的。“一题多变”可以是老师“变”,即老师根据教学大纲的要求,恰当地对题目进行延伸、演变、拓展,呈现出一系列的变式题;也可以把“变”的权力教给学生,即引导学生在原题的基础上,改变条件或相关的物理场景,提出一些与教学内容相关联的、有价值的问题,并自己解决。 例如:一个“220V,100W”的灯泡,根据灯泡的铭牌,你可以计算出哪些物理量?

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

立体几何的解题方法小结

立体几何中的存在惟一性问题 存在惟一问题是立体几何中的重要题型,但往往被同学们所忽视。下面介绍其证明方法。 解决这类题型必须分两步论证。先证存在性,常用构造法,即作出符合题意的图形,再证惟一性,常用反证法(或同一法)。 例:求证:过两条异面直线中一条有且仅有一个平面与另一条直线平行。 分析;“有一个”——说明图形存在。“仅有一个”——说明图形惟一。 证明:(1)存在性 ∴a b // 这与a 、b 是异面直线相矛盾,于是假设不成立 故过b 有且仅有一个平面α与直线a 平行 立体几何中公理2的一个应用 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线。 此公理是立体几何中关于平面的基本性质之一,它除了能判断两个平面是否相交之外,还能得出如下性质: 若A A l ∈∈=αβαβ,,且I ,则A l ∈。用此性质可解决如下题型:证明点在直线上。 以下举例说明。 例1. 已知?ABC 的三边AB 、BC 、AC 所在的直线分别与平面α相交于E 、F 、G 三点,求证:E 、F 、G 三点共线。 证明:如图1,ΘI I AB E BC F EF EF ααα==?.,,联结,则

又平面平面又, ,平面,即是平面与平面的公共点。因此,、、三点共线。 EF ABC ABC EF AC G G G ABC G ABC G EF E F G ?∴==∴∈∈∴∈ααααI I . . 图1 例2. 如图2,在正方体ABCD —A 1B 1C 1D 1中,E 为AB 中点,F 为AA 1中点,求证:CE 、D 1F 、DA 相交于一点。 图2 证明:ΘE AB F AA 为的中点,为的中点,1 ∴∴EF A B A B D C EF D C //////1111又因, 评注:证明三点共线或三线共点常常转化为证明点在直线上。

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

公开课:几何“最值问题”常见解题思路

《专题:几何“最值问题”常见解决思路》公开课 蓝溪中学林子旭2016.04.20 一、教学目标:让学生通过复习、练习、比较熟悉地掌握解决几何最值问题的通常思路和常见模型 二、教学重点:掌握解决最值问题的理论依据与常用模型,能根据不同特征转化成相应的模型是解决最值问题的关键. 三、主要理论依据及模型 1、两点之间线段最短; 2、直线外一点与直线上所有点的连线段中,垂线段最短; 3、三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 4、构造函数,利用函数的性质解决 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向1、2、3依据靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN 为直线l上的一条动线段,求 AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重 合,然后作其中一个定点关于 定直线l的对称点 作其中一个定点关于定直线 l的对称点 四、模型应用与练习: (一)线段和(PA+PB)最小: 1、正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一点,则PE+PB的最小值为. 2、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC 的最小值是; 3、如图1,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,则△PQR 周长的最小值是. 4、如图2,点A(a,1)、B(-1,b)都在双曲线y= 3 x -(x<0)上,点P、Q分别是x轴、y轴上 的动点,当四边形PABQ的周长取最小值时,PQ在直线的解析式是(). A、y=x B、y=x+1 C、y=x+2 D、y=x+3 图3 5、如图5,当四边形P ABN的周长最小时,a=. (二)线段差(PA-PB)最大 1、如图6,一次函数y=-2x+4的图象与x、y轴分别交于点A,B, D为AB的中点,C、A关于原点对称.P为OB上一动点,请直接写出︱ PC-PD︱的范围:___________________. A A C D O P x y 图6

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

浅谈数学解题能力的培养

浅谈数学解题能力的培养 摘要:学生数学解题能力并非通过传授获得的,而是通过培养而逐步发展的。它是一项复杂的系统工程。本文从“教”、“学”、“思”三方面阐述了数学教学中如何有效地培养学生解题能力的问题。 关键词:数学解题能力培养 “问题”是数学的心脏,数学学习的优劣,集中表现在解题能力上。我国中学数学教学素有重视“双基”的优良传统,许多教师都在解题教学方面积累了丰富的经验。但在传统的教学模式下,师生大多难以摆脱“题海战术”的巢臼,学生以数学为首当其冲的过重课业负担已成为社会关注的焦点。对于这种大量解题训练的效果到底如何?学生在解题时的思维状况又是怎样?怎样才能提高数学解题能力?怎样实现数学作业的“减负”与“增效”?这一系列问题虽然早就引起许多教师的注意,也取得一些零散经验,但却远远没有得到系统的解决。而今,我国中学数学教育正面临一场深刻的变革,其核心思想是从“以传授知识为本”转变为“以人的发展为本”。所以,如何培养提高中学生数学解题能力,并进而使之演化为人的持续发展能力,就变得比任何时候都意义深远。 任教以来,在培养和提高学生解题能力方面,我进行了一些初步的探索。 九年制义务教育中,由于受应试教育的影响和一些传统观念的束缚,解题教学,往往仅侧重于学习现成的知识、结论、技巧、方法,忽视了数学学科的基本精神、基本特征。因而在数学学习方面所表现出来的思维缺陷具有一定的代表性。就每一次的数学测试而言,学生对于一些按部就班、有固定解题模式和记忆性操作程序的算法型试题就会考得普遍不错。而对于没有固定模式,无须死记硬背,也无法在短时间内准备好所有的解答方法,运算量一般较小,思维容量却大的思辨型试题却败下阵来。 是什么原因造成了学生“解题技能”和“解题智能”发展不均衡?这恐怕要涉及“教”、“学”、“思”三方面的原因。 一、就“教”而言 解题教学的本质是“思维过程”,受年龄等因素的限制,学生思维发展有其特定的规律,这需要解题教学遵循学生认知特点,设置最近发展区,进行有针对性的训练。 在平时的课堂教学中,我非常重视例题的典范作用。因为现在学生的解题仍较依赖例题的解题模式、思路和步骤,从而实现解题的类化。记得在教第四册的《梯形》这部分内容的一节复习课中,我只讲了一道例题: E 如图,梯形ABCD中,AB∥C D, 以AD、AC为边作平行四边形ACED, D C F 延长DC交EB于F,求证:EF=FB。 A B 通过分析、讨论,进行一题多解,总共概括了8种解法,这8种证明方法将梯形问题中重要辅助线添法、中位线的知识等都囊括其中。 可见,一道好例题的教学,对学生思维品质和解题能力的提高有着积极的促进作用。 而且在讲解例题的过程中,我也坚持不懈地对学生进行数学思想的培养,并注意与实际联系,收到了较好的效果。 比如像函数部分有这么一道题: 已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值() A、等于0 B、等于1 C、等于-1 D、不能确定 此题若从数上考虑,可得 =2,9a+3b+c=0, 用含a的代数式表示b、c后,代入求解。但若 y

相关文档
相关文档 最新文档