文档库 最新最全的文档下载
当前位置:文档库 › 基于ASL1000的开关电源测试实例

基于ASL1000的开关电源测试实例

基于ASL1000的开关电源测试实例
基于ASL1000的开关电源测试实例

基于ASL1000的开关电源测试实例

应部分网友要求,现推出一款经典开关电源的芯片—B494的测试实例,此例是基于ASL1000(以前称作为TMT)测试平台,此平台以性能稳定,测试精确著称,在国内装机量最大,目前几乎所有的封测厂均有ASL1000的机器,另外此例中的开关电源芯片中包括了基准电压源、误差放大器、振荡器以及触发器等功能、性能的测试,涵盖了大部分的模拟芯片测试,所以此例的推出,对广大模拟芯片测试以及ASL1000的初学者来说,应该是非常实用、并具有较高的参考价值的,现具体说明如下:

1、芯片简介

B494是一块开关式脉冲宽度调控电路,主要用于开关式电源控制。具有完善的脉宽调控电路;含主动或从动振荡器;含双误差放大器;含5V参考电源;死区控制可调;独立的输出晶体管(源流或陷流200mA);输出控制方式采用推挽式或单端式。采用DIP16封装形式。其功能框图如下:

具体资料参考如下:

494芯片资料下载.pdf

494开关电源工作原理分析.pdf

对于真正想掌握模拟芯片测试的工程师来说,熟悉其工作原理是至关重要的,所以,以上的两个文件必须认真仔细的研读并理解,这对你以后的调试是非常有帮助的。

2、测试参数及规范(整理的比较粗略,读者需要参考测试程序进行理解)

3、测试图(点击图片下载更清晰的测试图)

4、测试项目说明:

1.Open-Short测试:比较简单,参考音频功放测试项目说明即可。

2.内部基准电压测试,主要测试内部基准电压的性能,电压源的准确度,电压源的负

载能力(短路电流测试),以及其电压线性度、电流线性度(可参考LDO测试说明)。

3.静态电流测试,主要检验芯片自己的功耗,在不同电压下,不同状态下进行测试。

4.振荡频率测试,所有的开关电源芯片内部都有一个振荡器,本项参数既测试此振荡

器的性能,包括震荡频率、上升时间、下降时间、另外测试了控制端的控制功能;

其实还需要测试占空比等参数,因为这是wafer测试,所以省略了一些参数测试,在FT的时候可以加上,在此对占空比略做说明:占空比(Duty Cycle)在电信领域中有如下含义:

在一串理想的脉冲序列中(如方波),正脉冲的持续时间与脉冲总周期的比值。

例如:脉冲宽度1μs,信号周期4μs的脉冲序列占空比为0.25。

在一段连续工作时间内脉冲占用的时间与总时间的比值。

占空比是高电平所占周期时间与整个周期时间的比值。

5.误差放大器性能测试

待续……

5、测试程序

由于篇幅较大,在此不一一显示,请下载参考:494_program

6、调试难点

待续……

7、测试数据

Test Program: b494 (Default) No Version#

Lot ID: 1

Operator: tester

Computer: PT_TMT_003

Date: 07/26/05 20:19:53

Serial Number: 1 5383

|Test# |Test Name | Value |P/F|Unit |Min Limit |MaxLimit | Notes |

|1.01.01 |PIN1 | -0.6719 | 1 | V | -1| -0.3 | |

|1.01.02 |PIN2 | -0.6877 | 1 | V | -1 | -0.3 | |

|1.01.03 |PIN3 | -0.6569 | 1 | V| -1 | -0.3 | |

|1.01.04 |PIN4 | -0.7114 | 1 | V | -1 | -0.3 | |

|1.01.05 |PIN5 | -0.6058 | 1 | V | -1 | -0.3 | |

|1.01.06 |PIN6 | -0.6504 | 1 | V | -1 | -0.3 | |

|1.01.07 |PIN8 | -0.5735 | 1 | V | -1 | -0.3 | |

|1.01.08 |PIN11 | -0.5681 | 1 | V | -1 | -0.3 | |

|1.01.09 |PIN12 | -0.5912 | 1 | V| -1 | -0.3 | |

|1.01.10 |PIN13| -1.764| 1 | V|-2.2| -1.2 | |

|1.01.11 |PIN14 | -0.5643 | 1 | V| -1 | -0.3 | |

|1.01.12 |PIN15 | -0.6814 | 1 | V| -1 | -0.3 | |

|1.01.13 |PIN16 | -0.6968 | 1 | V| -1 | -0.3 | |

|1.02.01 |Vref| 4.943 | 1 | V|4.91| 5.09 | |

|1.02.02 |REGline | 5.131 | 1 | mV| 0| 25 | |

|1.02.03 |REGload | 16.68 | 1 | mV| 0| 30 | |

|1.02.04 |SHORT_I | -78.412 | 1 | mA| -2200| -30| |

|1.03.01 |Icc15 | 8.423 | 1 |mA | 4.5| 12 | VCC=15V | |1.03.02 |Icc40| 9.239| 1 | mA| 5| 15 | VCC=40V | |1.03.03 |I_aver | 8.959 | 1 | mA| 3| 12 | VCC=15V | |1.04.01 |F8_15 | 10.27 | 1 |KHZ| 7.30| 13.3 | VCC=15V | |1.04.02 |F11_15 | 10.3| 1 |KHZ| 7.30| 13.3 | VCC=15V | |1.04.03 |TR | 102.18| 1 | nS| 0| 200| RISE TIME | |1.04.04 |TF | 29.53 | 1 | nS| 0| 100| FALL TIME | |1.04.05 |F8_40 | 10.31 | 1 |KHZ| 7.3| 13.3 | VCC=40V | |1.04.06 |F11_40 | 10.26 | 1 |KHZ| 7.3| 13.3 | VCC=40V | |1.04.07 |F8_03 | 0 | 1 | HZ| 0| 100| |

|1.04.08 |F11_03 | 0 | 1 | HZ| 0| 100| |

|1.04.09 |F8_04 | 0 | 1 | HZ| 0| 100 | |

|1.04.10 |F11_04 | 0 | 1 | HZ| 0| 100 | |

|1.05.01 |VOFFSET1| -3| 1 | mV| -9| 9 | |

|1.05.02 |IOFFSET1| 121.1 | 1 | nA| -200 | 200 | |

|1.05.03 |IBIAS1| -0.0037 | 1 | uA| -0.8| 0.8 | |

|1.05.04 |SINK1 | 0.6649| 1 |mA | 0.30| 0 | |

|1.05.05 |SOURCE1 | -6.04| 1 | mA| 0| -2 | |

|1.05.06 |VOFFSET2| -1| 1 | mV| -9 | 9 | |

|1.05.07 |IOFFSET2| -82.33| 1 | nA| -200| 200 | |

|1.05.08 |IBIAS2| -0.1295 | 1 | uA| -0.8| 0.8 | |

|1.05.09 |SINK2 | 0.6661| 1 | mA| 0.3| 0 | |

|1.05.10 |SOURCE2 | -6.02 | 1 | mA| -2 | -2| |

|1.06.01 |IOFF8 | 0.138| 1 | uA| 0| 10| |

|1.06.02 |IOFF11| 0.357 | 1 | uA| 0| 10| |

|1.06.03 |VSAT8 | 1.053 | 1 | V | 0| 1.3 | |

|1.06.04 |VSAT11| 1.035 | 1 | V | 0| 1.3 | |

|1.07.01 |I3| 0.719| 1 | mA| 0.3| 0 | pin3=5v |

|1.07.02 |I4L | -6.01| 1 | uA| -10| 0 | pin4=0v |

|1.07.03 |I4H | -4.81| 1 | uA| -10| 0 | pin4=5.25v |

|1.07.04 |I13L| -59.9| 1 | uA| -200| 0 | pin13=0v |

|1.07.05 |I13H| 1.25| 1 |mA | 00| 3.5 | pin13=5v |

时间仓促,难免有些疏漏,请网友参考之余,帮忙指出、更正,多谢!

开关电源测试详细解说

开关电源测试详细解说当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下:一、功能(Functions)测试: ?输出电压调整(Hold-on Voltage Adjust) ?电源调整率(Line Regulation) ?负载调整率(Load Regulation) ?综合调整率(Conmine Regulation) ?输出涟波及杂讯(Output Ripple & Noise, RARD) ?输入功率及效率(Input Power, Efficiency) ?动态负载或暂态负载(Dynamic or Transient Response) ?电源良好/失效(Power Good/Fail)时间 ?起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率: 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。 为精确测量电源调整率,需要下列之设备: ?能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUIPCR 系列电源能提供0--300VAC 5-1000Hz 的稳定交流电源,0---400V DC的直流电源)。 ?一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V A WPF。 ?一个精密直流电压表,具备至少高于待测物调整率十倍以上,一般应用5位以上高精度数字表。 ?连接至待测物输出的可变电子负载。 *测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。 电源调整率通常以一正常之固定负载(NominalLoad)下,由输入电压变化所造成其输出电压偏差率

利用数字示波器测试开关电源的方法

利用数字示波器测试开关电源的方法 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。 过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。

开关电源测试标准

开关电源测试标准

开关电源的测试 良好的开关电源必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO,长城等等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他之特定需求等。 开关电源包括下列之型式: ·AC-DC:如个人用、家用、办公室用、工业用(电脑、周边、传真机、充电器) ·DC-DC:如可携带式产品(移动电话、笔计本电脑、摄影机,通信交换机二次电源) ·DC-AC:如车用转换器(12V~115/230V) 、通信交换机振铃信号电源 ·AC-AC:如交流电源变压器、变频器、UPS不间断电源 开关电源的设计、制造及品质管理等测试需要精密的电子仪器设备来模拟电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。开关电源有许多不同的组成结构(单输出、多输出、及正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。 电气性能(Electrical Specifications)测试 当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下: 一、功能(Functions)测试: ·输出电压调整(Hold-on Voltage Adjust) ·电源调整率(Line Regulation) ·负载调整率(Load Regulation) ·综合调整率(Conmine Regulation) ·输出涟波及杂讯(Output Ripple & Noise, RARD) ·输入功率及效率(Input Power, Efficiency) ·动态负载或暂态负载(Dynamic or Transient Response) ·电源良好/失效(Power Good/Fail)时间 ·起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后 续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac), 并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其 电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率:

开关电源测试项目

开关电源的测试项目及检验规范 开关电源的测试: 开关电源的设计、制造及品质管理等测试需要精密的电子仪器设备来模拟电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。开关电源有许多不同的组成结构(单输出、多输出、及正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。 电气性能(Electrical Specifications)测试 当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下: *功能(Functions)测试: ·输出电压调整(Hold-on Voltage Adjust) ·电源调整率(Line Regulation) ·负载调整率(Load Regulation) ·综合调整率(Conmine Regulation) ·输出涟波及杂讯(Output Ripple & Noise, RARD) ·输入功率及效率(Input Power, Efficiency) ·动态负载或暂态负载(Dynamic or Transient Response) ·电源良好/失效(Power Good/Fail)时间 ·起动(Set-Up)及保持(Hold-Up)时间 *保护动作(Protections)测试: ·过电压保护(OVP, Over Voltage Protection) ·短路保护(Short) ·过电流保护(OCP, Over Current Protection) ·过功率保护(OPP, Over Power Protection) *安全(Safety)规格测试: ·输入电流、漏电电流等 ·耐压绝缘: 电源输入对地,电源输出对地;电路板线路须有安全间距。 ·温度抗燃:零组件需具备抗燃之安全规格,工作温度须於安全规格内。 ·机壳接地:需於0.1欧姆以下,以避免漏电触电之危险。 ·变压输出特性:开路、短路及最大伏安(VA)输出 ·异常测试:散热风扇停转、电压选择开关设定错误 *电磁兼容(Electromagnetic Compliance)测试: 电源供应器需符合CISPR 22、CLASS B之传导与幅射的4dB馀裕度,电源供应器需在以下三种负载状况下测试:

开关电源测试规范

主题:为方便做电源的朋友测试,特奉献此开关电源测试规范。[转] 为方便做电源的朋友测试,特奉献此开关电源测试规范。[转] wwxc: 开关电源测试规范 第一部分:电源指标的概念、定义 一.描述输入电压影响输出电压的几个指标形式。 1.绝对稳压系数。 A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量△U0与输入电网变化量△Ui之比。既:K=△U0/△Ui。 B.相对稳压系数:表示负载不变时,稳压器输出直流电压Uo的相对变化量△Uo与输出电网Ui的相对变化量△Ui之比。急: S=△Uo/Uo / △Ui/Ui 2. 电网调整率。 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。3. 电压稳定度。 负载电流保持为额定范围内的任何值,输入电压在规定的范围内变化所引起的输出电压相对变化△Uo/Uo (百分值),称为稳压器的电压稳定度。 二.负载对输出电压影响的几种指标形式。 1.负载调整率(也称电流调整率)。 在额定电网电压下,负载电流从零变化到最大时,输出电压的最大相对变化量,常用百分数表示,有时也用绝对变化量表示。 2.输出电阻(也称等效内阻或内阻)。 在额定电网电压下,由于负载电流变化△IL引起输出电压变化△Uo,则输出电阻为 Ro=|△Uo/△IL| 欧。 三.纹波电压的几个指标形式。 1.最大纹波电压。 在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 2.纹波系数Y(%)。 在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既 y=Umrs/Uo x100% 3.纹波电压抑制比。 在规定的纹波频率(例如50HZ)下,输出电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即:纹波电压抑制比=Ui~/Uo~ 。 这里声明一下:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。 四.冲击电流。冲击电流是指输入电压按规定时间间隔接通或断开时,输入电流达到稳定状态前所通过的最大瞬间电流。一般是20A——30A。 五.过流保护。是一种电源负载保护功能,以避免发生包括输出端子上的短路在内的过负载输出电流对

如何用数字示波器测试开关电源

如何用数字示波器测试开关电源? 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。 SMPS设备还有一个控制部分,其中包括脉宽调制调节器脉频调制调节器以及反馈环路1等组成部分。控制部分可能有自己的电源。图1是简化的SMPS示意图,图中显示了电能转换部分,包括有源器件、无源器件以及磁性元件。 SMPS技术使用了金属氧化物场效应晶体管(MOSFET)与绝缘栅双极晶体管(IGBT)等功率半导体开关器件。这些器件开关时间短,能承受不稳定的电压尖峰。同样重要的是,它们不论在开通还是断开状态,消耗的能量都极少,效率高而发热低。开关器件在很大程度上决定了SMPS的总体性能。对开关器件的主要测量包括:开关损耗、平均功率损耗、安全工作区及其他。

开关电源测试规范

开关电源测试规范 By ZGQ 一、概述 本文主要阐述了开关电源必须通过一系列的测试,使其符合所有功能规格、保护特性、安规(如UL、CSA、VDE、DEMKO、SEMKO,长城等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他特定要求等。 测试开关电源是否通过设计指标,需要各种精密的电子设备去模拟电源在各种环境下实际工作中的性能。下面是开关电源一些测试项目: 1.功能(Functions)测试: ·电压调整率测试(Line Regulation Test) ·负载调整率测试(Load Regulation Test) ·输出纹波及噪声测试(Output Ripple & Noise Test) ·功率因数和效率测试(Power Faction & Efficiency Test) ·能效测试(Energy Efficiency Test) ·上升时间测试(Rise Time Test) ·下降时间测试(Fall Time Test) ·开机延迟时间测试(Turn On Delay Time Test) ·关机保持时间测试(Hold Up Time Test) ·输出过冲幅度测试(Output Overshoot Test) ·输出暂态响应测试(Output Transient Response Test) 2.保护动作(Protections)测试: ·过电压保护(OVP, Over Voltage Protection) ·短路保护(Short Circuit Protection) ·过电流保护(OCP, Over Current Protection) 3.安全(Safety)规格测试: ·输入电流、漏电电流等 ·耐压绝缘: 电源输入对地,电源输出对地;电路板线路须有安全间距。 ·温度抗燃:零组件需具备抗燃之安全规格,工作温度须於安全规格内。 ·机壳接地:需於0.1欧姆以下,以避免漏电触电之危险。 ·变压输出特性:开路、短路及最大伏安(VA)输出 ·异常测试:散热风扇停转、电压选择开关设定错误 4.电磁兼容(Electromagnetic Compliance)测试: 5.可靠性(Reliability)测试: 6.其他测试: 二、电气特性(Electrical Specifications)测试

开关电源测量的经验总结

电子器件的电源测量通常情况是指开关电源的测量(当然还有线性电源)。讲述开关电源的资料非常多,本文讨论的内容为PWM开关电源,而且仅仅是作为测试经验的总结,为大家简述容易引起系统失效的一些因素。因此,在阅读本文之前,已经假定您对于开关电源有一定的了解。 1 开关电源简述 开关电源(Switching Mode Power Supply,常常简化为SMPS),是一种高频电能转换装置。其功能是将电压透过不同形式的架构转换为用户端所需求的电压或电流。 开关电源的拓扑指开关电源电路的构成形式。一般是根据输出地线与输入地线有无电气隔离,分为隔离及非隔离变换器。非隔离即输入端与输出端相通,没有隔离措施,常见的DC/DC变换器大多是这种类型。所谓隔离是指输入端与输出端在电路上不是直接联通的,使用隔离变压器通过电磁变换方式进行能量传递,输入端和输出端之间是完全电气隔离的。 对于开关变换器来说,只有三种基本拓扑形式,即: ● Buck(降压) ● Boost(升压) ● Buck-Boost(升降压) 三种基本拓扑形式,是电感的连接方式决定。若电感放置于输出端,则为Buck 拓扑;电感放置于输入端,则是Boost拓扑。当电感连接到地时,就是Buck-Boost拓扑。 2 容易引发系统失效的关键参数测试 以下的测试项目除了是指在静态负载的情况下测试的结果,只有噪声(noise)测试需要用到动态负载。

2.1 Phase点的jitter 图一 对于典型的PWM开关电源,如果phase点jitter太大,通常系统会不稳定(和后面提到的相位裕量相关),对于200~500K的PWM开关电源,典型的jitter 值应该在1ns以下。 2.2 Phase点的塌陷 有时候工程师测量到下面的波形,这是典型的电感饱和的现象。对于经验不够丰富的工程师,往往会忽略掉。电感饱和会让电感值急剧下降,类似于短路了,这样会造成电流的急剧增加,MOS管往往会因为温度的急剧增加而烧毁。这时需要更换饱和电流更大的电感。 图二 2.3 Shoot through测试

开关电源适配器测试报告模板

适配器12V/1A测试报告 方案基本参数一览 输入电压90~264Vac (恒压<±1%)输出规格12V/1A 输出纹波29mV@220Vac满载转换效率85.11% @220Vac,满载 待机功耗<110mW 拓扑结构反激式 VDD电压15.48V~26.48V(正常范围)CS波形正常 VDS峰值519V@264Vac<600V FB纹波237mV(正常范围) 其他说明:本测试报告针对XXX12V1A适配器成本优化方案(变压器资料如下图),福大海矽竭诚为客户提供完善到位的服务。 变压器版本:V2(20150831) 1、各绕组绕制参数见下表所示EE19立式骨架 绕序绕 组 线径*根数 脚位圈数套管(L) 绝缘胶带 9.0mm/Ts 绕线方式 进 脚 出 脚 Ts 进出 1 N1 ¢0.19mm*1(2UEW) 2 3 68 加套管 2 N2 ¢0.35mm*2(TEX-E) 三层绝缘线 10 8 21 加套 管 加套 管 3 N3 ¢0.19mm*1(2UEW) 3 1 68 5 N4 ¢0.19mm*1(2UEW) 5 4 28 制作说明: 1. 骨架EE19立式脚距4mm 排距10.3mm PC40磁芯Ae为23mm2 2. 电感量Lp(1→2)=2mH,漏感为Lp的5%以下 3. 初级对次级打3000V AC漏电流<2mA/60s 4. 初级对磁芯打15000V AC漏电流<2mA/60s 5. 次级对磁性打15000V AC漏电流<2mA/60s 6. DC500V绕组与磁芯之间1min大于100mΩ 7. DC500V绕组与绕组之间1min大于100mΩ 注:PIN3、PIN6、PIN7、PIN9需剪脚 版本更新说明: 1、初始版本V1(20150721) 2、版本V2(20150831)调整初次级匝数,次级由飞线改为插脚,去掉铜带屏蔽,去掉磁芯接地(进行成本优化)

开关电源测试规范

开关电源测试规范及报告一、电源基本情况 项目名称________________________, PCB板号__________________________ 使用温度范围:____________℃(若没有特殊要求,按照-15~55℃,) 输入电压范围:____________Vac(若没有特殊要求按照90-264Vac) 最大输出功率______W 二、电源原理图

三、带载能力与纹波测试 1. 测试方法 分别在不同输入电压下(额定电压、最小电压、最大电压),不同的环境温度(室温、最低温度、最高温度),测试各输出支路的负载电流为空载/半载/满载时的电压值与纹波,保存典型波形图。若实际电路中某支路不会出现空载情况,可不测空载。满载时的负载电流取实际最大工作电流的1.2倍。 2. 测试记录 输出1:反馈主路设计输出___V, 最大负载____A,电压允许范围_____,纹波允许范围______ 输出2:设计输出___V, 最大负载____A,电压允许范围_____,纹波允许范围_______ 输出3:设计输出___V, 最大负载____A,电压允许范围_____,纹波允许范围________

四、整流二极管反向耐压测试 1. 测试方法 分别在不同输入电压下(额定电压、最小电压、最大电压),不同的环境温度(室温、最低温度、最高温度),测试各输出支路在满载时整流二极管的反向峰值电压,保存典型波形图。 2. 测试记录 五、VDS电压测试 1. 测试方法 分别在不同输入电压下(额定电压、最大电压),测试电源芯片的MOSFET的VDS在变压器为空载/半载/满载时的峰值电压,保存典型波形图。分别测试5次启动过程和稳态过程。

开关电源测试标准

开关电源的测试 良好的开关电源必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO,长城等等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他之特定需求等。 开关电源包括下列之型式: ·AC-DC:如个人用、家用、办公室用、工业用(电脑、周边、传真机、充电器) ·DC-DC:如可携带式产品(移动电话、笔计本电脑、摄影机,通信交换机二次电源) ·DC-AC:如车用转换器(12V~115/230V) 、通信交换机振铃信号电源 ·AC-AC:如交流电源变压器、变频器、UPS不间断电源 开关电源的设计、制造及品质管理等测试需要精密的电子仪器设备来模拟电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。开关电源有许多不同的组成结构(单输出、多输出、及正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。 电气性能(Electrical Specifications)测试 当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下: 一、功能(Functions)测试: ·输出电压调整(Hold-on Voltage Adjust) ·电源调整率(Line Regulation) ·负载调整率(Load Regulation) ·综合调整率(Conmine Regulation) ·输出涟波及杂讯(Output Ripple & Noise, RARD) ·输入功率及效率(Input Power, Efficiency) ·动态负载或暂态负载(Dynamic or Transient Response) ·电源良好/失效(Power Good/Fail)时间 ·起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac), 并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率: 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验

开关电源常规测试项目

(3).功率因素=PIN/(Vin*Iin),效率=Pout/Pin*100%; 五.测试回路图: 2.ENERGYEFFICIENCY TEST/能效测试 一、目的: 测试S.M.P.S.能效值是否满足相应的各国能效等级标准要求(规格依各国标准要求定义). 二.使用仪器设备: (1).AC SOURCE/交流电源; (2).ELECTRONIC LOAD/电子负载; (3).AC POWER METER/功率表; 三.测试条件: (1).输入电压条件为115Vac/60Hz和230Vac/50Hz与220Vac/50Hz/60Hz条件.

(2).输出负载条件为空载、1/4max.load、2/4max.load、3/4max.load、max.load五种负载条件. 四、测试方法: (1).在测试前将产品在在其标称输出负载条件下预热30分钟. (2).按负载由大到小顺序分别记录115Vac/60Hz与230Vac/50Hz输入时的输入功率(Pin),输入电流(Iin),输出电压(Vo),功率因素(PF), 然后计算各条件负载的效率. (3).在空载时仅需记录输入功率(Pin)与输入电流(Iin). (4).计算115Vac/60Hz与230Vac/50Hz时的四种负载的平均效率,该值为能效的效率值 五、标准定义: CEC/美国EPA/澳大利亚及新西兰的能效规格值标准(IV等级); (1).IV等级效率的规格是:1).Po<1W,Average Eff.≥0.5*Po;2).1≤Po≤51W, Average Eff.≥0.09*Ln(Po)+0.5;3).Po>51,Average Eff.≥0.85. (2).输入空载功率的规格是:1).0 (3).Po为铭牌标示的额定输出电压与额定输出电流的乘积; (4).实际测试的平均效率值和输入空载功率值需同时满足规格要求才可符合标准要求.

ASL1000的开关电源测试

基于ASL1000的开关电源测试实例 现推出一款经典开关电源的芯片—B494的测试实例,此例是基于ASL1000(以前称作为TMT)测试平台,此平台以性能稳定,测试精确著称,在国内装机量最大,目前几乎所有的封测厂均有ASL1000的机器,另外此例中的开关电源芯片中包括了基准电压源、误差放大器、振荡器以及触发器等功能、性能的测试,涵盖了大部分的模拟芯片测试,所以此例的推出,对广大模拟芯片测试以及ASL1000的初学者来说,应该是非常实用、并具有较高的参考价值的,现具体说明如下: 1、芯片简介 B494是一块开关式脉冲宽度调控电路,主要用于开关式电源控制。具有完善的脉宽调控电路;含主动或从动振荡器;含双误差放大器;含5V参考电源;死区控制可调;独立的输出晶体管(源流或陷流200mA);输出控制方式采用推挽式或单端式。采用DIP16封装形式。其功能框图如下:

3.测试项目说明: ?Open-Short测试:比较简单,参考音频功放测试项目说明即可。 ?内部基准电压测试,主要测试内部基准电压的性能,电压源的准确度,电压源的负载能力(短路电流测试),以及其电压线性度、电流线性度(可参考LDO测试说明)。 ?静态电流测试,主要检验芯片自己的功耗,在不同电压下,不同状态下进行测试。 ?振荡频率测试,所有的开关电源芯片内部都有一个振荡器,本项参数既测试此振荡器的性能,包括震荡频率、上升时间、下降时间、另外测试了控制端的控制功能;其实还需要测试占空比等参数,因为这是wafer 测试,所以省略了一些参数测试,在FT的时候可以加上,在此对占空

比略做说明:占空比(Duty Cycle)在电信领域中有如下含义: 在一串理想的脉冲序列中(如方波),正脉冲的持续时间与脉冲总周期的比值。 例如:脉冲宽度1μs,信号周期4μs的脉冲序列占空比为0.25。 在一段连续工作时间内脉冲占用的时间与总时间的比值。 在CVSD调制(continuously variable slope delta modulation)中,比特“1”的平均比例(未完成)。 占空比是高电平所占周期时间与整个周期时间的比值。

开关电源的性能指标和测试规范

开关电源的性能指标和测试规范 第一部分:电源指标的概念、定义 一.描述输入电压影响输出电压的几个指标形式。 1.绝对稳压系数。 A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量△U0与输入电网变化量△Ui之比。既:K=△U0/△Ui。 B.相对稳压系数:表示负载不变时,稳压器输出直流电压Uo的相对变化量△Uo与输出电网Ui的相对变化量△Ui之比。急: S=△Uo/Uo / △Ui/Ui 2. 电网调整率。 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。3. 电压稳定度。 负载电流保持为额定范围内的任何值,输入电压在规定的范围内变化所引起的输出电压相对变化△Uo/Uo (百分值),称为稳压器的电压稳定度。 二.负载对输出电压影响的几种指标形式。 1.负载调整率(也称电流调整率)。 在额定电网电压下,负载电流从零变化到最大时,输出电压的最大相对变化量,常用百分数表示,有时也用绝对变化量表示。 2.输出电阻(也称等效内阻或内阻)。 在额定电网电压下,由于负载电流变化△IL引起输出电压变化△Uo,则输出电阻为 Ro=|△Uo/△IL| 欧。 三.纹波电压的几个指标形式。 1.最大纹波电压。 在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 2.纹波系数Y(%)。 在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既 y=Umrs/Uo x100% 3.纹波电压抑制比。 在规定的纹波频率(例如50HZ)下,输出电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即:纹波电压抑制比=Ui~/Uo~ 。 这里声明一下:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。 四.冲击电流。冲击电流是指输入电压按规定时间间隔接通或断开时,输入电流达到稳定状态前所通过的最大瞬间电流。一般是20A——30A。 五.过流保护。是一种电源负载保护功能,以避免发生包括输出端子上的短路在内的过负载输出电流对电源和负载的损坏。过流的给定值一般是额定电流的110%——130%。

开关电源的测试步骤

开关电源的测试步骤 良好的开关电源必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO,长城等等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他之特定需求等。 开关电源包括下列之型式: AC-DC:如个人用、家用、办公室用、工业用(电脑、周边、传真机、充电器) · DC-DC:如可携带式产品(移动电话、笔计本电脑、摄影机,通信交换机二次电源) · DC-AC:如车用转换器(12V~115/230V) 、通信交换机振铃信号电源· AC-AC:如交流电源变压器、变频器、UPS不间断电源开关电源的设计、制造及品质管理等测试需要精密的电子仪器设备来模拟电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。开关电源有许多不同的组成结构(单输出、多输出、及正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。 电气性能(Electrical Specifications)测试当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下: 一、功能(Functions)测试: 输出电压调整(Hold-on Voltage Adjust) 电源调整率(Line Regulation) 负载调整率(Load Regulation) 综合调整率(Conmine Regulation) 输出涟波及杂讯(Output Ripple & Noise, RARD) 输入功率及效率(Input Power, Efficiency) 动态负载或暂态负载(Dynamic or Transient Response) 电源良好/失效(Power Good/Fail)时间 起动(Set-Up)及保持(Hold-Up)时间

开关电源测试规范

开关电源测试规范 (2007-12-22 17:15) 分类:电源技术类文章 开关电源测试规范 一、安全标准检查工作指导 5 1、高压测试 5 2、低输入电压产品使用1800VAC作高压测试 5 3、绝缘测试 5 4、漏电流测试 5 5、接地测试 5 6、输入电流测试 5 7、输入端的剩余电压 5 8、各输出端的最大VA 5 9、异常操作测试 6 9.2、特低输入电压测试 6 9.3、特高电压测试 6 9.4、过载测试 6 9.5、长时间的过压保护测试 6 9.6、适配器内可熔断电阻的安全测试 7 10、异常处理测试 7 10.1、严格的跌落测试(对于AC适配器) 7 10.2、严格的震动测试(对于AC适配器) 7 11、可见的潜在安全问题检查 7 11.1、输贴片电容的检查 7 11.2、AC输入线的检查 7 11.3、DC输出线的检查 7 11.4、热组件 8 12、可燃性检查 8 13、各种检查 8 13.1、组件检查 8 13.2、标贴检查 8 13.3、空间及爬电距离 8 二、环境条件测试 8 1、高温测试 8 2、低温操作测试 8 3、高湿操作测试 8 4、高低温储存循环测试 8 5、高湿储存测试 8 6、振动测试 9 6.1、非工作状态测试 9 6.2 工作状态振动测试 9 7、跌落测试 9 三、静态工作特性测试 9 1、输出电压与电流调整范围 (需在高、低、常温下进行测试) 9 2、效率测试 (高、低、常温三种条件下进行) 10

3、起机输入电压测试 (高、低、常温三种条件下进行) 10 4、输入电压临界电测试(高、低、常温三种条件下进行) 10 5、输出电压电流特性曲线测试 (高,低,常温三种条件下进行) 10 6、输出共模噪音电压测试 (在规格中有要求才做) 10 7、可听噪音测试 10 四、动态性能测试 10 1、浪涌电流测试 10 1.1、室温冷起机 10 1.2、室温热起机 11 2、开关机时输出电压过冲与欠冲测试 11 3、开机延时及输及电压间跟从测试 11 4、开机维持时间 12 5、阶跃负载响应测试 (此测试项须进行低温、常温、高温三种条件的测试) 12 6、POWER GOOD /FAIL TEST 12 五、开短路测试 12 1、测试范围 12 2、测试标准 13 3、测试方法(TEST METHOD) 13 3.1、开短路测试(Open short method) 14 3.2、在测试过程中和测试后要观察的项目(Utems to observe doing or after open short) 14 六、可靠性测试 15 1、电解电容寿命的检测 15 2、RUBYCON公司的电容寿命计算公式 16 3、温升测试 16 3.1、外壳温升 16 3.2、零件温升 16 3.3、火牛温升 17 3.4、电容温升测试 17 3.5、高温开关机测试 17 3.6、MTBF(平均无故障时间计算) 17 3.7、组件失效率的计算 17 七、组件使用率测试工作指导 18 1、测试范围 18 2、测试条件 18 3、用率要求 18 4、测试方法 18 4.1、电阻 19 4.2、电解电容使用率测试 19 4.3、电容 20 4.4、陶瓷电容 20 4.5、晶体三极管和场效应管 20 4.6、二极管 20 4.7、稳压二极管 20

(完整版)开关电源测试规范

开关电源测试规范 第一部分:电源指标的概念、定义 一.描述输入电压影响输出电压的几个指标形式。 1.绝对稳压系数。 A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量△U0与输入电网变化量△Ui之比。既: K=△U0/△Ui。 B.相对稳压系数:表示负载不变时,稳压器输出直流电压Uo的相对变化量△Uo 与输出电网Ui的相对变化量△Ui之比。急: S=△Uo/Uo/ △Ui/Ui 2. 电网调整率。 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。 3. 电压稳定度。 负载电流保持为额定范围内的任何值,输入电压在规定的范围内变化所引起的输出电压相对变化△Uo/Uo(百分值),称为稳压器的电压稳定度。 二.负载对输出电压影响的几种指标形式。 1.负载调整率(也称电流调整率)。 在额定电网电压下,负载电流从零变化到最大时,输出电压的最大相对变化量,常用百分数表示,有时也用绝对变化量表示。 2.输出电阻(也称等效内阻或内阻)。 在额定电网电压下,由于负载电流变化△IL引起输出电压变化△Uo,则输出电阻为Ro=|△Uo/△IL|欧。 三.纹波电压的几个指标形式。 1.最大纹波电压。 在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 2.纹波系数Y(%)。 在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既 y=Umrs/Uo x100% 3.纹波电压抑制比。 在规定的纹波频率(例如50HZ)下,输出电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即: 纹波电压抑制比=Ui~/Uo~ 。 这里声明一下:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。 四.冲击电流。冲击电流是指输入电压按规定时间间隔接通或断开时,输入电流达到稳定状态前所通过的最大瞬间电流。一般是20A——30A。

开关电源常规测试项目

开关电源常规测试项目 目录 1、功率因素和效率测试 2、平均效率测试 3、输入电流测试 4、浪涌电流测试 5、电压调整率测试 6、负载调整率测试 7、输入缓慢变动测试 8、纹波及噪声测试 9、上升时间测试 10、下降时间测试 11、开机延迟时间测试 12、关机维持时间测试 13、输出过冲幅度测试 14、输出暂态响应测试 15、过流保护测试 16、短路保护测试 17、过压保护测试 18、重轻载变化测试 19、输入电压变动测试 20、电源开关循环测试 21、元件温升测 试 22、高温操作测试 23、高温高湿储存测试 24、低温操作测试 25、低温储存测试 26、低温启动测试 27、温度循环测试 28、冷热冲击测试 29、绝缘耐压测试 30、跌落测试 31、绝缘阻抗测试 32、额定电压输出电流测试 1. POWER FACTOR & EFFICIENCY TEST / 功率因素和效率测试 一、目的 :

测试 S.M.P.S. 的功率因素 POWER FACTOR, 效率 EFFICIENCY(规格依客户要求设计). 二. 使用仪器设备 : (1). AC SOURCE / 交流电源; (2). ELECTRONIC LOAD / 电子负载; (3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表; (4). AC POWER METER / 功率表; 三. 测试条件 : 四、测试方法 : (1). 依规格设定测试条件: 输入电压, 频率和输出负载. (2). 从 POWER METER 读取 Pin and PF 值, 并读取输出电压, 计算 Pout. (3). 功率因素=PIN / (Vin*Iin), 效率=Pout / Pin*100%; 五. 测试回路图 :

高频开关电源变压器的动态测试

高频开关电源变压器的动态测试 (JP2581B+JP619B材料功耗测量系统应用笔记之一) 1 引言 目前,对高频开关电源变压器电磁参数‘测试’大约使用两种方法:一种是用LCR表测量一些基本电磁参数,例如,开关电源变压器初次级电感、漏感、分布电容、绕组直流电阻以及匝比、相位等,我们称这种测试方法为’静态’测试;一种是将开关电源变压器放到主机上考核其工作情况,对已经定型生产的开关电源变压器,为考核外购磁芯质量,通过测量变压器工作温升判断磁芯的损耗比较直观简便。前一种方法因在弱场、低频低磁感应强度(例如Bm<0.25mT、f=1kHz)下测量,由于磁性材料特性的非线性、不可逆和对温度敏感,其在强场下工作与在弱场情况下工作电磁特性有很大不同。弱场下测量结果不能反映磁性器件工作在强场下的情况;后一种方法虽随主机在强场下应用,但不能得到被测器件电磁参数。磁芯损耗需要专用仪器才能测量。 高频开关电源变压器的上述测试分析现状影响了此类器件的开发和生产。 需要开发一种仪器或测试系统,这种测试系统能够模拟实际工作条件,完成对高频开关电源变压器主要电磁参数分析,例如,各种负载(包括满载和空载)情况下变压器初级复数阻抗z、有效初级电感L,通过功率Pth、功率损耗PT、传输效率η以及在指定频率下磁芯的传输功率密度等,我们称这种模拟实际工作条件的测试为‘动态’测试。作为磁性器件综合测试系统,还要求具有对磁芯材料功率损耗分析功能。在电磁机器进一步小型化、高频化和采用高密度组装情况下对器件进行‘动态’分析,对加速象高频开关电源之类的电磁器件开发、提高器件质量显得特别重要。 2 测试系统简介 JP2581B+JP619B材料功耗及器件功率测量系统是一种交流电压、电流和功率精密测量装置。其主要测量功能、指标和测量精度非常适用于磁性材料和磁性器件(例如,开关电源变压器)研究开发和磁芯产品快速检测。该系统配套完整,自成体系,无需用户增加额外投资,系统主要测试功能如下: 1、软磁材料及器件交流功率损耗(总功耗PL , 质量比功耗 Pcm , 体积比功耗 Pcv)测量; 2、磁性材料振幅磁导率μa测量; 3、磁芯(有效)振幅磁导率(μa)e测量; 磁芯因素(AL)e.测量 以上测量均符合IEC367--1(或GB9632--88)标准中推荐的测量方法。 4、电感、电容及组成器件(例如,开关电源变压器)等效电磁参数的动态测量和分析; 5、由测量结果分析器件下列参数: z |z| Ls Rs Lp Rp C Q D。 测试系统具有如下使用、操作特点:

相关文档