文档库 最新最全的文档下载
当前位置:文档库 › AD转换电路说明

AD转换电路说明

AD转换电路说明
AD转换电路说明

AD转换电路设计说明

1:电路组成框图如下图所示

2:单元电路说明

该电路由六个模块组成,电源模块用以提供其它五个模块的工作电

源;输入可调电压模块由LM324及阻容等元器件组成,通过一级RC

滤波后加给单片机40脚一个模拟信号,经单片机程序内部转换,以

控制LED数码管的数字显示完成AD转换功能;基准电压电路加至

单片机的摸拟基准输入引脚(AREF),以提供外部基准电压;JTAG

端口用以实现单片机的在线调试。其中单片机C语言编程程式如下所

示:

#include

#ifndef __SLEEP_DEFINED__

#define __SLEEP_DEFINED__

.EQU __se_bit=0x40

.EQU __sm_mask=0xB0

.EQU __sm_powerdown=0x20

.EQU __sm_powersave=0x30

.EQU __sm_standby=0xA0

.EQU __sm_ext_standby=0xB0

.EQU __sm_adc_noise_red=0x10

.SET power_ctrl_reg=mcucr

#endif

#include

#define ADC_VREF_TYPE 0x00 // 定义参考电压与左右对齐

flash unsigned char table[12] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0xff,0x80};

unsigned int read_adc(unsigned char adc_input) //读取adc

{

ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);

delay_us(10);

ADCSRA|=0x40;//ADCSR`A.6被置位,ADC转换开始。

while ((ADCSRA & 0x10)==0);//等待转换完成。0x10=0b00010000

ADCSRA|=0x10;//使能ADC转换。

return ADCW;

}

unsigned char leddisp(unsigned char a,unsigned char b,unsigned char c,unsigned char d) //动态数码显示

{

unsigned char led[4];

unsigned char i;

led[0] = a;

led[1] = b;

led[2] = c;

led[3] = d;

for(i=0;i<=3;i++)

{

PORTD |= 0x0f;

PORTD &= ~(0x01 << i);

PORTB = table[led[i]];

delay_ms(1);

}

}

unsigned char key() //按键扫描

{

if(PIND.0 == 1) return 1;

else if(PIND.1 == 1) return 2;

else if(PIND.2 == 1) return 3;

else if(PIND.3 == 1) return 4;

else return 0;

}

void main()

{

unsigned int adc,adc_v;

unsigned char a,b,c,d,j;

ADMUX=ADC_VREF_TYPE & 0xff;

ADCSRA=0x85;

DDRA = 0xff;

PORTB = 0x00;

DDRB = 0xff;

//PORTD = 0xff;

DDRD = 0xff;

while(1)

{

read_adc(0);

adc = ADCW;

adc_v = (unsigned long)adc*5000/1023;

d = adc_v%10;

c = adc_v/10%10;

b = adc_v/100%10;

a = adc_v/1000; leddisp(a,b,c,d); }

}

3:电路原理图

2

准电压模块

(完整word版)微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

波导-微带转换电路设计

波导-微带转换电路设计 姓名:学号: 一、技术指标 1)工作频率:26.5~40GHz 2)输入/输出驻波比:<1.2 3)插入损耗:<1.0dB 二、理论分析 随着微波毫米波技术的飞速发展,微波集成电路在各个方面得到了广泛应用。在毫米波频段,主要的传输线有波导和平面传输线两种。随着平面传输媒介的研究发展,混合集成电路、单片集成电路应用的日趋广泛,微带电路已在越来越多的场合取代金属空波导,成为微波、毫米波电路的重要传输线。然而,目前许多毫米波测试系统和器件仍采用金属空波导。因此,如何实现低损耗的波导与微带线的转换就成了微波毫米波技术研究的重要内容。 目前常用的微带-波导探针过渡的方式有两种,都是将微带探针从波导宽边的中心插入,一种是介质面垂直与波导传输方向,称为H面探针,如图1所示,另一种介质面平行于波导传输方向,称为E面探针,如图2所示。 图1 H面探针图2 E面探针 微带探针转换是目前应用最为广泛的波导一微带过渡形式并且它有明显的优点。它的插人损耗低,回波损耗小,具有较大频宽,且其结构紧凑,加工方便,装卸容易。本文采用H面微带探针转换的结构。探针从波导宽面插入,并且探针平面与波导窄面垂直。微带过渡段我们采用渐变结构。通过优化探针插入深度d,微带变换器的长度1 s s,波导的微带插入处到波L,探针和微带变换器各自宽度,1 导短路处的距离L,得到满足指标的结果。

一、 设计过程: (1) 利用ADS 软件里的微带计算工具得出中心频率为33.5GHz 处的微带的宽 度0.77Sx mm =,如图3所示。 图3 50欧姆微带线宽 (2) 在HFSS 中建立仿真模型如图4所示,包括微带金属条,微带基板,以及 包围空气腔三部分。利用对称性以YZ 面为对称面切掉一半可以减少计算时间。 图4 仿真模型 (3) 设置三部分的材料属性,其中微带金属条为PEC ,微带基板为 Duriod5880(厚度0.254mm =,相对介电常数 2.2=)。包围空气

波导到微带转换电路 设计报告

波导到微带转换电路 学生姓名:学号: 单位:时间:2010年5月6日 一、技术指标: 请设计一只Ka波段波导到微带转换电路。其技术指标要求如下: 工作频率:26.5~40GHz 输入/输出驻波比:<1.2dB 插入损耗:<1.0dB 二、理论分析 目前常用的微带-波导探针过渡的方式有两种,都是将微带探针从波导宽边的中心插入,一种是介质面垂直与波导传输方向,称为H面探针,如图1所示,另一种介质面平行于波导传输方向,称为E面探针,如图2所示。本课题采用的是E面探针过渡,下面详细介绍本课题中的微带-波导过渡设计方法。 图1 H面探针图2 E面探针 微带—波导过渡的构成形式如图3所示,探针从波导宽边的中心插入,任一个沿探针方向具有非零电场的波导模将在探针上激励起电流。探针附近被激励起的高次模存储无功功率的局部场,使接头具有电抗性质。由于探针过渡具有容性电抗,一段具有感性电抗的高阻线被串联在探针过渡器后面,以消除容性电抗,然后利用四分之一阻抗变换器实现与混频电路内微带传输线的阻抗匹配。 对微带-波导过渡性能有较大影响的电路参数共5个,由表1列出。探针插入处波导开窗的大小对性能也有一定影响,在设计时可先将其确定。一般的原则是开窗越小越小越好,以形成截止波导。

探针距波导终端短路面的长度D我们取四分之波导波长,因为终端短路后,波导内形成驻波,波节间距离为二分之波导波长,取四分之波导波长的短路长度,可以保证探针在波导内处于最大电压,即电场最强的波腹位置,以达到尽量高的耦合效率。 探针长度探针宽度高阻线长度高阻线宽度波导短路面 距离 L1 w1 L2 w1 D 表1影响微带-波导过渡性能的参数 三、设计过程: 确定中心频率为大气窗口35GHz,频段为26.5GHz到40GHz。确定矩形波导尺寸、基板的材料和尺寸以及微带金属条带的初始尺寸并建立模型。此处采用WR-28标准矩形波导,尺寸为7.112mm*3.556mm,基板材料选用Rogers5880型基片,厚度为0.254mm,相对介电常数为2.2,微带金属条带厚度为0.035mm,由ADS中LineCalc 计算得中心频率35GHz处50欧姆微带线宽度为0.754mm。 通过设计矩形波导宽边开口的宽度和长度,使其达到将波导中的能量传播到微带线的要求,并抑制带内谐振,主要考虑到要对高次模进行抑制和衰减,开口不能过大,应该保证开口能够对高次模有20dB的衰减,通过仿真优化,观察gamma实部可确定其对高次模的衰减大小。最后确定开口宽2.5mm,高1mm,可以满足衰减而且具有良好的输入输出驻波比。 由于参考论文得到相应的初始值,用HFSS建立如图5所示的探针过渡仿真模型,然后对重要参数进行扫参优化。最终的参数结果:探针宽度w1为0.5 mm,探针长度L1为1.8 mm,高阻线宽度w2为0.3 mm,高阻线长度L2为0.1 mm,波导短路面至端口的距离D为8.6 mm。

GHZ微带渐变阻抗变换器设计报告

微带渐变阻抗变换器设计报告 一、设计任务 名称:设计一个工作频率为,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。 主要技术指标:S11低于-20dB,S21接近,re(Z0)接近50Ω,VWAR接近1。 二、设计过程 1.原理: 1.1 阻抗匹配的概念 阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。一旦匹配完善,传输线即处于行波工作状态。 在微波电路中,常用的匹配方法有: (1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。 (2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。 (3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)

将不匹配负载产生的反射波吸收掉。 传输线的核心问题之一是功率传输。对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。 .阻抗匹配的方法 阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。 图3-1 阻抗匹配 匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。常用的匹配器有有λ/4阻抗变换换器和支节匹配器。本论文主要采用λ/4阻抗变换器。 . λ/4阻抗变换器 λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。

Ka波段波导-微带转换电路

Ka 波段波导-微带转换电路 摘 要:本文在了解矩形波导、微带线的传输理论及分析了Ka 波段波导-微带转换电路的特性后,利用HFSS 仿真软件对它进行仿真并优化,设计出了Ka 波段波导-微带转换电路。满足实验要求:在Ka 频段26.5GHz~40GHz 内的输入/输出驻波比≤1.2,插入损耗≤1.0dB 。 关键词:Ka 波段,微带线,矩形波导,HFSS ,转换电路 Abstract :After the understanding about the transmission theory of rectangular waveguide and micro-strip line and the analysis of the speciality of Ka-band waveguide micro-strip transform circuit, this paper will design the Ka-band waveguide micro-strip transform circuit by the simulation and optimization of HFSS. It meets the requirements: the input/output standing wave ratio is 1.2 within the Ka frequency range 26.5GHz~40GHz and the insertion loss is 1.0dB. Key word :Ka-band ,Micro-strip, Waveguide, HFSS , Transform circuit 1. 引言 波导-微带转换电路是各种雷达、通讯、电子对抗等系统中最重要的一种无源转接过渡,又是各系统的重要组成部分,它性能的好坏直接影响系统的性能。随着微波集成电路的发展,微带线又是微波、低频段毫米波电路的主要传输线,而实现波导-微带的过渡就成了人们日益关注的问题。本文分析了Ka 波段波导-微带探针转换的微波特性,设计了宽频带Ka 波段波导—微带转换器,并用HFSS 软件对它进行仿真分析和验证,其仿真结果达到理想中的预期值。 2. 特性分析及设计思路 2.1 矩形波导的传输理论 在矩形波导中最低次模是10TE 模,它的各场表达式为: ()y 10=sin j t z a E j H x e a ωβωμππ-??- ??? ()y 10=s i n j t z a H j H x e a ωββππ-?? ??? ( )z 10=cos j t z H H x e a ωβπ-?? ??? 0x y y E E H === (1) 由22c k ωμε=决定的频率称为截止频率,用c f 表示;相应的波长称为截至波长,用c λ表示。对于矩形波导中的10TE 模,求得其截至波长为:

微带-波导转换教材

波导-微带转换电路 刘云生 201222040512 设计目的: 设计一只Ka波段波导到微带转换电路。其技术指标要求如下: 工作频率:26.5~40GHz 输入/输出驻波比:<1.2 插入损耗:<1.0dB 一、设计思路 微带探针转换是目前应用最为广泛的波导-微带过渡形式并且它有明显的优点。它的插人损耗低,回波损耗小,具有较大频宽,且其结构紧凑,加工方便,装卸容易。 图1和图2中所示为常用微带探针转换结构图,我们采用H面微带探针转换的结构。探针从波导宽面插入,并且探针平面与波导窄面垂直。微带过渡段我们采用渐变结构。通过优化探针插入深度d,微带变换器的长度1L,探针和微带变换器各自宽度,1 s s,波导的微带插入处到波导短路处的距离L,得到满足指标的结果。

图1 H面微带探针转换结构图 图2 E面微带探针转换结构图 二、设计过程: (1)利用ADS软件里的微带计算工具得出中心频率为33.5GHz处的微带的宽度0.77 ,如图3所示。 Sx mm 图3 50欧姆微带线宽 (2)在HFSS中建立仿真模型如图4所示,包括微带金属条,微带

基板,以及包围空气腔三部分。利用对称性以YZ面为对称面切掉一半可以减少计算时间。 图4 仿真模型 (3)设置三部分的材料属性,其中微带金属条为PEC,微带基板为Duriod5880(厚度0.254mm =)。包围空气 =,相对介电常数 2.2 腔设为真空(默认)。 (4)设置波端口1,2。都为1个模式,如图5。 图5 波端口1 波端口2 (5)设置边界条件如图6。其中微带被包围空气腔的上面设置辐射边界,对称YZ面设置为Prefect H面。

2.4GHZ微带渐变阻抗变换器设计报告

2.4GHZ微带渐变阻抗变换器设计报告

2.4GHZ微带渐变阻抗变换器设计报告 一、设计任务 1.1名称:设计一个工作频率为 2.4GHZ,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。 1.2主要技术指标:S11<-20dB,S21<-0.7dB,re(Z0)=50Ω,VWAR尽量接近于1。 二、设计过程 2.1原理: 2.1.1 阻抗匹配的概念 阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。一旦匹配完善,传输线即处于行波工作状态。 在微波电路中,常用的匹配方法有: (1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。 (2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。 (3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)

将不匹配负载产生的反射波吸收掉。 传输线的核心问题之一是功率传输。对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。 2.1.2 阻抗匹配的方法 阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。 图3-1 阻抗匹配 匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。常用的匹配器有有λ/4阻抗变换换器和支节匹配器。本论文主要采用λ/4阻抗变换器。 2.1.3 λ/4阻抗变换器 λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保

2.4GHZ微带渐变阻抗变换器设计报告

2.4GHZ微带渐变阻抗变换器设计报告 一、设计任务 1.1名称:设计一个工作频率为 2.4GHZ,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。 1.2主要技术指标:S11<-20dB,S21<-0.7dB,re(Z0)=50Ω,VWAR尽量接近于1。 二、设计过程 2.1原理: 2.1.1 阻抗匹配的概念 阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。一旦匹配完善,传输线即处于行波工作状态。 在微波电路中,常用的匹配方法有: (1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。 (2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。 (3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)

将不匹配负载产生的反射波吸收掉。 传输线的核心问题之一是功率传输。对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。 2.1.2 阻抗匹配的方法 阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。 图3-1 阻抗匹配 匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。常用的匹配器有有λ/4阻抗变换换器和支节匹配器。本论文主要采用λ/4阻抗变换器。 2.1.3 λ/4阻抗变换器 λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保

2.4GHZ微带渐变阻抗变换器设计报告

2.4GHZ 微带渐变阻抗变换器设计报告 一、设计任务 1.1名称:设计一个工作频率为 2.4GHZ输入阻抗为50Q,输出阻抗为30 Q 的阻抗变换器。 1.2 主要技术指标:S11<-20dB,S21<-0.7dB,re(Z0)=50 Q ,VWAF尽量接近于1。 二、设计过程 2.1 原理: 2.1.1 阻抗匹配的概念 阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。一旦匹配完善,传输线即处于行波工作状态。在微波电路中,常用的匹配方法有: ( 1 )电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。(2)阻抗变换法:采用入/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。 ( 3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等) 将不匹配负载产生的反射波吸收掉。 传输线的核心问题之一是功率传输。对一个由信号源、传输线和负载构成

的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。 2.1.2阻抗匹配的方法 阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。 图3-1阻抗匹配 匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。 常用的匹配器有有入/4阻抗变换换器和支节匹配器。本论文主要采用入/4阻抗变换器。 2.1.3 入/4阻抗变换器 入/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为入/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。

微带线带通滤波器

引言 滤波器的基础是谐振电路,它是一个二端口网络,对通带内的频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。微波带通滤波器在无线通信系统中起着至关重要的作用,尤其是在接收机前端。滤波器性能的优劣直接影响到整个接收机性能的好坏,它不仅起到频带和信道选择的作用,而且还能滤除谐波,抑制杂散。平行耦合微带线滤波器是一种分布参数滤波器,它是由微带线或耦合微带线组成,其具有重量轻、结构紧凑、价格低、可靠性高、性能稳定等优点,因此在微波集成电路中,它是一种被广为应用的带通滤波器。 在以往设计各种滤波器时,往往需要根据大量复杂的经验公式计算及查表来确定滤波器的各级参数,这样的方法不但复杂繁琐,而且所设计滤波器往往性能指标难以达到要求。本文将先进的微波电路仿真软件ADS2008与传统的设计方法相结合设计一个平行耦合微带线滤波器,并进行建模、仿真、优化设计。 平行耦合微带线带通滤波器 边缘耦合的平行耦合线由两条相互平行且靠近的微带线构成,单个带通滤波器单元如图1(a)所示。根据传输线理论及带通滤波器理论,带通滤波元件是由串臂上的谐振器和并臂上的谐振器来完成,但是在微带上实现相间的串联和并联谐振元件尤为困难,为此可采用倒置转换器将串并联电路转化为谐振元件全部串联或全部并联在线上。因此,单个耦合微带滤波器单元能够等效成如图 1 (b)所示的一个导纳倒置转换器和接在两边传输线段的组合。

这种单独耦合线节单元虽然具有典型的带通滤波器的特性,但是单个带通滤波单元难以具有良好的滤波器响应及陡峭的通带—阻带过度。因此,通常情况下,采取级联多个这些基本耦合单元来构成实用的滤波器。如图2所示为一级联耦合微带线节单元构成的带通滤波器的典型结构,其每一个耦合线节左右对称,长度约为四分之一波长(对中心频率而言)。带通滤波器有N + 1个图1所示的耦合线带通滤波器单元构成,而每一段耦合线又可等效为如图1(b)所示的电路结构,因此导纳倒置转换器之间为特性阻抗为Z0、电角度为2θ的传输线段。Z0o与Z0e分别为耦合线的奇模与偶模特性阻抗,并可由下列公式确定: BW为带通滤波器的相对带宽,g为标准低通滤波器参数,Z0为滤波器输入、输出端口的传输线特性阻抗,下标i,i+1表示如图2所示的耦合段单元。

ADS中电路转换为微带线的步骤

ADS中电路转换为微带线的步骤 1.设计好Tline 2.Tools — LineCalc — Start LineCalc 用这个东东计算MLine各种参 数: Er: substrate dielectric constant H: subatrate height T: metallization thickness Cond: the conductivity of the conductor layers. for copper cond=4e7 Tand: the loss tanget. for copper at 0.022 比方说用RT/Duroid做基板: Er=2.20, H=20th or 0.508mm, T=0.1th or 2.5*10^-3 mm, cond =4.1*10^7 Rough=0, Tand= 0.0009 W: Mline宽 l: Mline长 Z0: 特性阻抗 E_Eff: 电角度 用synthesize或analyze可以方便地进行W\l和Z0\E的相互转换 右下角“Caculated Resaults”框中: K_eff: the effective dielectric constant A_dB: the loss of the line 3.新建design:), analog/rf network, 模版可选用s-params。然后从 左边下拉工具栏 选Tlines-Microstrip,用微带线元件构造电路。

MSUB: for the microstrip substrate characteristics,与LineCalc 里的数据一样 Mlin: microstrip line,长宽已用LineCalc算出 MTEE: tee juction MBEND: for microstrip line bends and mitres MLOC: for microstrip end effects MSTEP: abrupt change in the width of the microstrip TFR: thin film resistor 4. 主菜单Layout – Generate/Update Layout

相关文档