文档库 最新最全的文档下载
当前位置:文档库 › 解析几何-2019高考数学(理)热点题型

解析几何-2019高考数学(理)热点题型

解析几何-2019高考数学(理)热点题型
解析几何-2019高考数学(理)热点题型

解析几何

热点一 圆锥曲线中的最值问题

圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 题型一 利用几何性质求最值

【例1】设P 是椭圆x 225+y 2

9=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |

+|PN |的最小值、最大值分别为( ) A .9,12 B .8,11

C .8,12

D .10,12

答案 C

【类题通法】

利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法. 【对点训练】

如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB =(-4,-12).

(1)求直线l 和抛物线C 的方程;

(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.

解析 (1)由?

????

y =kx -2,

x 2=-2py ,得x 2+2pkx -4p =0.

设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.

因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2

-4)=(-4,-12),所以?

????

-2pk =-4,

-2pk 2

-4=-12,解得?

????

p =1,

k =2.

所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .

(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-1

2x 20=-2,所以P (-2,-2).

此时点P 到直线l 的距离d =

|2×(-2)-(-2)-2|22+(-1)2

=45=45

5.

由????

?

y =2x -2,x 2=-2y ,

得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4, 所以|AB |=1+k 2×(x 1+x 2)2-4x 1x 2=1+22×(-4)2-4×(-4)=410. 所以△ABP 面积的最大值为410×

45

5

2=8 2.

题型二 建立目标函数求最值

【例2】已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .

(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.

(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),

由?????

y =kx +m ,x 2=4y ,

得x 2-4kx -4m =0. 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).

由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),

所以?????

x 0=-6k ,y 0

=4-6k 2

-3m .

由x 20=4y 0

得k 2

=-15m +415, 由Δ>0,k 2≥0,得-13

3

.

记f (m )=3m 3-5m 2+m +1????-13

3, 令f ′(m )=9m 2-10m +1=0, 解得m 1=1

9

,m 2=1,

可得f (m )在????-13,19上是增函数,在????19,1上是减函数,在????1,4

3上是增函数, 又f ????19=256243>f ????43=5

9.

所以当m =19时,f (m )取到最大值256243,此时k =±5515.

所以△ABP 面积的最大值为2565

135.

【类题通法】

(1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.

(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等. 【对点训练】

平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3

2,左、右焦点分别是F 1,F 2.以F 1为

圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程;

(2)设椭圆E :x 24a 2+y 2

4b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线

PO 交椭圆E 于点Q . ①求|OQ ||OP |

的值;

②求△ABQ 面积的最大值. 解析 (1)由题意知2a =4,则a =2.

又c a =3

2,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24

+y 2

=1.

②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*)

则有x 1+x 2=-8km

1+4k 2,x 1x 2=4m 2-161+4k 2.

所以|x 1-x 2|=416k 2+4-m 2

1+4k 2

.

因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =1

2|m ||x 1-x 2|

=216k 2+4-m 2|m |1+4k 2

=2(16k 2+4-m 2)m 21+4k 2

=2

????

4-m 21+4k 2m 21+4k 2.

设m 21+4k 2

=t . 将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0

因此S =2(4-t )t =2-t 2+4t ,故S ≤2 3.

当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3. 题型三 利用基本不等式求最值

【例3】已知椭圆M :x 2a 2+y 2

3=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l 与

椭圆M 交于C ,D 两点.

(1)当直线l 的倾斜角为45°时,求线段CD 的长;

(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值.

(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;

当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0), 联立方程,得?????

x 2

4+y 2

3=1,

y =k (x +1),

消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 2

3+4k 2,x 1x 2=4k 2-123+4k 2

此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |

3+4k 2

, 因为k ≠0,上式=

12

3

|k |+4|k |≤1223|k |

·4|k |=12212

=3当且仅当k =±3

2时等号成立,

所以|S 1-S 2|的最大值为 3. 【类题通法】

(1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数

的讨论等.

(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值. 【对点训练】

定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E . (1)求轨迹E 的方程;

(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.

(2)①当AB 为长轴(或短轴)时,S △ABC =1

2

|OC |·|AB |=2.

②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1

k

x .

联立方程?????

x 2

4+y 2=1,y =kx 得,x 2A =41+4k 2,y 2

A =4k 21+4k 2

∴|OA |

2

=x 2A +y 2A =4(1+k 2)1+4k

2.

将上式中的k 替换为-1

k ,可得|OC |2=4(1+k 2

)k 2+4.

∴S △ABC =2S △AOC =|OA |·|OC |=

4(1+k 2)

1+4k 2

·

4(1+k 2)k 2+4=4(1+k 2)

(1+4k 2)(k 2+4)

. ∵(1+4k 2

)(k 2

+4)≤(1+4k 2)+(k 2+4)2=5(1+k 2)

2

∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>8

5,

∴△ABC 面积的最小值是8

5,此时直线AB 的方程为y =x 或y =-x .

热点二 圆锥曲线中的范围问题

圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法.

题型一 利用判别式构造不等关系求范围

【例4】已知A ,B ,C 是椭圆M :x 2a 2+y 2

b 2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的

中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;

(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.

(2)由条件D (0,-2),当k =0时,显然-2

?????

x 2

12+y 2

4=1,y =kx +t ,

消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0 由Δ>0可得t 2<4+12k 2,①

设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0), 则x 0=x 1+x 22=-3kt 1+3k 2,

y 0=kx 0+t =t

1+3k 2

所以H ???

?-3kt 1+3k 2,t

1+3k 2,

由|DP |=|DQ |,

所以DH ⊥PQ ,即k DH =-1

k ,

所以t

1+3k 2+2-3kt 1+3k

2-0=-1k ,

化简得t =1+3k 2,②

所以t >1,将②代入①得,1

【类题通法】圆锥曲线中取值范围问题的五种常用解法

(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.

(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.

(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围. 【对点训练】

设F 1,F 2分别是椭圆E :x 24+y 2

b 2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.

(1)求椭圆E 的方程;

(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.

即1=????1-b

2

4×4+2b 2-4,解得b 2=1. 故所求椭圆E 的方程为x 24

+y 2

=1.

(2)设A (x 1,y 1),B (x 2,y 2),由?????

x =ky -1x 2

4+y 2

=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0, 故y 1+y 2=2k

k 2+4,y 1·y 2=-3k 2+4

.

又∠AOB 为锐角,故OA ·

OB =x 1x 2+y 1y 2>0, 又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,

所以x 1x 2+y 1y 2=(1+k 2

)y 1y 2-k (y 1+y 2)+1=(1+k 2

)·-34+k 2-2k 2

4+k 2

+1

=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12

2. 题型二 利用函数性质求范围

【例5】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为2

2,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |

=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2. (1)求椭圆C 的方程;

(2)若λ∈????

12,2,求弦长|AB |的取值范围.

(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点, λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意. ∴直线的斜率不能为0.

设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0,

由根与系数的关系可得,???

y 1+y 2=-2m

m 2+2

①,

y 1y 2

=-1

m 2

+2

②,

将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m 2

m 2+2,

由已知|MA |=λ|MB |可知,y 1

y 2=-λ,

∴-λ-1λ+2=-4m 2

m 2+2

又知λ∈????

12,2, ∴-λ-1

λ+2∈????-12,0, ∴-12≤-4m 2

m 2+2≤0,

解得m 2∈???

?0,2

7. |AB |2

=(1+m 2

)|y 1-y 2|2

=(1+m 2

)[(y 1+y 2)2

-4y 1y 2]=8? ??

??m 2

+1m 2+22=8????1-1m 2+22,

∵m 2∈????0,2

7, ∴

1m 2+2∈

???

?716,12, ∴|AB |∈?

??

?

2,

928. 【类题通法】

利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围. 【对点训练】

已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C . (1)求C 的方程;

(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.

根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 2

3

=1.

(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0, 于是PE ·QF =(AE -AP )·

(AF -AQ )=AE ·AF +AP ·AQ .

①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ????1,32,Q ????1,-32,E (2,0),F (-2,0), 所以PE ·QF =????1,-32·????-3,32=-3-94=-21

4

. ②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-21

4.

③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ), 则直线EF 的方程为y =-1

k

(x -1).

将上面的k 换成-1

k ,可得AE ·AF =-9(1+k 2)4+3k 2

所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)???

?13+4k 2+1

4+3k 2.

令1+k 2=t ,则t >1,于是上式化简整理可得,

PE ·QF =-9t ????14t -1+13t +1=-63t 212t 2+t -1=-63494-????1t -122.

由t >1,得0<1t <1,所以-214

7. 综合①②③可知,PE ·QF 的取值范围为????-214,-36

7. 热点三 圆锥曲线中的几何证明问题

圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等. 【例6】如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.

(1)求圆C 的方程;

(2)过点M 任作一条直线与椭圆x 28+y 2

4

=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .

2019年高考数学试题带答案

2019年高考数学试题带答案 一、选择题 1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与 c 所成的角的大小为( ) A .120° B .90° C .60° D .30° 2.设集合(){} 2log 10M x x =-<,集合{ } 2N x x =≥-,则M N ?=( ) A .{} 22x x -≤< B .{} 2x x ≥- C .{}2x x < D .{} 12x x ≤< 3.如图所示的组合体,其结构特征是( ) A .由两个圆锥组合成的 B .由两个圆柱组合成的 C .由一个棱锥和一个棱柱组合成的 D .由一个圆锥和一个圆柱组合成的 4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5 y x =± D .53 y x =± 6.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A . 53 B . 35 C . 37 D . 57 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3 C .22 D .328.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

2010-2019年高考数学真题专项分类练习-集合

集合 1.(2019?全国1?理T1)已知集合M={x|-40},B={x|x-1<0},则A∩B=( ) A.(-∞,1) B.(-2,1) C.(-3,-1) D.(3,+∞) 【答案】A 【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A. 4.(2019?全国2?文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( ) A.(-1,+∞) B.(-∞,2) C.(-1,2) D.? 【答案】C 【解析】由题意,得A∩B=(-1,2),故选C. 5.(2019?全国3?T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( ) A.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1,2} 【答案】A 【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A. 6.(2019?北京?文T1)已知集合A={x|-11},则A∪B=( ) A.(-1,1) B.(1,2) C.(-1,+∞) D.(1,+∞) 【答案】C 【解析】∵A={x|-11},∴A∪B=(-1,+∞),故选C. 7.(2019?天津?T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( ) A.{2} B.{2,3} C.{-1,2,3} D.{1,2,3,4} 【答案】D 【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.

2019年高考全国1卷理科数学试题

6,2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 第I 卷(选择题) 一、单选题 1.已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?= A .}{43x x -<< B .}{42x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22 (1)1x y -+= C .22(1)1x y +-= D .2 2(+1)1y x += 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512 -( 51 2 -≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 2 -.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cm C .185 cm D .190cm 5.函数f (x )= 2 sin cos x x x x ++在[—π,π]的图像大致为 A . B .

C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 A. 5 16 B. 11 32 C. 21 32 D. 11 16 7.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为 A. π 6 B. π 3 C. 2π 3 D. 5π 6 8.如图是求 1 1 2 1 2 2 + + 的程序框图,图中空白框中应填入 A.A= 1 2A + B.A= 1 2 A +C.A= 1 12A + D.A= 1 1 2A + 9.记n S为等差数列{}n a的前n项和.已知45 05 S a == ,,则 A.25 n a n =-B.310 n a n =-C.2 28 n S n n =-D.2 1 2 2 n S n n =-10.已知椭圆C的焦点为12 1,01,0 F F - (),(),过F 2 的直线与C交于A,B两点.若

2019高考数学复习专题:集合(含解析)

一、考情分析 集合是高考数学必考内容,一般作为容易题.给定集合来判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){} 2,2x y y x x =-. (2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----. (3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题. (4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况. (6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展 1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ?B ?A ∩B =A ?A ∪B =B ()()U U A B A B U ?=??=痧 . 3.奇数集:{}{}{} 21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z . 4. 数集运算的封闭性,高考多次考查,基础知识如下:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集Z 对加、减、乘法运算是封闭的.有理数集、复数

2019高考数学考点突破——选考系列参数方程学案

参数方程 【考点梳理】 1.曲线的参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数 ? ?? ?? x =f t ,y =g t 并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲 线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化 通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例 如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么? ?? ?? x =f t ,y =g t 就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程 直线 y -y 0=tan α(x -x 0) ? ?? ?? x =x 0+t cos α, y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2 ? ?? ?? x =r cos θ,y =r sin θ(θ为参数) 椭圆 x 2a 2+y 2 b 2 =1(a >b >0) ? ?? ?? x =a cos φ,y =b sin φ(φ为参数) 考点一、参数方程与普通方程的互化 【例1】已知曲线C 1:?????x =-4+cos t ,y =3+sin t (t 为参数),C 2:? ????x =8cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π 2 ,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:

2019届高考数学专题14外接球

培优点十四 外接球 1.正棱柱,长方体的外接球球心是其中心 例1:已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .16π B .20π C .24π D .32π 【答案】C 【解析】162==h a V ,2=a ,24164442222=++=++=h a a R ,24πS =,故选C . 2.补形法(补成长方体) 例2:若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 【答案】9π 【解析】933342=++=R ,24π9πS R ==. 3.依据垂直关系找球心 例3:已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC △满足 6BA BC ==π 2 ABC ∠= ,若该三棱锥体积的最大值为3,则其外接球的体积为( ) A .8π B .16π C .16π3 D .32 π3 【答案】D 【解析】因为ABC △是等腰直角三角形,所以外接球的半径是1 1232r =的半径是R ,球心O 到该底面的距离d ,如图,则1 632ABC S =?=△,3BD =11 6336 ABC V S h h ==?=△, 最大体积对应的高为3SD h ==,故223R d =+,即()2 233R R =-+,解之得2R =, 所以外接球的体积是3432ππ33 R =,故答案为D . 一、单选题 1.棱长分别为235的长方体的外接球的表面积为( ) A .4π B .12π C .24π D .48π 【答案】B 对点增分集训

【解析】设长方体的外接球半径为R ,由题意可知:()()() 22 2 2223 5 R =+ + ,则:23R =, 该长方体的外接球的表面积为24π4π312πS R ==?=.本题选择B 选项. 2.设三棱柱的侧棱垂直于底面,所有棱的长都为23,顶点都在一个球面上,则该球的表面积为( ) A .12π B .28π C .44π D .60π 【答案】B 【解析】设底面三角形的外接圆半径为r ,由正弦定理可得:23 2r =,则2r =, 设外接球半径为R ,结合三棱柱的特征可知外接球半径() 2 223 27R =+=, 外接球的表面积24π28πS R ==.本题选择B 选项. 3.把边长为3的正方形ABCD 沿对角线AC 对折,使得平面ABC ⊥平面ADC ,则三棱锥 D ABC -的外接 球的表面积为( ) A .32π B .27π C .18π D .9π 【答案】C 【解析】把边长为3的正方形ABCD 沿对角线AC 对折,使得平面ABC ⊥平面ADC , 则三棱锥D ABC -的外接球直径为32AC =,外接球的表面积为24π18πR =,故选C . 4.某几何体是由两个同底面的三棱锥组成,其三视图如下图所示,则该几何体外接球的面积为( ) A .2πa B .22πa C .23πa D .24πa 【答案】C 【解析】由题可知,该几何体是由同底面不同棱的两个三棱锥构成,其中底面是棱长为2a 的正三角形,一个是三条侧棱两两垂直,且侧棱长为a 的正三棱锥,另一个是棱长为2a 的正四面体,如图所示: 该几何体的外接球与棱长为的正方体的外接球相同,因此外接球的直径即为正方体的体对角线,所以2223 23R a a a a R =++?,所以该几何体外接球面积

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

2019高考数学考点突破——空间向量与立体几何空间向量及其运算学案

空间向量及其运算 【考点梳理】 1.空间向量的有关概念 名称 定义 空间向量 在空间中,具有大小和方向的量 相等向量 方向相同且模相等的向量 相反向量 方向相反且模相等的向量 共线向量 (或平行向量) 表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量 平行于同一个平面的向量 (1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b . (3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π 2 ,则称a 与b 互相垂直,记作a ⊥b . ②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 向量表示 坐标表示 数量积 a·b a 1 b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a·b =0(a ≠0,b ≠0) a 1 b 1+a 2b 2+a 3b 3=0 模 |a | a 21+a 22+a 2 3 夹角 〈a ,b 〉(a ≠0,b ≠0) cos 〈a ,b 〉= a 1 b 1+a 2b 2+a 3b 3 a 21+a 22+a 23· b 21+b 22+b 2 3 考点一、空间向量的线性运算 【例1】如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB → =b ,AD → =c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)MP →+NC 1→. [解析] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→ =a +c +12AB →=a +c +1 2 b . (2)因为M 是AA 1的中点,所以MP →=MA →+AP → =12 A 1A →+AP → =-12a +? ? ???a +c +12b =12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→

2019年高考数学填空题专项训练题库100题(含答案)

2019年高考数学填空题专项训练题库100 题(含答案) 1.设集合}4|||}{<=x x A ,}034|{2>+-=x x x B ,则集合A x x ∈|{且 =?}B A x __________; 2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________; 3.已知m b a ==32,且211=+b a ,则实数m 的值为______________; 4.若0>a ,9 43 2=a ,则=a 3 2log ____________; 5.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________; 6.已知)(x f y =是定义在R 上的奇函数,当),0(+∞∈x 时,22)(-=x x f , 则方程0)(=x f 的解集是____________________; 7.已知)78l g ()(2-+-=x x x f 在)1,(+m m 上是增函数,则m 的取值范围是________________; 8.已知函数x x x f 5sin )(+=,)1,1(-∈x ,如果0)1()1(2<-+-a f a f ,则a 的取值范围是____________; 9.关于x 的方程a a x -+= 53 5有负数解,则实数a 的取值范围是______________; 10.已知函数)(x f 满足:对任意实数1x ,2x ,当2`1x x <时,有)()(21x f x f <,且 )()()(2121x f x f x x f ?=+. 写出满足上述条件的一个函数:=)(x f _____________; 11.定义在区间)1,1(-内的函数)(x f 满足)1l g ()()(2+=--x x f x f ,则=)(x f ______________;

2019年高考数学模拟试题含答案

F D C B A 2019年高考数学模拟试题(理科) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并收回。 一.选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中只有一项是符合题目要求的 1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ?)(= A .}3,2{ B .}4,3,2{ C .}2{ D .φ 2.已知i 是虚数单位,i z += 31 ,则z z ?= A .5 B .10 C . 10 1 D . 5 1 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为 A .3 B .4 C .5 D .6 (第3题) (第4题) 4.如图,ABCD 是边长为8的正方形,若1 3 DE EC =,且F 为BC 的中点,则EA EF ?=

A .10 B .12 C .16 D .20 5.若实数y x ,满足?? ???≥≤-≤+012y x y y x ,则y x z 82?=的最大值是 A .4 B .8 C .16 D .32 6.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+ C .32216+ D .32216516++ 7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A . 101 B .51 C .103 D .5 4 8.设n S 是数列}{n a 的前n 项和,且11-=a ,11++?=n n n S S a ,则5a = A . 301 B .031- C .021 D .20 1 - 9. 函数()1ln 1x f x x -=+的大致图像为 10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥 ABCD P -的外接球体积最小值是

2019年全国一卷高考数学试题分析

2019年高考数学试题整体分析 1.试题突出特色: “突出数学学科特色,着重考查考生的理性思维能力,综合运用数学思维方法 分析问题、解决问题的能力。”2019年高考数学卷一个突出的特点是,试题突出 学科素养导向,注重能力考查,全面覆盖基础知识,增强综合性、应用性,以反映 我国社会主义建设的成果和优秀传统文化的真实情境为载体,贴近生活,联系社会 实际,在数学教育、评价中落实立德树人的根本任务。 2.试题考查目标: (1)素养导向,落实五育方针 2019年高考数学科结合学科特点,在学科考查中体现五育要求,整份试卷 站在落实“五育”方针的高度进行整体设计。理科Ⅰ卷第4题以著名的雕塑 “断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。文 科Ⅰ 卷第17题以商场服务质量管理为背景设计,体现对服务质量的要求,倡 导高质量的劳动成果。理科Ⅰ卷第(15)题引入了非常普及的篮球运动,以其 中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学 方法分析、解决体育问题。这些试题在考查学生数学知识的同时,引导学生加 强体育锻炼,体现了对学生的体育教育。(2)突出重点,灵活考查数学本质2019年高考数学试题,突出学科素养导向,将理性思维作为重点目标,将基 础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和 逻辑推理能力。固本强基,夯实发展基础。理科(4)题源于北师大版必修五67页;理科(22)题源于北师大版4-4第53页;理科(16)和华师大附中五月押题卷(14)几乎一模一样。理科(21)题可视为2011清华大学七校联考自主招生考试 题的第15题改编。题稳中有变,助力破解应试教育。主观题在各部分内容的布局 和考查难度上进行动态设计,打破了过去压轴题的惯例。这些改革释放了一个明显 的信号:对重点内容的考查,在整体符合《考试大纲》和《考试说明》要求的前提下,在各部分内容的布局和考查难度上都可以进行调整和改变,这在一定程度上有 助于考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重 点知识和重点内容,同时有助于破解僵化的应试教育。 (3)情境真实,综合考查应用能力数学试题注重考查数学应用素养,体现综合性 和应用性的考查要求。试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。 理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置 了排列组合试题,体现了中国古代的哲学思想。理科第(21)题情境结合社会现实,贴近生活,反映了数学应用的广阔领域,体现了数学的应用价值,有利于在中学数 学教育中激发学生学习数学的热情,提高对数学价值的认识,提升数学素养,对中 学的素质教育有很好的导向和促进作用。

2019年高考数学真题分类汇编专题18:数列(综合题)

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , .

因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0. 因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m. 当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e (e,+∞) + 0 – f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项

2019高考数学考点突破——导数及其应用与定积分:导数与函数的单调性 Word版含解析

导数与函数的单调性 【考点梳理】 函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则 (1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 【考点突破】 考点一、判断或证明函数的单调性 【例1】已知函数已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性. [解析] f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0恒成立, 所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈??? ?0,1a 时,f ′(x )>0; x ∈??? ?1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 【类题通法】 用导数判断或证明函数f (x )在(a ,b )内的单调性的步骤 (1)一求.求f ′(x ); (2)二定.确认f ′(x )在(a ,b )内的符号; (3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数. 【对点训练】 已知函数f (x )=x 3+ax 2+b (a ,b ∈R),试讨论f (x )的单调性. [解析] f ′(x )=3x 2 +2ax ,令f ′(x )=0, 解得x 1=0,x 2=-2a 3 . 当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x ) 在(-∞,+∞)上单调递增; 当a >0时,x ∈? ????-∞,-2a 3∪(0,+∞)时,f ′(x )>0,

2019高考数学专题训练--解三角形(有解析)

2019高考数学专题训练--解三角形(有解析) 专题限时集训(二) 解三角形 (建议用时:60分钟) 一、选择题1.(2018?天津模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,若AB=13,a=3,∠C=120°,则AC等于( ) A.1 B.2 C.3 D.4 A [由余弦定理得13=AC2+9-6ACcos 120° 即AC2+3AC-4=0 解得AC=1或AC=-4(舍去).故选A.] 2. (2018?合肥模拟)△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,bcos A+acos B=2,则△ABC的外接圆的面积为( ) A.4πB.8πC.9πD.36π C [由bcos A+acos B=2,得b2+c2-a22c +a2+c2-b22c=2 化简得c=2,又sin C=13,则△ABC的外接圆的半径R=c2sin C=3,从而△ABC的外接圆面积为9π,故选C.] 3.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a-b)2+6,C=π3,则△ABC的面积( ) A.3 B.932 C.332 D.33 C [因为c2=(a-b)2+6,C=π3,所以由余弦定理得:c2=a2+b2- 2abcosπ3,即-2ab+6=-ab,ab=6,因此△ABC的面积为12absin C=3×32=332,选C.] 4.如图216,为测得河对岸塔AB的高,先 在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高为( ) 图216 A.10米 B.102米 C.103米 D.106米 D [在△BCD中,∠DBC=180°-105°-45°=30°,由正弦 定理得10sin 30°=BCsin 45°,解得BC=102. 在△ABC中,AB=BCtan∠ACB=102×tan 60°=106.] 5.(2018?长沙模拟)在△ABC 中,角A,B,C对应边分别为a,b,c,已知三个向量m=a,cos A2,n=b,cos B2,p=c,cosC2共线,则△ABC的形状为( ) A.等 边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形 A [由m∥n得acosB2=bcosA2,即sin Acos B2=sin Bcos A2化简得sinA2=sinB2,从而A=B,同理由m∥p得A=C,因此△ABC为等边三角形.] 6.如图217,在△ABC中,C=π3,BC=4,点D在边AC上,AD=DB,DE⊥AB,E为垂足.若DE=22,则cos A=( ) 图217 A.223 B.24 C.64 D.63 C [∵DE=22,∴BD=AD=DEsin A=22sin A.∵∠BDC=2∠A,在△BCD中,由正弦定理得BCsin∠BDC=BDsin C,

2019-2020高考数学一模试题带答案

2019-2020高考数学一模试题带答案 一、选择题 1.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A . 13 B . 12 C . 23 D . 34 2.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( ) A .①③④ B .②④ C .②③④ D .①②③ 3.2 5 32()x x -展开式中的常数项为( ) A .80 B .-80 C .40 D .-40 4.设向量a r ,b r 满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( ) A .6 B .32 C .10 D .425.在ABC ?中,60A =?,45B =?,32BC =AC =( ) A 3B 3 C .23D .436.设双曲线22 22:1x y C a b -=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别 交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ?=u u u u v u u u u v ,22MF NF =u u u u v u u u u v ,则双曲 线C 的离心率为( ). A 2 B 3 C 5 D 6 7.下列各组函数是同一函数的是( ) ①()32f x x = -与()2f x x x =-()3f x 2x y x 2x 与=-=-()f x x =与 ()2g x x = ③()0 f x x =与()0 1g x x = ;④()221f x x x =--与()2 21g t t t =--. A .① ② B .① ③ C .③ ④ D .① ④ 8.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3 C .22 D .329.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题:

2019高考数学大题必考题型及解题技巧分析

快戳!数学6大必考题型全总结!掌握好轻松考到140+! 高考数学大题必考题型及解题技巧分析 1 排列组合篇 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率。 2 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立体几何中的计算型问题,而解答题着重考查立

体几何中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点;

2019年高考理科数学分类汇编:数列(解析版)

题08 数列 1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .2 28n S n n =- D .2 122 n S n n = - 【答案】A 【解析】由题知,415 144302 45d S a a a d ? =+??=???=+=?,解得132a d =-??=?,∴25n a n =-,2 4n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断. 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8 C .4 D .2 【答案】C 【解析】设正数的等比数列{a n }的公比为q ,则23111142 111 15 34a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2 +b ,n *∈N ,则 A . 当101 ,102 b a = > B . 当101 ,104 b a = > C . 当102,10b a =-> D . 当104,10b a =-> 【答案】A 【解析】①当b =0时,取a =0,则0,n a n * =∈N .

相关文档
相关文档 最新文档