文档库 最新最全的文档下载
当前位置:文档库 › 电气化铁道供电系统与设计课程设计报告——牵引变电所设计1

电气化铁道供电系统与设计课程设计报告——牵引变电所设计1

电气化铁道供电系统与设计课程设计报告——牵引变电所设计1
电气化铁道供电系统与设计课程设计报告——牵引变电所设计1

电气化铁道供电系统与设计课程设计报告

班级:电气0**班

学号: 20080****

姓名: **********

指导教师: *********

评语:

年月日

一、题目

某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的四个方向供电区段供电,现在已知列车正常情况时的计算容量为10000kVA(三相变压器),以10KV 电压给车站电力照明机务段等地区负荷供电,容量计算为3750kVA,各电压侧馈出数目及负荷情况如下所示:25KV回路(1路备):两方向的年货运量与供电的距离分别为:

113260Mt km

Q L=?

223025Mt km

Q L=?,100kWh/10kt km

q

?=。10kV共12回路(2路备)。

供电电源由系统区域变电所以双回路110kV输送线供电。本变电所位于电气化铁路的中间,送电线距离15km,主变压器为三相接线。

二、题目分析及解决方案框架确定

由上述资料可知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等一部分为一级负荷、其他包括机务段在内均为二级负荷,应有足够可靠性的要求。本变电所为终端变电所,一次侧无通过功率。

三相牵引变压器的计算容量是由牵引供电计算求出的。本变电所考虑为固定备用方式,按故障检修时的需要,应设两台牵引用主变压器,地区电力负荷因有一级负荷,为保证变压器检修时不致断电,也应设两台。

根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:

方案A:2×10000千伏安牵引变压器+2×6300 kVA地区变压器,一次侧同时接于110 kV母线,(110千伏变压器最小容量为6300 kVA)。

方案B:2×15000千伏安的三绕组变压器,因10千伏侧地区负荷与总容量比值超

过15%,采用电压为110/27.5/10.5 kVA,结线为

0//

Y??两台三绕组变压器同时为牵引负荷与地区电力负荷供电。各绕组容量比为100:100:50。

三、设计过程

3.1牵引变电所110kV侧主接线设计

按110 kV进线和终端变电所的地位,考虑变压器数量,以及各种电压级馈线数

目、可靠供电的需要程度选择结线方式。

(1)对于方案A,因有四台变压器,考虑110 kV母线检修不致全部停电,采用单母线用断路器分段的结线方式,如图1(a)单母线用断路器分段的结线方式,每段母线连接一台牵引变压器和地区变压器。由于牵引馈线断路器数量多,且检修频繁,牵引负荷母线采用带旁路母线放入单母线分段(隔离开关分段)结线方式,10 kV地区负荷母线同样采用断路器分段的单母线结线系统。自用电变压器分别接于10 kV 两段母线上(两台)。

(2)对于方案B,共用两台三绕组主变压器、两回路110 kV进线,线路太长,但是应有线路继电保护设备,故以采用节省断路器数量的内桥结线较为经济合理,如图1(b)内桥结线。

110kV

3B 6300kVA

1B

1000kVA

4B

6300kVA

2B

1000kVA 10kV25kV

图1 (a)单母线用断路器分段结线

110kV

1B

2B

2*16000kVA

10kV25kV 图1 (b)内桥结线

3.2 牵引变压器计算

(1)牵引变压器不对称系数的计算

①由已知牵引负荷容量,25kV 侧额定电流2e I 及每馈电区电流2a I 、2c I ,见图2(a )△形绕组中电流分配图,分别为:

210000

231325

e I A =

=? (1) 2220.655138a c e I I I A === (2)

其中2cos 0.8?=(因电流不对称引入的系数k=0.655)。

A

B

C

ca

I 2?

bc

I 2?

ab

I 2?

c I 2?

a I 2?

图2 (a)△形绕组中电流分配

ca

U 2?

cb

U 2?

c

I 2?

ab

U 2?

ab

I 2?

a

I 2?

bc

U 2?

bc

I 2?

ca

I 2?

图2(b )每相牵引负荷电流与电压向量图

两馈电区电流在△形绕组中分配后,每相绕组电流为:

.

..

(17.8)22221121.733j ab a c I I I e A -?=--= (3)

...

184********.733

j c a bc I I I e A ?=--= (4)

...

83.12221146.033

j ca a c I I I e A ?=-+= (5)

电流与电压的相量关系如图2(b )每相牵引负荷电流与电压向量图,其中以2ab

U 为基准相。

10千伏电压侧为三相对称负荷,设cos 3?=0.9则其额定电流3e I 和△形绕组中每相电流分别为:

33750

206310.5

e I A =

=? (6)

3.

.

(30)

4.2331193

j j e ab I I e e ?-??=

= (7) .

244.23119j bc I e A ?= (8)

.

124.23119j ca I e A ?= (9)

110kV 高压绕组中的电流,不计励磁电流时,即为负荷电流归算到高压侧的值。

对于方案(A )仅考虑牵引负荷:

.

17.8.

17.82112121.752.72.31j j ab a

I e I e k -?-?=== (10) .

.

1842112

52.7j bc

b I I e A k ?=

= (11) ..

83.12112

19.9j ca

c I I e A k ?=

= (12) 对于方案(B ),应为牵引负荷与地区负荷电流相量和,其值为:

..

.

11.9231121371.3j ab ab

a I I I e A k k -?'

=

+= (13) .

.

.199.32311213

64.7j bc bc

b I I I e A k k ?'

=

+= (14)

..

.

103.62311213

37.0j ca ca

c I I I e A k k ?'

=

+= (15)

其中电压变换系数12110

3 2.5425

k =

= 13

1103 2.5425

k =

=

②高压110千伏绕组中的阻抗压降,已知参数为:

三绕组16000千伏安变压器: 106m P kw '?= 1%10.5

d U '= 双绕组10000千伏安变压器: 63m P kw ?= 1%10.5d U =

按式(16)和(17)分别求得高压绕组的电阻及电抗为:

23

12

10(110)2m e e e P U R U kv S ???=Ω=? (16) 2

1%100d e e

U U X S =?Ω (17)

三绕组变压器: 1 2.51R '=Ω 179.47X '=Ω 双绕组变压器: 1 3.81R =Ω 1127.

1X =Ω 高压各相绕组阻抗压降,由各相阻抗压降三角形可知:

对于三绕组变压器:

76.3() 5.66111j I R jX ge kv U b b ??

'''?=+=' (18)

287.5() 5.14111j I R jX ge kv U a a ??

'''?=+=' (19)

191.8() 2.94111

j I R jX ge kv U c c ??

'''?=+=' (20)

对于双绕组变压器:

70.5() 6.70111j I R jX ge kv U a a ???

?=+= (21)

272.3() 6.70111

j I R jX ge kv U b b ???

?=+= (22)

171.4() 2.53111

j I R jX ge kv U c c ???

?=+=

③高压110 kV 绕组感应电势(E )及不对称系数1u K ,按下式计算

11E U U a a a ?

?

?=-? 其中: 110013U kv a ?

?=∠ 11E U U b b b ???=-? 11024013U kv b ?

?=∠ 11E U U c c c ???=-? 11012013U kv c ?

?=∠ 正序分量: 1

2()1(1)1113E E E E a a kv a a b c ?

???

=++

负序分量: 12()1(2)1113

E E E E a a kv a a b c ?

???=++ 电压(势)不对称系数: 1(2)11(1)

100a u a

E K E ??=

?

(2)变压器与配电装置的一次投资与折旧维修费

方案A :21000026300KVA ?+?变压器四台,多增加110kV 断路器四组,按SW3-110少油断路器计算,共需(以万元计):

2802504(11 1.920.95)274.8?+?+?++?= (23) (每组断路器包括断路器及机构1台、电流互感器1台,及两侧隔离开关2台,分别为11万元、1.9万元和2×0.95万元)

方案B :21600026300KVA ?+?三绕组变压器2台,另增加变压器前面和跨条隔离开关(110kV )4组共需(以万元计):

29640.95195.8?+?= (24)

(3)方案A 与方案B 的年电能损耗计算及比较

①方案A 采用1210000110SF QY ?--型和276300110SF ?-型三相变压器,参数为: 牵引变压器: 21c P kw ?= 76m P kw ?= % 3.5O I = %10.5d U =

地区变压器: 15c P kw ?= 55m P kw ?= % 2.5O I =

%10.5d U =

按已知条件,可求牵引负荷的最大功率损耗时间为:

1.2(320060300025)1004000100000.8

h q τ??+??=≈? (29)

地区负荷4500max T h =小时cos 0.9?=,用插入法得,d τ(地区负荷)=2750小时。 牵引变压器和地区变压器的年能量损耗Q A ?和d A ?分别由式:

2

3

21

2

()1()3x Q c j c m j m I

A n P K Q T n P K Q I ετ?=?+??+?+???

?∑

2

()1()(

)d c j c m j m S A n P K Q T n P K Q S ε

τ?=?+??+?+??? 求得(取无功经济当量j K =0.1):

2

23

21

210000

110000

2(12.5

0.1 1.3

)8760(630.110.5)400

1002

1003

x Q I A I ε?=+??++???∑ 其中210000

121.2327.5

I A ε=

=? 2x I 各值已在前面求出;

322222222121.74631737.822212

I

I I I A x ab bc ca =++=??=∑ (25)

446760241985.6688745.6A

kwh Q

?=+=

②方案B 采用2×SF S7-16000/110型三项三绕组变压器,容量比100:100:50;

28P KW c ?=,106P m ?=,% 1.1I o =各绕组短路电压%10.51U d =,% 6.52U d =,%03

U d =,则依下式:

222222331212123112233222222111

()[()()]

2c j c m j m m m S S S S S S A n P K Q T P K Q Q Q n S S S n S S S εεεεεε

ττττττ?=?+???+???+++??+?+?可求得年电能损耗为:

2222216000111

312122(280.11.1)8760106()0.1(10.5 6.5)1231222222100222100100S S S S S S S A S S S S S εετττττεεεεε????

?=?+???+???+++??+??????

232

3

2'

'

'2'2'22221

1111

()()()()(71.3)(64.7)(37.0)10638.8

x x a b c S I I I I I =+=++=++=∑222

111600033(

)211573110

S I εε??=?=?

2

322223

()31341x S I ?=∑

已知24000Q h ττ==,32750d h ττ==,则140001000027503750

3659100003750

h τ?+?==+

代入上述各值后,得: 1098549A kwh ?=。

3.3

开关设备的选择

(1)高压断路器的选择

对于开断电路中负荷电流和短路电流的高压断路器,首先应按使用地点和负荷种类及特点选择断路器的类型和型号、即户内或户外式,以及灭弧介质的种类,并能满足下列条件

① 断路器的额定电压,应不低于电网的工作电压,即

e g

U U ≥ 式中 e

U ,

g

U —分别为制造厂给出的短路器额定电压和网络的工作电压,伏或千

伏。

②断路器的额定电流,

e

I 应不小于电路中的最大长期负荷电流,即

e g

I I ≥

式中 g

I ——断路器的最大长期负荷电流,安或千安。

③根据断路器的断路能力,即按照制造厂给定的额定切断电流

eq

I 、或额定断路容量

ed

S 选择断路器切断短路电流(或短路功率)的能力。为此,应使额定切断电流

eq

I 不

小于断路器灭弧触头刚分离瞬间电路内短路电流的有效值dt

I ,或在一定工作电压下

应使断路容量

ed

S 不小于短路功率

dt

S 。即

eq dt

I I ≥ 或

ed e eq dt

3S U I S =≥ (三相系统)

式中,

dt

I ——短路后t 秒短路电流有效值(周期分量),对快速断路器,取

''dt ,0.1

I I t =≤;

dt

S ——短路后t 秒短路功率,对快速熔断器''

dt d

S S =。

对于牵引系统,牵引网电压为27.5千伏,当采用三相35千伏系列的断路器时,断路器容量需按下式换算:

'ed ed ed

27.5/350.78S S S =?=

式中,

'

ed

S ——35千伏断路器用在27.5千伏系统中的三相断路容量。

牵引网馈电线用单相断路器,按额定断路容量选择时应满足的条件为(

eq

I 不变):

(2)(2)ed eq dt

27.5S I S =?≥

式中,(2)

ed

S 、(2)dt

S ——分别为单相断路器的额定断路容量和单相牵引网中短路后t 秒

的短路功率。

为了求得短路电流有效值

dt

I ,必须确定切断短路的计算时间

js

t ,即从短路发生到灭

弧触头分开时为止的全部时间,它等于继电保护动作时间b t

和断路器固有动作时间g

t 之和,故

js b g

t t t =+。

在设计和电气设备选择中,由实际选择的保护装置与断路器型号,可得到b t

和g t 的实

际值,但如无此数据时,一般可按下述情况选取。 对快速动作的断路器,取

g 0.05

t =秒,而对于非快速动作的断路器,js 0.1~0.15

t =秒;

对于继电保护,应按具有最小动作时间的速断主保护作为动作时间,即b 0.05

t =秒,

因此,对于快速动作的断路器,切断短路的计算时间js 0.05~0.1

t =秒,对于非快速动

作的断路器,

js 0.15~0.2

t =秒。

可知,短路发生后js 0.1

t >秒,因短路电流的非周期分量已接近衰减完毕,此时短路

电流即为短路周期分量电流的有效值。 当

js 0.1

t ≤秒时,则须计入短路电流的周期分量。

④校验短路电流通过时的机械稳定性

在短路电流作用下,对断路器将产生较大的机械应力,为此,制造厂给出了能保证机

械稳定性的极限通过电流瞬时值

gf

i ,即在此电流通过下不致引起触头熔接或由于机

械应力而产生任何机械变形。因而,应使

(3)

gf ch

i i >

式中,gf

i ,

(3)ch

i ——分别为断路器的极限通过电流或断路器安装处的三相短路冲击电

流(幅值)。

⑤校验短路时的热稳定性

短路电流通过时断路器的热稳定性,由制造厂家给出的在t 秒(t 分别为4、5或10

秒)内允许通过的人稳定电流t I 来表征,即在给定的时间t 内,t I

通过断路器时,其

各部分的发热温度不超过规定的短路最大容许发热温度。因此,短路电流d

I 通过断

路器时,其热稳定条件为:

2t d

I t Q ?≥

式中,t I

_为制造厂家规定的t秒热稳定电流。

d

Q ——短路电流发热效应。

d z fi

Q Q Q =+

(2)高压熔断器的选择

高压熔断器用以切断过负荷电流和短路电流,选择是首先应考虑装置的种类与型式、是屋内或屋外使用,对于污秽地区的屋外式熔断器还应保证绝缘泄露比距的要求,以加强绝缘,此外,高压熔断器应满足 ①按工作电流

e g

U U >(与断路器意义相同)。

②按工作电流

er ei g

I I I ≥≥

式中

er

I 、

ei

I ——分别为熔断器额定电流和熔件额定电流;

g

I ——网络中最大长期工作电流

③按断流容量

''

q I I ≥ 或

''

e S S ≥

式中,q

I 、

e

S 分别为熔断器的极限开断电流和额定断流容量。

④对污秽地区屋外安装的熔断器,其绝缘泄露比距应满足

δX

δ

g

因熔断器的熔断时间很短,故采用熔断器保护的导体和电器可不校验短路电流的机械稳定性和热稳定性。此外,高压熔断器熔件的选择还必须与网络中各分段、分支电路的熔断器熔件或与馈电线继电保护之间,从时间特性上保证互相间动作的选择性和时限配合关系。

(3)隔离开关的选择

选择隔离开关,首先应考虑装置的种类和型式、是屋内或屋外使用,对于污秽地区的屋外式熔断器还应按上述熔断器选择时的条件(4)保证绝缘泄露比距的需要。

隔离开关的其它选择条件与断路器类似,但对隔离开关不进行切断能力的(切断电流或断路容量)的校验。

3.4仪用互感器的选择

(1)电流互感器的选择

①电流互感器的选择一般有如下原则需要遵循:

应满足一次回路的额定电压、最大负荷电流及短路时的动、热稳定电流的要求;

应满足二次回路测量、自动装置的准确度要求和保护装置10%误差的要求;

应满足保护装置对暂态特性要求(如500KV保护);

用于变压器差动时,各侧电流互感器的铁芯宜采用相同的铁芯型式。各互感器的特性宜相同。以防止区外故障时,各互感器特性不一致产生差流,造成误动。

②电流互感器类型选择

为保证保护装置的正确动作,所选择的互感器至少要保证在稳态对称短路电流的下的误差不超过规定值。至于故障电流中的非周期分量和互感器剩磁等问题带来的暂态影响,则只能根据互感器所在系统暂态问题的严重程度、保护装置的特性、暂态饱和可能引起的后果和运行情况进行综合考虑定性分析,至于精确的暂态特性计算由于过于复杂且现场工作情况很难进行,因此进行讨论。

330-500KV系统保护、高压侧为330-500KV的变压器保护用的电流互感器,由于系统一次时间常熟较大,互感器暂态饱和较严重,由此可能导致保护错误动作的后果。因此互感器应保证实际短路工作循环中不致暂态饱和,即暂态误差不超过规定值。一般选用TP类互感器,尤其是线路保护考虑到重合闸的问题,要考虑双工作循环的问题,因此推荐使用TPY型。

220KV系统保护、高压侧为220KV的变压器保护互感器其暂态饱和问题及其影响较轻,可按稳态短路条件计算互感器稳态特性,进而选择互感器。当然,为减轻可能发生的暂态饱和影响,我们有必要留有适当的裕度。220KV系统保护的暂态系数一般不小于2。

110KV系统保护用互感器一般按稳态条件考虑,采用P类互感器。

高压母线差动保护用电流互感器,由于母线故障时故障电流很大,而且外部故障时流

过互感器的电流差别也很大。即使各互感器特性一致,其暂态饱和的情况也可能差别很大。因此母线差动保护用的电流互感器最好要具有抗暂态饱和的能力。实际工程应用中,一般按稳态条件选择互感器,而抗饱和的问题更多的由保护装置进行处理。(2)电压互感器的选择(作用)

①给重合闸提供必要信号,一条线路两侧重合闸的方式要么是检无压,要么是检同期,线路PT可以为重合闸提供电压信号。

②现在部分线路PT时用的电容式电压互感器,可以为载波通信提供信号通道。

③目前对一些特殊的供电用户线路提供计量电压

④将系统高电压转变为标准的低电压(100V),为仪表、保护提供必要的电压。

⑤与测量仪表相配合,测量线路的相电压与线电压;与继电保护装置相配合,对系统及设备进行过电压、单相接地保护。

⑥隔离一次设备与二次设备,保护人身和设备的安全。

四、设计方案分析

由不对称系数和经济性比较可知,方案B在保证同样可靠性的前提下,对地区负荷供电电压质量较好,且投资和年运营费用都较低,又节省占地面积,故推荐方案B。且采用了内桥接线。因为内桥接线适合于线路长,线路故障率高,而变压器不需要频繁操作的场合且这种接线形式可以很方便的投入或切换。110kv侧采用单母线分段接线方式,提高了供电可靠性。

五、心得体会

通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,更不要以为现在学的知识用不上就加以怠慢,等到想用的时候却发现自己的学习原来是那么的不扎实。以后努力学好每门专业课,让自己拥有更多的知识,才能解决更多的问题,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。

生活就是这样,汗水预示着结果也见证着收获。劳动是人类生存生活永恒不变的话题。通过实习,我才真正领略到“艰苦奋斗”这一词的真正含义。我想说,设计确实有些辛苦,但苦中也有乐,在如今单一的理论学习中,很少有机会能有实践的机会,我想说,确实很累,但当我们看到自己所做的成果时,心中也不免产生兴奋;正所谓“三百六十行,行行出状元”。我们同样可以为社会作出我们应该做的一切,这有什么不好?我们不断的反问自己。也许有人不喜欢这类的工作,也许有人认为设计的工作有些枯燥,但我们认为无论干什么,只要人生活的有意义就可。社会需要我们,我们也可以为社会而工作。既然如此,那还有什么必要失落呢?于是我们决定沿着自己

的路,执着的走下去。

对我们而言,知识上的收获重要,精神上的丰收更加可喜。挫折是一份财富,经历是一份拥有。这次实习必将成为我人生旅途上一个非常美好的回忆!

这次课程设计终于顺利完成了,在设计中遇到了很多专业知识问题,最后在老师的辛勤指导下,终于游逆而解。同时,在老师的身上我们学也到很多实用的知识,在次我们表示感谢!同时,对给过我帮助的所有同学和各位指导老师再次表示忠心的感谢!

参考文献

[1]李彦哲,胡彦奎.电气化轨道供电系统与设计[M].兰州:兰州大学出版社,2004.

[2]贺威俊,高仕斌.电力牵引供变电技术[M].成都:西南交通大学出版社,2002.

[3]铁道部电气化工程局电气化勘测设计院.电气化铁道设计手册:牵引供电系统[S].

附录 牵引变电所主接线图

110kV

110kV

27.5kV

A1B1A2B2

A B C N

10kV

钢轨

钢轨

110

/100001--QY SF 110

/100001--QY SF 110

/63007-SF 110

/63007-SF

A 方案主接线图

..

110kV

SFS7-16000/110SFS7-16000/110

钢轨

27.5kV A

B

C 110kV

B方案主接线图

1 题目 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的两个方向供电区段供电,已知列车正常情况的计算容量为22000 kV A (三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为2200 kV A ,各电压侧馈出数目及负荷情况如下:25kV 回路(1路备):两方向年货运量与供电距离分别为 kM 50Mt 30L Q 11??=,kM 30Mt 40L Q 22??=,kM Mt 10kWh 120Δq ?=。10kV 共4回路(2路备)。 供电电源由系统区域变电所以双回路110kV 输送线供电。本变电所位于电气化铁路的首端,送电线距离30km ,主变压器为SCOTT 接线。 2 题目分析及解决方案框架确定 2.1 牵引变压器台数和容量的选择 三相牵引变压器的计算容量是由牵引供电计算求出的。本变电所考虑为固定备用方式,按故障检修时的需要,应设两台牵引用主变压器,地区电力负荷因有一级负荷,为保证变压器检修时不致断电,也应设两台。 由已知牵引负荷量,可知25kV 侧的额定电流e I 为 =e I U 3S/=523(A)25)3(22000=? SCOTT 变压器计算容量公式为: 当Mx Tx I I >时: (kV A)2UI S Tx = 当Tx Mx I I >时: 2Tx 2 Mx I 3I U S +=(kVA) 校核容量公式为: 当Mmax Tmax I I >时: (kV A)2UI S Tmax bmax = 当Tx Mx I I >时: 2Tmax 2 Mmax bmax I 3I U S +=(kVA) (kV A)k S S bmax 校核=(k=1.5) 方案A :当Mx Tx I I >时,假设M I =0、T I =Tx I (kV A)2UI S Tmax bmax =29150(kVA)523252=??= 当Tx Mx I I >时,假设T I =0,M I =Mx I 2Tmax 2Mmax bmax I 3I U S +==A)23875.9(kV 25523305233252=??=+?? 校核容量为取两者较大的,所以:29150(kV A)S bmax = (kV A)k S S bmax 校核==19767(kV A)1.529150=

工 厂 供 电 课 程 设 计 姓名: 学号: 专业: 班级:

某冶金机械修造厂总降压变电所及高压配电系统设计摘要: 工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小(除电化工业外)。电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。 做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方

面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: (1)安全: 在电能的供应、分配和使用中,不应发生人身事故和设备事故。 (2)可靠: 应满足电能用户对供电可靠性的要求。 (3)优质: 应满足电能用户对电压和频率等质量的要求 (4)经济: 供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既 照顾局部的当前的利益,又要有全局观点,能顾全大局,适应发展。 1、工厂供电设计的一般原则 按照国家标准GB50052-95 《供配电系统设计规范》、GB50053-94、GB50054-95 《低压配电设计规范》等的规定,进行设计

供用电系统课程设计报告

供用电系统课程设计 (报告书范例) 姓名: 班级: 学号: 时间:

工厂供电课程设计任务书 一、设计题目:XX机械厂降压变电所的电气设计。 二、设计要求: 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与形式,确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计说明书,绘出设计图样。 三、设计依据: 1.工厂总平面图: 2.工厂负荷情况:本厂多数车间为两班制,年最大负荷利用小时为2500h,日最大负荷持续时间为5h。该厂除铸造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。电气照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表1所示。

表1 工厂负荷统计资料 3.供电电源情况:按照工厂与当地供电部门签订的供电协议规定,本厂可由附近一条10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线牌号为LGJ-150,导线为等边三角形排列,线距为1.5m;干线首端(即电力系统的馈电变电站)距离本厂约7km。干线首端所装设的高压断路器断流容量为500MVA。此断路器配备有定时限过流保护和电流速断保护,定时限过电流保护整定的动作时间为1.7s。为满足工厂二级负荷的要求,可采用高压联

络线由邻近的单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为50km,电缆线路总长度为20km。 4.气象资料:本场所在地区的年最高气温为35o C,年平均气温为23o C,年最低气温为-8o C,年最热月平均最高气温为33o C,年最热月平均气温为26 o C,年最热月地下0.8m处平均温度为250C。当地主导风向为东北风,年雷暴日数为20。 5.地质水文资料:本厂所在地区平均海拔500m,地层以沙粘土为主;地下水位为1m。 6.电费制度:本厂与当地供电部门达成协议,在工厂变电所高压侧计量电能,设专用计量柜,按两部电费制交纳电费。每月基本电费按主变压器容量计为15元/kVA,动力电费为0.2元/kW.h,照明(含家电)电费为0.5元/kW.h。工厂最大负荷时的功率因数不得低于0.9。此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~10kV为800元/kVA。 四、设计任务: 要求在规定时间内独立完成下列工作量: 1、设计说明书,需包括: 1)前言。2)目录。3)负荷计算和无功功率补偿。4)变电所位置和型式的选择。5)变电所主变压器台数和容量、类型的选择。6)变电所主结线方案的设计。7)短路电流的计算。8)变电所一次设备的选择与校验。9)变电所进出线的选择和校验。10)变电所继电保护的方案选择。11)附录——参考文献。

电力牵引传动课程设计 实验报告

三相异步电机的VVVF控制实验报告 一、实验目的 通过实验将学习到的理论知识与实际相结合,进一步加深对三相异步电机VVVF调速控制的理解,深入了解VVVF控制的基本原理以及基本控制方法。 二、实验原理 1、变频调速基本控制方法 n=n01?s=60f1 p 1?s 一台电机如若希望获得良好的运行性能、力能指标,必须保持其磁路工作点稳定不变,即保持每极磁通量?m额定不变。 异步电机定子每相电势有效值公式: E1=4.44f1W1K w1?m 其中:f1—定子供电频率(HZ);W1—定子每相串联匝数; K w1—基波绕组系数;?m—每极气隙磁通(Wb)。 ?m∝E1/ f1 E1不易控制。频率f1只要不很低,定子阻抗远远小于励磁阻抗,此时定子压降可忽略不计,U1近似等于E1。而U1很容易控制。 只要控制U1/ f1恒定,即实现恒压频比,即可使气隙磁通?m维持在额定值。

(1)基频以下调速 机械特性: T m = 3 2Ω0 U 2 R 1+ (X 1+X 2′)2 +R 12 ≈32Ω0U 12 X 1+X 2 ′=3p 1U 121 12′ =C (U 11 )2 S m ≈R 2′12′=11n 0=60f 1 ∝f 1 最大转速降n 0S m 为恒定值。 低频时定子电阻R 1不能忽略 , 因此U 1不能认为近似等于E 1。如果还是控制U 1/ f 1恒定,并不能保证E 1/ f 1恒定,气隙磁通?m 就不能维持在额定值,而是小于额定值,电机没有得到充分利用,带载能力下

降,致使最大转矩T m减小。 低频时对定子电压进行相应补偿,才能保证E1f1恒定,如要求调速过程中电机的过载能力不变,即过载倍数K T不变,而电机容许输出转矩(额定转矩)T N=T m/K T,如前所述,T m为恒定值,所以T N也为恒定值。可见基频以下调速可实现恒转矩输出。 基频以下,磁通恒定时转矩也恒定,属于“恒转矩调速” (2)基频以上调速 机械特性:

课程设计名称: 供电技术课程设计 题目:清河门煤矿地面变电所部分设计 专业:电气工程及其自动化(二学位) 班级:电气10—1班 姓名:陈景辉 学号:1005710102

辽宁工程技术大学 课程设计成绩评定表

摘要 本文是清河门煤矿地面变电所供电系统的设计说明。设计的目的是通过对该电力用户所处的地区供电条件、生产工艺和公用工程等用电负荷资料的分析。 电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在工厂里,电能虽然是工业生产的主要能源和动力。电能在工业生产中的重要性,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。 因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。 工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: 1. 安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。 2.可靠应满足电能用户对供电可靠性的要求。 3.优质应满足电能用户对电压和频率等质量的要求 4. 经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少 有色金属的消耗量。 关键字:电能;供电系统;变电

前言?错误!未定义书签。 1 变电所主接线方式?错误!未定义书签。 1.1 对变电所主结线的要求?错误!未定义书签。 1.2 变配电所主接线的选择原则................ 错误!未定义书签。 1.3变电所主变压器的一次侧接线方式.......... 错误!未定义书签。 1.4 变电所主变压器的二次侧接线方式 (4) 1.5 变电所主变压器运行方式................... 错误!未定义书签。 2 工厂负荷计算的方法?7 2.1 工厂低压侧负荷计算?7 2.2?清河门煤矿负荷计算过程................................. 8 2.3 电容器的选择........................................... 10 2.4主变压器的选择?错误!未定义书签。 实践心得 参考文献 附录A 附表:清河门煤矿负荷表

《 电力系统课程设计《三相短路故障分析计算机算法设计》 一. 基础资料 1. 电力系统简单结构图如图 25MW cos 0.8N ?=cos 0.85 N ?=''0.13 d X =火电厂 110MW 负载 图1 电力系统简单结构图 '' 0.264 d X = 2.电力系统参数 如图1所示的系统中K (3) 点发生三相短路故障,分析与计算产生最大可能的故障电流 和功率。 (1)发电机参数如下: 发电机G1:额定的有功功率110MW ,额定电压N U =;次暂态电抗标幺值'' d X =,功率因数N ?cos = 。 … 发电机G2:火电厂共两台机组,每台机组参数为额定的有功功率25MW ;额定电压U N =; 次暂态电抗标幺值'' d X =;额定功率因数N ?cos =。 (2)变压器铭牌参数由参考文献《新编工厂电气设备手册》中查得。 变压器T1:型号SF7-10/,变压器额定容量10MV ·A ,一次电压110kV ,短路损耗59kW ,

空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 变压器T2:型号,变压器额定容量·A ,一次电压110kV ,短路损耗148kW ,空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 变压器T3:型号SFL7-16/,变压器额定容量16MV ·A ,一次电压110kV ,短路损耗86kW ,空载损耗,阻抗电压百分值U K %=,空载电流百分值I 0%=。 (3)线路参数由参考文献《新编工厂电气设备手册》中查得。 线路1:钢芯铝绞线LGJ-120,截面积120㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 对下标的说明 X 0(1)=X 单位长度(正序);X 0(2)=X 单位长度(负序)。 / 线路2:钢芯铝绞线LGJ-150,截面积150㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 线路3:钢芯铝绞线LGJ-185,截面积185㎜2 ,长度为100㎞,每条线路单位长度的正 序电抗X 0(1)=Ω/㎞;每条线路单位长度的对地电容b 0(1)=×10﹣6 S /㎞。 (4)负载L :容量为8+j6(MV ·A ),负载的电抗标幺值为=* L X ** 22 *L L Q S U ;电动机为2MW ,起动系数为,额定功率因数为。 3.参数数据 设基准容量S B =100MV ·A ;基准电压U B =U av kV 。 (1)S B 的选取是为了计算元件参数标幺值计算方便,取S B -100MV ·A ,可任意设值但必须唯一值进行分析与计算。 (2)U B 的选取是根据所设计的题目可知系统电压有110kV 、6kV 、10kV ,而平均额定电压分别为115、、。平均电压U av 与线路额定电压相差5%的原则,故取U B =U av 。 / (3)'' I 为次暂态短路电流有效值,短路电流周期分量的时间t 等于初值(零)时的有效值。满足产生最大短路电流的三个条件下的最大次暂态短路电流作为计算依据。 (4)M i 为冲击电流,即为短路电流的最大瞬时值(满足产生最大短路电流的三个条件 及时间K t =)。一般取冲击电流M i =2×M K ×''I ='' I 。 (5)M K 为短路电流冲击系数,主要取决于电路衰减时间常数和短路故障的时刻。其范围为1≤M K ≤2,高压网络一般冲击系数M K =。 二.设计任务及设计大纲 1.各元件参数标幺值的计算,并画电力系统短路时的等值电路。 (1)发电机电抗标幺值 N B G G P S 100%X X ?= N ?cos 公式①

目录 1 选题背景 (1) 2 方案论证 (1) 2.1 变压器容量和台数选择 (1) 2.2 主接线方案拟定 (1) 3 过程论述 (3) 3.1 电压不对称系数计算 (3) 3.2 变压器与配电装置的一次投资与折旧维修费 (6) 3.3 各方案的电能损耗 (7) 4 设计体会 (9) 参考文献 (11)

1 选题背景 题目:某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为12000kV A(三相变压器),并以10kV电压给车站电力照明机务段等地区负荷供电,容量计算为3850kV A。各电压侧馈出线数目及负荷情况如下: 25kV回路(1路备):两方向年货运量与供电距离分别为Q1L1=33×60Mt.Km; Q2L2=31×25Mt.Km,K R=0.2,△q=100KWh/Kt.Km。 10kV回路(2路备):供电电源由系统区域变电所以双回路110KV输送线供电。 本变电所是终端变,送电线距离10kM。 主变压器为三相接线,要求:画出变电所得电气主接线。(包括变压器容量计算;各种方案主接线的比较;主设备的选择;) 由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。本变电所为终端变电所,一次侧无通过功率。 2 方案论证 2.1 变压器容量和台数选择 三相牵引变压器的计算容量是由牵引供电计算求出的。本变电所考虑为固定备用方式,按故障检修时的需要,应设两台牵引用主变压器,地区电力负荷因有一级负荷,为保证变压器检修时不致断电,也应设两台。 因没有校核容量,只考虑计算容量来选择变压器,牵引变压器计算容量为12000kV A,故选择容量为12500kV A的变压器,而地区变压器选择6300kV A变压器。 根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案: 方案A:2×12500kV A牵引变压器+2×6300kV A地区变压器,一次侧同时接于110kV母线,(110千伏变压器最小容量为6300kV A)。 方案B:2×16000kV A的三绕组变压器,因10千伏侧地区负荷与总容量比值超过15%, 采用电压为110/25/10.5kV A,结线为 0// Y??两台三绕组变压器同时为牵引负荷与地区电力负荷供电。各绕组容量比为100:100:50。 2.2 主接线方案拟定 按110kV进线和终端变电所的地位,考虑变压器数量,以及各种电压级馈线数目、可靠供电的需要程度选择结线方式。 (1)对于上述方案A,因有四台变压器,考虑110kV母线检修不致全部停电,采用

一、工厂供电的意义和要求 工厂供电,就是指工厂所需电能的供应和分配,亦称工厂配电。 众所周知,电能是现代工业生产的主要能源和动力。电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。因此,电能在现代工业生产及整个国民经济生活中应用极为广泛。 在工厂里,电能虽然是工业生产的主要能源和动力,但是它在产品成本中所占的比重一般很小(除电化工业外)。电能在工业生产中的重要性,并不在于它在产品成本中或投资总额中所占的比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人的劳动强度,改善工人的劳动条件,有利于实现生产过程自动化。从另一方面来说,如果工厂的电能供应突然中断,则对工业生产可能造成严重的后果。 因此,做好工厂供电工作对于发展工业生产,实现工业现代化,具有十分重要的意义。由于能源节约是工厂供电工作的一个重要方面,而能源节约对于国家经济建设具有十分重要的战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大的作用。工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,就必须达到以下基本要求: (1)安全在电能的供应、分配和使用中,不应发生人身事故和设备事故。 (2)可靠应满足电能用户对供电可靠性的要求。 (3)优质应满足电能用户对电压和频率等质量的要求 (4)经济供电系统的投资要少,运行费用要低,并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,应合理地处理局部和全局、当前和长远等关系,既要照顾局部的当前的利益,又要有全局观点,能顾全大局,适应发展。 二、工厂供电设计的一般原则 按照国家标准GB50052-95 《供配电系统设计规范》、GB50053-94 《10kv及以下设计规范》、GB50054-95 《低压配电设计规范》等的规定,进行工厂供电设计必须遵循以下原则:(1)遵守规程、执行政策; 必须遵守国家的有关规定及标准,执行国家的有关方针政策,包括节约能源,节约有色金属等技术经济政策。 (2)安全可靠、先进合理; 应做到保障人身和设备的安全,供电可靠,电能质量合格,技术先进和经济合理,采用效率高、能耗低和性能先进的电气产品。 (3)近期为主、考虑发展; 应根据工作特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远近结合,适当考虑扩建的可能性。 (4)全局出发、统筹兼顾。 按负荷性质、用电容量、工程特点和地区供电条件等,合理确定设计方案。工厂供电设计是整个工厂设计中的重要组成部分。工厂供电设计的质量直接影响到工厂的生产及发展。作为从事工厂供电工作的人员,有必要了解和掌握工厂供电设计的有关知识,以便适应设计工作的需要。 三、设计内容及步骤

目录 第一章供配电与电气照明系统概述 (2) 第二章照明系统的设计 (3) 2.1照明设计的负荷的选取与原则 (3) 2.2 照明设计的目的和原则 (4) 2.3 照明的分类方式 (4) 2.4照明灯具的要求 (6) 2.5照度计算 (7) 第三章电气设备的选型 (10) 3.1 开关的选型 (10) 3.2 插座的选型 (11) 3.3 断路器的选型 (12) 第四章供配电系统设计 (13) 4.1 负荷分级 (13) 4.2 负荷计算 (13) 参考文献 (16) 附录 (17)

摘要 西安建筑科技大学草堂校区13,14,15,16号楼总建筑面积33160平方米。由四栋楼组成一个教学楼系统,运用供配电照明的相关知识与实际的规范进行设计。根据本次供配电课程设计的要求,本设计方案考虑了教学楼作为公共建筑的设计要求,遵照建筑电气照明规范,民用住宅电气设计规范,建筑电气消防规范以及建筑防雷设计规范的要求,并根据学校建筑功能的实际要求,来完成相关的设计,根据照度计算和负荷计算选取相应的配电箱,灯具,导线,以及断路器等相关的电气设备,并根据实际计算值选取相应的大小。教学楼由四个部分,在一层相互独立二层以上相互连接,本楼电源从室外埋地电缆引入楼总箱,再由总箱引出连入每个单元的层箱,由层箱引出至每一层的用户配电箱,一般照明为三级负荷,电压等级为380V/220V,三相五线制引至各配电总箱。 照明系统设计,其中包括照度计算、灯具的选择、照明干线、插座导线截面积的选择以及导线的敷设方式。插座系统按高档住宅标准设计。插座回路与照明回路由同支路供电,一般插座安装高度为0.3米,潮湿场所应装设防潮、防溅型的插座接地系统采用TN—C—S系统。 关键词:照明设计;插座设计;照度计算;天正电气CAD。

数字电路课程设计 一、概述 任务:通过解决一两个实际问题,巩固和加深在课程教学中所学到的知识和实验技能,基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力,为今后从事生产和科研工作打下一定的基础。为毕业设计和今后从事电子技术方面的工作打下基础。 设计环节:根据题目拟定性能指标,电路的预设计,实验,修改设计。 衡量设计的标准:工作稳定可靠,能达到所要求的性能指标,并留有适当的裕量;电路简单、成本低;功耗低;所采用的元器件的品种少、体积小并且货源充足;便于生产、测试和维修。 二、常用的电子电路的一般设计方法 常用的电子电路的一般设计方法是:选择总体方案,设计单元电路,选择元器件,计算参数,审图,实验(包括修改测试性能),画出总体电路图。 1.总体方案的选择 设计电路的第一步就是选择总体方案。所谓总体方案是根据所提出的任务、要求和性能指标,用具有一定功能的若干单元电路组成一个整体,来实现各项功能,满足设计题目提出的要求和技术指标。 由于符合要求的总体方案往往不止一个,应当针对任务、要求和条件,查阅有关资料,以广开思路,提出若干不同的方案,然后仔细分析每个方案的可行性和优缺点,加以比较,从中取优。在选择过程中,常用框图表示各种方案的基本原理。框图一般不必画得太详细,只要说明基本原理就可以了,但有些关键部分一定要画清楚,必要时尚需画出具体电路来加以分析。 2.单元电路的设计 在确定了总体方案、画出详细框图之后,便可进行单元电路设计。 (1)根据设计要求和已选定的总体方案的原理框图,确定对各单元电路的设计要求,必要时应详细拟定主要单元电路的性能指标,应注意各单元电路的相互配合,要尽量少用或不用电平转换之类的接口电路,以简化电路结构、降低成本。

工厂供电课程设计 完整版

前言 电能是社会主义建设和人民生活不可缺少的重要资源,电力工业在国民经济中占有十分重要的地位,电能时有发电厂供给,因为考虑经济原因,发电厂大多建在动力资源比较丰富的地方,而这些地方又远离大中型城市和工厂企业,这样需要远距离输送,经过升降压变电所进行转接,在进一步的将电能分配给用户和生产企业。 由于电力电能的重要特点是不能储存,因此电力电能的生产、输送、分配和使用是同时进行的,于是电力电能从生产到使用构成一个整体,称为电力系统。 对电力系统运行的基本要求: 1.保证供电的可靠性 电力系统的中断将使生产停顿,生活混乱,甚至危机人身和设备的安全运行,造成十分严重的后果,给国民经济带来严重的损失,因此,对电力系统的运行首先要保证供电的可靠性。

2.保证良好的电能质量 3.提高系统运行的经济性 4.保证电力系统安全运行 课程设计: 一、设计题目 某机械厂降压变电所的电气设计 二、设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计说明书,绘出设计图纸。 三、设计依据 1. 工厂总平面图

图1 工厂总平面图 2. 工厂负荷情况 工厂多数车间为两班制,年最大负荷利用小时为6800小时,日最大负荷持续时间为8小时。该厂除特种电机分厂、实验站为一级负荷,铸造分厂、锅炉房属二级负荷外,其余均属三级负荷。低压动力设备均为三相,额定电压为380V。电气照明及家用电器均为单相,额定电压为220V。本厂的负荷统计资料如表1所示。 3. 供电电源情况 按照工厂与当地供电部门签订的供用电协议规定,本厂可由离厂5km和8km欧姆/km)两处的35kV的公用电源干线取得工作电源。干线首端所装设的断路器断流容量为800MVA,该电源的走向参看工厂总平面图。 表1 工厂负荷统计资料 厂房厂房名称负荷设备容量额定电压功率因tan 需要系数 k d

电力系统分析 综合课程设计报告 电力系统的潮流计算和故障分析 学院:电子信息与电气工程学院 专业班级: 学生姓名: 学生学号: 指导教师: 2014年 10月 29 日

目录 一、设计目的 (1) 二、设计要求和设计指标 (1) 2.1设计要求 (1) 2.2设计指标 (2) 2.2.1网络参数及运行参数计算 (2) 2.2.2各元件参数归算后的标么值: (2) 2.2.3 运算参数的计算结果: (2) 三、设计内容 (2) 3.1电力系统潮流计算和故障分析的原理 (2) 3.1.1电力系统潮流计算的原理 (2) 3.1.2 电力系统故障分析的原理 (3) 3.2潮流计算与分析 (4) 3.2.1潮流计算 (4) 3.2.2计算结果分析 (8) 3.2.3暂态稳定定性分析 (8) 3.2.4暂态稳定定量分析 (11) 3.3运行结果与分析 (16) 3.3.1构建系统仿真模型 (16) 3.3.2设置各模块参数 (17) 3.3.3仿真结果与分析 (21) 四、本设计改进建议 (22) 五、心得总结 (22) 六、主要参考文献 (23)

一、设计目的 学会使用电力系统分析软件。通过电力系统分析软件对电力系统的运行进行实例分析,加深和巩固课堂教学内容。 根据所给的电力系统,绘制短路电流计算程序,通过计算机进行调试,最后成一个切实可行的电力系统计算应用程序,通过自己设计电力系统计算程序不仅可以加深学生对短路计算的理解,还可以锻炼学生的计算机实际应用能力。 熟悉电力系统分析综合这门课程,复习电力系统潮流计算和故障分析的方法。了解Simulink 在进行潮流、故障分析时电力系统各元件所用的不同的数学模型并在进行不同的计算时加以正确选用。学会用Simulink ,通过图形编辑建模,并对特定网络进行计算分析。 二、设计要求和设计指标 2.1设计要求 系统的暂态稳定性是系统受到大干扰后如短路等,系统能否恢复到同步运行状态。图1为一单机无穷大系统,分析在f 点发生短路故障,通过线路两侧开关同时断开切除线路后,分析系统的暂态稳定性。若切除及时,则发电机的功角保持稳定,转速也将趋于稳定。若故障切除晚,则转速曲线发散。 图1 单机无穷大系统 发电机的参数: SGN=352.5MWA,PGN=300MW,UGN=10.5Kv,1=d x ,25.0'=d x ,252.0''=x x ,6.0=q x , 18.0=l x ,01.1'=d T ,053.0"=d T ,1.0"0=q T ,Rs=0.0028,H(s)=4s;TJN=8s,负序电抗:2.02=x 。 变压器T-1的参数:STN1=360MVA,UST1%=14%,KT1=10.5/242; 变压器T-2的参数:STN2=360MVA,UST2%=14%,KT2=220/121;

新能源与动力工程学院课程设计报告 远程监控技术课程设计 专业电力工程与管理 班级电力1201 姓名周勇 学号201211321 指导教师王书平 2015年7月

兰州交通大学新能源与动力工程学院课程设计任务书 课程名称:远程监控技术课程设计指导教师(签名): 班级:电力工程与管理1201 姓名:周勇学号:201211321 一、课程设计题目 电力系统远动变电站综合自动化的设计。 二、课程设计使用的原始资料(数据)及设计技术要求: 初步掌握变电站监控设计步骤和方法;了解变电站监控系统的整体构成。 三、课程设计的目的 主要目的是通过该课程设计使学生了解变电站监控系统的整体构成及关 键性技术,进一步巩固所学知识并能够合理利用。 四、课程设计的主要内容和要求(包括原始数据、技术参数、设计要求、工作量要求等) 1. 主要设计原则和主要设计标准; 2. 根据原始资料确定系统应实现的功能,包括调度中心及RTU应实现的功能。 3. 变电站监控系统的系统构成及配置; 4. 调度中心:系统构成、系统网络结构、软硬件配置等; 五、工作进度安排 7月 9 日熟悉课程设计内容及要求制定方案。 7月10日设计电路及软件测试。 7月11日采购数字电压表组件按照设计电路进行焊接。 7月12日产品整理并完成设计报告及答辩。 六、主要参考文献 [1] 柳永智,刘晓川主编.电力系统远动中国电力出版社,2006年7月。 [2]刘功,合肥供电公司,变电站综合自动化系统的发展。 审核批准意见 系主任(签字)年月日

指导教师评语及成绩指 导 教 师 评 语 成绩设计过程 (40) 设计报告 (50) 小组答辩 (10) 总成绩 (100) 指导教师签字: 年月

电力牵引供电系统课程设计评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业: 班级: 姓名: 学号: 指导教师:

目录 1 设计原始题目 (1) 1.1具体题目 (1) 1.2要完成的内容 (2) 2 设计课题的计算与分析 (2) 2.1计算的意义 (2) 2.2详细计算 (2) 2.2.1 牵引变压器容量计算 (2) 2.2.2 牵引变压器过负荷能力校验 (3) 2.2.3 牵引变压器功率损耗计算 (3) 2.2.4 牵引变压器在短时最大负荷下的电压损失 (3) 2.2.5 牵引变电所电压不平衡度 (3) 2.2.6 牵引变电所主接线设计 (4) 3 小结 (5) 参考文献 (6) 附录 (7)

1 设计原始题目 1.1 具体题目 《供变电工程课程设计指导书》的牵引变电所B。包含有A、B两牵引变电所的供电系统示意图如图1所示。设计基本数据如表1所示。 SYSTEM2SYSTEM1 L1L2L3 B A 图1 牵引供电系统示意图 表1设计基本数据 项目B牵引变电所 左臂负荷全日有效值(A)320 右臂负荷全日有效值(A)290 左臂短时最大负荷(A)410 右臂短时最大负荷(A)360 牵引负荷功率因数0.85(感性) 10kV地区负荷容量(kVA)2*1200 10kV地区负荷功率因数0.83(感性) 牵引变压器接线型式YN,d11 牵引变压器110kV接线型式简单(双T)接线 左供电臂27.5kV馈线数目 2 右供电臂27.5kV馈线数目 2 10kV地区负荷馈线数2回路工作,一回路备用 预计中期牵引负荷增长40%

单母线分段带旁路的接线出现误操作的几率很大,所以本设计不予采纳。 10KV 10KV采用带有母联断路器的双母线接线的分析:详见110KV变电所一次负荷设计 1.个人课程设计总结 桑瑾电气0804 0801120407 经过两个星期的努力,我们终于完成了本次变电所所电气主接线课程设计。回想这十多天的努力,虽然辛苦,却有很大的收获和一种成就感。 在这次课程设计中,在我们小组,我主要负责变压器选型以及短路电流计算,在电气主接线形式的确定中也发表了主要意见。 通过本次课程设计,我加深了对变电所电气主接线知识的理解,基本掌握了变电所电气主接线设计的步骤,所学的理论知识很好的运用到了实际工程中。在具体的设计过程中,涉及了很多知识,知识的掌握深度和系统程度都关系到整个设计的完整性和完善性,正是这样有趣而且具有挑战性的任务,激发了我的兴趣,我会尽可能的搜罗信息,设计尽量合理的电气主接线,而这个过程,也是我学习进步的过程。因此本次设计不但是我对所学的知识系统化,也锻炼了我查找资料、分析信息、选择判断的能力。 在之前的理论学习中,对变电所电气主接线设计的各种信息了解不够全面,对于《电力系统暂态分析》、《电力系统稳态分析》以及《发电厂电气部分》等专业可乘的知识不能联系起来,所学到的知识感觉都是分散的,不能融会贯通。而且以前所掌握的知识还不足以在整个课程设计中达到轻车熟路的程度。 通过此次课程设计,我熟悉和学习了变电所电气主接线设计和各种计算。其中包括:短路电流计算、电气设备选型、导体选择计算、防雷保护等。掌握了各种电气主接线使用条件、优缺点、接线形式。了解了各种电气设备的性能指标,校验方法,以及导线的选择。 在整个的程设计中,把遇到的疑问做了笔记,并通过各种资料去了解相关的知识。也希望带着这些疑问在学习中与其他同学讨论或请教来解决。除此之进行外变电所电气主接线设计通过边做边学习及向同学、老师请教,在规定时间内顺利完成了任务范围内的工作。 回顾整个课程设计的过程,自己还有以下一些方面需要进一步加强,同时也可以在以后的学习工作中不断勉励自己:虽说对整个设计过程中涉及的计算机基本的规范已有较为深刻的了解,但因为初次做变电所电气主接线设计,对部分设备性能、使用方面了解不足,在今后的学习中应通过多查阅各种相关资料来掌握;对于所学专业知识应多熟悉,将所学的知识联系起来。 本次课程设计大大增强了我们的团队合作精神,培养了我们自学的能力,

信息工程系 2011-2012学年度下学期电力系统分析课程设计 电力系统短路故障的计算机 算法程序设计 姓名 学号 班级K0309414 指导教师钟建伟

信息工程学院课程设计任务书

电力系统短路故障的计算机算法程序设计 目录 1前言 (4) 1.1短路的原因 (4) 1.2短路的类型 (4) 1.3 短路计算的目的 (4) 1.4 短路的后果 (5) 2电力系统三相短路电流计算 (6) 2.1电力系统网络的原始参数 (6) 2.2制定等值网络及参数计算 (6) 2.2.1标幺制的概念 (6) 2.2.2有三级电压的的网络中各元件参数标幺值的计算 (7) 2.2.3计算各元件的电抗标幺值 (7) 2.2.4系统的等值网络图 (10) 3程序设计 (11) 3.1主流程图 (11) 3.2详细流程图 (12) 3.2.1创建系统流程图 (12) 3.2.2加载系统函数流程图 (13) 3.2.3计算子函数流程图 (14) 3.2.4改变短路点流程图 (15) 3.3数据及变量说明 (15) 3.4程序代码及注释 (16) 3.5测试例子 (17) 4结论 (23) 5参考文献 (24)

1前言 因为它们会破坏对用户的供电和电气设备的正常工作,而且还可能对人生命财产产生威胁。从在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常运行的情况,电力系统的实际运行情况看,这些故障绝大多数多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。 短路是电力系统的严重故障。所谓短路,是指一切不正常的相与相之间或相与地(对于中性点接地的系统)发生通路的情况。 1.1 短路的原因 产生短路的原因很多,主要有如下几个方面:(1)元件损坏,例如绝缘材料的自然老化、设计、安装及维护不良所带来的设备缺陷发展成短路等;(2)气象条件恶劣,例如雷击造成的网络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌等;(3)违规操作,例如运行人员带负荷拉闸,线路或设备检修后未拆除接地线就加上电压等;(4)其他,如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。 1.2 短路的类型 在三相系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相接地短路。三相短路也称为对称短路,系统各项与正常运行时一样仍处于对称状态。其他类型的短路都是不对称短路。 电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。三相短路虽然很少发生,但情况较严重,应给予足够的重视。况且,从短路计算方法来看,一切不对称短路的计算,在采用对称分量法后,都归结为对称短路的计算。因此,对三相短路的的研究是具有重要意义的。 1.3 短路计算的目的 在电力系统的设计和电气设备的运行中,短路计算是解决一系列问题的不可缺少的基本计算,这些问题主要是: (1)选择有足够机械稳定度和热稳定度的电气设备,例如断路器、互感器、瓷瓶、母线、电缆等,必须以短路计算作为依据。这里包括计算冲击电流以校验设备的电动力稳定度;计算若干时刻的短路电流周期分量以校验设备的热稳定度;计算指定时刻的短路电流有效值以校验断路器的断流能力等。 (2)为了合理地配置各种继电保护和自动装置并确定其参数,必须对电力网中发生的各种短路进行计算和分析。在这些计算中不但要知道故障支路中的电流值,还必须知道电流在网络中的分布情况。有时还要知道系统中某些节点的电压值。 (3)在设计和选择发电厂和电力系统主接线时,为了比较各种不同方案的接线图,确定是否需要采取限制短路电流的措施等,都要进行必要的短路电流计算。 (4)进行电力系统暂态稳定计算,研究短路对用户工作的影响等,也含有一部分短路计算的内容

- 工厂供电课程设计示例 一、设计任务书(示例) (一)设计题目 X X机械厂降压变电所的电气设计 (二)设计要求 要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。最后按要求写出设计说明书,绘出设计图纸。 (三)设计依据 1、工厂总平面图,如图11-3所示 。

2、工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为 4600 h ,日最大负荷持续时间为 6 h 。该厂除铸造车间、电镀车间和锅炉房属于二级负荷外,其余均属于三级负荷。低压动力设备均为三相,额定电压为380伏。电气照明及家用电器均为单相,额定电压为220伏。本厂的负荷统计资料如表11-3所示。 表11-3 工厂负荷统计资料(示例)

3、供电电源情况按照工厂与当地供电部门签定的供用电合同规定,本厂可由附近一条 10KV的公用电源干线取得工作电源。该干线的走向参看工厂总平面图。该干线的导线型号为 LGJ-150 ,导线为等边三角形排列,线距为 2 m;干线首端(即电力系统的馈电变电站)距离本厂约8 km。干线首端所装设的高压断路器断流容量为 500 MVA。此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为 s。为满足工厂二级负荷的要求,可采用高压联络线由邻近单位取得备用电源。已知与本厂高压侧有电气联系的架空线路总长度为 80 km,电缆线路总长度为 25 km 。 ~ 4、气象资料本厂所在地区的年最高气温为 38°C,年平均气温为 23°C,年最低气温为 -8°C,年最热月平均最高气温为 33°C,年最热月平均气温为26 °C,年最热月地下0.8m处平均温度为 25°C,当地主导风向为东北风,年雷暴日数为 20 。 5、地质水文资料本厂所在地区平均海拔 500 m,地层土质以砂粘土为主,地下水位为 2 m。 6、电费制度本厂与当地供电部门达成协议,在工厂变电所的高压侧计量电能,

城市轨道交通供电系统课程设计报告 专业:电气工程及其自动化 班级:电气 1001 姓名: XXXXXX 学号: 201009028 指导教师: XXXXXX 兰州交通大学自动化与电气工程学院 2013 年7月12日

1 设计原始资料 1.1 具体题目 杭州地铁1号线一期工程大体成南北走向,全线共设31座车站,如图1所示。正线线路全长约47.97km ,其中41.36km 为地下线路,6.14km 为高架线路,0.47km 为路基或路堑线路。车站及区间隧道采用了明挖法、明暗结合、矿山法、沉管法、盾构法等多种施工方法。试结合所学知识,设计地铁杂散电流腐蚀防护。 临平 南苑 余杭高铁 翁梅 乔司 乔司南九堡九和路七堡 彭埠火车东站闸弄口打铁关 西湖文化广场 武林广场龙翔桥 定安路 城站 婺江路 近江 江陵路 滨和路 西兴 滨康路 湘湖 图1 杭州地铁1号线线路图 1.2 要完成的内容 杭州地铁1号线杂散电流防护方案包括设置杂散电流排流网、杂散电流防护方法和集中式监测系统。 2 分析要设计的课题内容 地铁具有运量大、安全舒适、运输成本低等优点,且与地面的交通工具互不干涉,因此成为解决城市交通拥挤紧张状态的有效途径。 目前 地铁列车牵引动力一般用直流电,由设置在沿线的牵引变电所通过架空线或第三轨向列车馈送电量,并利用走形轨作为回流线路。直流供电的地铁系统的走形轨本身具有电阻且走形轨对地做不到完全绝缘,所以有一部分电流从走形轨泄漏到大地。这部分从走形轨漏

出的电流被称为杂散电流又叫迷流,如图1所示。 图1 城市轨道交通杂散电流腐蚀原理图 杂散电流防护设计应按照“以堵为主,以排为辅,堵排结合,加强监测”的原则设计。当杂散电流防护与安全接地发生矛盾时,优先考虑安全接地。杂散电流防护系统应符合《地铁杂散电流腐蚀防护技术规程》。 杭州地铁1号线牵引供电采用直流1500V供电,地下区段及高架线路全部用三轨接触网,车辆段采用柔性架空接触网。由于运营环境、经济和其它方面因素的限制,走行轨不可能完全绝缘于道床结构,因此不可避免地由走形轨向道床、车站和隧道结构泄漏电流,即杂散电流。杂散电流会对土建结构钢筋、钢轨、设备金属外壳和其他地下金属管线产生电腐蚀。杂散电流防护示意图如附录A所示。 3 杂散电流腐蚀防护方案 3.1 一般防护方案 (1) 堵——从源头上控制杂散电流产生 ①增加走形轨的长度,减小钢轨的电阻;各钢轨之间应有畅通的电气连接以保证低阻值的回流路径;缩短变电所之间的距离,采用双边供电。 ②增加轨道对地的过渡电阻;在车辆段的检修与停车库中,每一条线路的走形轨均应使用绝缘接头与车场线路的走形轨相隔离;增加埋地金属管线的阻值。 (2) 排——对杂散电流的收集 ①将整体道床和浮制板道床按一定要求焊接,作为主要杂散电流收集网。

相关文档
相关文档 最新文档