文档库 最新最全的文档下载
当前位置:文档库 › 第1章电化学基本原理

第1章电化学基本原理

第1章电化学基本原理

第1章电化学基本原理

⑴相间电位:两相接触时.在两相界面层中存在的电位差。

引起相间电位的几种情形:a剩余电荷引起的离子双电层b吸附双电层c偶极子层d金属表面电位

⑵相间电位也可相应地定义为以下几类:a外电位差b,内电位差,不能直接测得c电化学位差,不能直接测得

⑶接触电位差:直接接触的两相之间的外电位差又称为接触电位差,可以直接测量

⑷电极电位:电极体系中,两类导体界面所形成的相间电位,即电极材料和离子导体的内电位差称为电极电位。

过电位:外电流通过电极时,电极电位与平衡电位之差为电极在该电流密度下的过电位

⑸绝对电位:金属和溶液间内电位差,称为绝对电位。不可测量。

⑹相对电位:将参比电极与被侧电极组成一个原电池回路,所测出的原电池电动势叫做该被测电极的相对电位

平衡电极电位:金属电极与溶液相电极过程建立起平衡电荷和物质量在氧化还原都达到平衡的电位

标准电极电位:电极反应物质处于标准状态,氢标电极做参比

⑺参比电极:能作为基准、电极电位保持恒定的电极叫做参比电极

⑻液体接界电位:相互接触的两个组成不同或浓度不同的电解质溶液相之间存在的相间电位。

⑼双电层:在金属/溶液界面上荷电物质和偶极子的定向排列

性质:a. 电势差约为0.1~1V,b. 双电层距离约为10-10~10-9m,c. 产生的电场强度达108~1010V/m,是目前已发现的实际电场所能产生的最强电场。

研究电极/溶液界面的方法:(1)电毛细曲线法(2)微分电容曲线法

双电层结构:静电作用:使符号相反的剩余电荷形成紧密双电层结构;

热运动:使荷电粒子趋向均匀分布,形成分散层结构。

三种模型:a紧密型b分散型c紧密-分散型

a紧密型:只考虑电极与溶液间静电作用,认为剩余电荷形成类似荷电平板电容器的双电层结构。

成功:解释了界面张力随电极电位变化规律;可以解释微分电容曲线的平台区。

不足:解释不了 Cd~φ曲线变化规律

b分散型:认为剩余电荷按照势能场中粒子地分配规律分布在临近界面地液层中,即形成电荷“分散层”。

成功:能较好地解释微分电容最小值出现;能解释电容随电极电位的变化。

不足:完全忽视了紧密层地存在;解释不了微分电容曲线“平台区”。

c紧密-分散型:认为由于静电作用和粒子热运动这两种矛盾作用对立统一的结果

成功:对 Cd~φ作出了较完满的解释:由于模型包含了紧密层,所以同样可解释σ~φ曲线。

按双电层方程式理论作出de1理论曲线与实验曲线相当一致;

不足:推导中做了许多假设,得出的结果是宏观的统计平均值,不能作准确的计算;

对分散层描述较细致,对紧密层描述过于简单。

“电极/溶液”界面模型概要:

a界面两侧剩余电荷所引起双电层包括紧密层和分散层;

b分散层是由于离子电荷的热运动引起的,其结构只与温度、电解质浓度及分散层中的剩余电荷密度有关,而与离子的个别特性无关;

c紧密层决定于界面层结构,特别是两相中剩余电荷能相互接近的程度;

⑽零电荷电位:电极表面剩余电荷为零时的电极电位

⑾吸附的分类:a静电吸附b非特性吸附c特性吸附

吸附影响双电层结构和电位分布

⑿电化学腐蚀倾向的判断(3种方法):a由腐蚀反应自由能变化 b由标准电极电位c电位-pH平衡

⒀电极极化:有电流通过时电极,电位偏离平衡电位的现象叫做电极极化

根据控制步骤:浓度极化、电化学极化和电阻极化

⒁交换电流密度:相应的按两个反应方向进行的阳极反应和阴极反应的电流密度绝对值叫做交换电流密度。

⒂电极过程的基本历程:①反应粒子向电极表面传递,称液相传质步骤。

②反应粒子在电极表面附近的液层中进行某种转化

③电极/溶液界面上的电荷传递,称电化学步骤或电子转移步骤。

④反应产物在电极表面或表面附近液层中进行某种转化

⑤反应产物生成新相

浓差极化:液相传质步骤为控制步骤

⒃液相传质的三种方式:a电迁移b对流c扩散

电化学原理知识点

电化学原理 第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。 第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。 分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。 当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动 i i i x αγ=∑ =2 2 1i i z m I I A ?-=±γlog L A G κ= KV =λN c N c k 1000=λ- ++=000λλλ

电化学原理与方法课程中下半学期课程复习题 (1)剖析

1请你简要论述一下,电化学研究方法中,暂态测量技术有哪些?以及暂态研究技术的应用有哪些? 暂态测量技术有哪些? 暂态测量方法的种类 ①按极化或控制的幅度分( 幅度:电极极化的幅度,界面电位变化量) a. 大幅度暂态测量(研究电极过程) |Δφ|>10 mV ( 大幅度) b. 小幅度暂态测量(用于测定参数Rr、RL、C d) |Δφ|<10 mV(小幅度) ②按控制方式分: a. 控制电流法暂态测量 b. 控制电位法暂态测量 控电流法:单电流阶跃;断电流;方波电流;双脉冲电流 控电位法:阶跃法、方波电位法等;线性扫描(单程线性扫描,连续三角波扫描);脉冲电位(阶梯伏安,常规脉冲,差分脉冲,方波伏安) [从电极极化开始到各个子过程(电化学反应过程、双电层充电过程、传质过程和离子导电过程)做出响应并进入稳态过程所经历的不稳定的,变化的“过渡阶段”,称为暂态.] [电化学暂态测试技术也称为电化学微扰测试技术,即用指定的小幅度电流或电压讯号加到研究电极上,使电极体系发生微弱的扰动,同时测量电极参数的响应来研究电极反应参数] 暂态研究技术的应用? 暂态技术提供了比稳态技术更多的信息,用来研究电极过程动力学,测定电极反应动力学参数和确定电极反应机理,而且还可将测量迁越反应速率常数的上限提高2~3个数量级,有可能研究大量快速的电化学反应。暂态技术对于研究中间态和吸附态存在的电极反应也特别有利。暂态技术中测得的一些参量,例如双电层电容、欧姆电阻、由迁越反应速率常数决定的迁越电阻等,在化学电源、电镀、腐蚀等领域也有指导意义。 2.请你谈谈电化学测量中要获得电化学信号需要哪些电极以及设备,它们分别的作用是什么? 一、需要①参比电极:参比电极的性能直接影响着电极电势的测量或控制的稳定性。 ②盐桥:当被测电极体系的溶液与参比电极的溶液不同时,常用盐桥把研究电极和参比电极连接起来。盐桥的作用主要有两个,一个是减小接界电势,二是减少研究、参比溶液之间的相互污染。

电化学原理复习资料

第一章 绪论 思考题 1、第一类导体和第二类导体有什么区别 答:区别:载流子的不同。第一类导体载流子为物体内部自由电子或空穴,第二类导体的载流子为正负离子。 注意:①不要漏掉空穴,②部分同学认为载流子在各自导体间导电过程涉及化学变化。这是不对的,只有在两类导体界面上传递时才会出现化学反应。 】 2、什么是电化学体系你能举出两﹑三个实例加以说明吗 答:电化学体系是指由两类不同导体组成的,是一种在电荷转移时不可避免地伴随有物质变化的体系。 实例:①镀锌的电解池,其外电路是由第一类导体组成的,而电解质是由第二类导体组成,在正极上发生氧化反应(Zn 和OH -失去电子的反应),在负极上发生还原反应(Zn 2+和H +得电子的反应。②丹尼尔电池,其外部电路时由第一类导体组成,而溶液是由第二类导体组成,其阳极上发生还原反应,阴极上发生氧化反应。 注意: ①例子不能写得过于简单,要具体说明。②“阴”、“阳”的字迹一定写清楚。 " 4、能不能说电化学反应就是氧化还原反应为什么 答:不能。因为电化学反应是发生在电化学体系中的,并伴随有电荷的转移的化学反应。而氧化还原反应则是指在反应前后元素的化合价具有相应的升降变化的化学反应。 注意:强调电化学体系,电化学反应要在两类导体组成的体系中发生反应。而氧化还原反应则没有导体类型的限制。 , 6、影响电解质溶液导电性的因素有哪些为什么 答:①电解质溶液的几何因素。对单位体积溶液,电解质溶液的导电性与离子在电场作用下迁移的路程和通过的溶液截面积有关,这同单位体积金属导体受其长度和横截面积的影响类似。 ②离子运动速度。离子运动速度越大,传递电量就越快,导电能力就越强。离子运动速度又受到离子本性、溶液总浓度、温度、溶剂粘度等的影响。 ③离子浓度。离子浓度越大,则单位体积内传递的电量就越大,导电能力越强。但如果离子浓度过大,离子间距离减少,其相互作用就加强,致使离子运动的阻力增大,这反而能降低电解质的导电性能。 ④溶剂性质。影响离子的电离、水化半径、粘度等。 ; 电解质溶液导电性的影响是多方面的,而各因素间又能相互影响。 问题:容易忽略第一条,同时具体影响情况应尽量全面。 第二章电化学热力学 习题2、计算25℃时下列电池的电动势。 ' (2) Pt kg mol FeCl kg mol FeCl kg mol SnCl kg mol SnCl Pt |)/001 .0()/01.0(||)/01.0()/001.0(|2342,,

电化学原理知识点

电化学原理知识点

电化学原理 第一章绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极原电池(-)电解池(+) 阴极:发生还原反应的电极原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在 的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向 的水分子性质,受这种相互作用的水分子层称为 水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值, 反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。 规定:活度等于1的状态为标准态。对于固态、 液态物质和溶剂,这一标准态就是它们的纯物质 状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: i i i x αγ=∑=221i i z m I I A ?-=± γlog

注:上式当溶液浓度小于0.01mol ·dm-3 时才 有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2) 离子运动速度。 当量电导(率):在两个相距为单位长度的平行 板电极之间,放置含有 1 克当量电解质的溶液 时,溶液所具有的电导称为当量电导,单位为Ω -1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量 电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动是独 立的,这时电解质溶液的当量电导等于电解质全 部电离后所产生的离子当量电导之和: 同一离子在任何无限稀溶液中极限当量电导值 不变! L A G κ= KV =λN c N c k 1000=λ-++=000λλλ

电化学原理

可逆体系的循环伏安研究 1 实验目的 1)掌握循环伏安法研究电极过程的基本原理 2)学习使用CHI660电化学综合分析仪 3)测定K3Fe(CN)6体系在不同扫描速率时的循环伏安图 2 实验原理 1)循环伏安法概述: 循环伏安法(CyclicVoltammetry)的基本原理是:根据研究体系的性质,选择电位扫描范围和扫描速率,从选定的起始电位开始扫描后,研究电极的电位按指定的方向和速率随时间线性变化,完成所确定的电位扫描范围到达终止电位后,会自动以同样的扫描速率返回到起始电位。在电位进行扫描的同时,同步测量研究电极的电流响应,所获得的电流-电位曲线称为循环伏安曲线或循环伏安扫描图。通过对循环伏安扫描图进行定性和定量分析,可以确定电极上进行的电极过程的热力学可逆程度、得失电子数、是否伴随耦合化学反应及电极过程动力学参数,从而拟定或推断电极上所进行的电化学过程的机理。 循环伏安法是进行电化学和电分析化学研究的最基本和最常用的方法,1922年由Jaroslav Heyrovsky创立的以滴汞电极作为工作电极的极谱分析法(Polarography),可以认为是伏安研究方法的早期形式,其对电化学研究领域的杰出贡献,Heyrovsky在1959年获得诺贝尔化学奖。随着固体电极,修饰电极的广泛使用和电子技术的发展,循环伏安法的测试范围和测试技术、数据采集和处理等方面显著改善和提高,从而使电化学和电分析化学方法更普遍地应用于化学化工、生命科学、材料科学及环境和能源等领域。 2)循环伏安扫描图: 循环伏安法研究体系是由工作电极、参比电极、辅助电极构成的三电极系统,工作电极和参比电极组成电位测量,工作电极和辅助电极组成的回路测量电流。工作电极可选用固态或液态电极,如:铂、金、玻璃石墨电极或悬汞、汞膜电极。常用的参比电极有:饱和甘汞电极(SCE)、银-氯化银电极,因此,循环伏安曲线中的电位值都是相对于参比电极而言。辅助电极可选用固态的惰性电极,如:铂丝或铂片电极、玻碳电极等。电解池中的电解液包括:氧化还原体系(常用的浓度范围:mmol/L)、支持电解质(浓度范围:mol/L)。循环伏安测定方法是:将CHI660电化学综合分析仪与研究体系连接,选定电位扫描范围E1~E2和扫描速率υ,从起始电位E1开始扫描,电位按选定的扫描速率呈线性变化从E1到达E2,然后连续反方向再扫描从E2回到E1,如图C17.1所示,电位随时间的变化呈现的是等腰三角波信号。 在扫描电位范围内,若在某一电位值时出现电流峰,说明在此电位时发生了电极反应。若在正向扫描时电极反应的产物是足够稳定的,且能在电极表面发生电极反应,那么在返回扫描时将出现于正向电流峰相对应的逆向电流峰。典型的循环伏安曲线如图C17.2所示,i pc 和i pa分别表示阴极峰值电流和阳极峰值电流,对应的阴极峰值电位与阳极峰值电位分别为E pc和E pa。(p表示峰值,a表示阳极,c表示阴极。)

电化学原理第一章习题解答(配合北航教材)

《电化学原理》习题 第一章 绪论 1. 测得25℃时,0.001mol/L 氯化钾溶液中KCl 的当量电导为141.3Scm 2/eq,若作为溶剂的水的电导率为1.0×10-6S/cm ,试计算该溶液的电导率。 解: k= 1000 *c λ=1000001.03.141?=141.3×10-6 S/cm k(溶液)=k(KCl)+k(H 2O) =141.3×10-6 S/cm+1.0×10-6 S/cm=142.3×10-6 S/cm 2. 在18℃的某稀溶液中,H +,K +,Cl -等离子的摩尔电导分别为278Scm 2 /mol, 48Scm 2/mol 和49Scm 2/mol,。室温18℃时在场强为10V/cm 的电场中,美中离子以多大的平均速度移动? 解: FU =λ即F =λE v 得 v=F E λ 代入数据得 V H + =0.028cm/s V K + =0.0051cm/s V Cl - =0.0051cm/s 3.在25℃时,将水中的一切杂质除去,水的电导率是多少?25℃时水的离子积 1410008.1--+?==OH H W c c K 。下列各电解质的极限当量电导分别为: ()mol Scm KOH /4.2470=λ()mol Scm HCl /04.4260=λ()mol Scm KCl /82.1490=λ 解: =O H 20λ+KOH 0λ-HCl 0λKCl λ =274.4+426.04-149.83 =550.62 4.已知25℃时,KCl 溶液的极限摩尔电导为()mol Scm KCl /82.1490=λ,其中Cl -离子的迁移数是 0.5095;NaCl 溶液的极限摩尔电导为 ()mol Scm NaCl /45.1260=λ,其中Cl -离子的迁移数是0.6053。根据这些数据:(1)计算各种离子的极限摩尔电导;(2)由上述计算结果证明离子独立移动定律的正确性;(3)计算各种离子在25℃的无限稀释溶液中的离子淌度。 解: (1):根据公式 =- +t t --++λλzc zc =--+t t 1--++λλ zc zc

电化学原理知识点(完整资料).doc

【最新整理,下载后即可编辑】 电化学原理 第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。 第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。 三个电化学体系: 原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。 电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。 腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。 阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。 分类: 1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。可分为原水化膜与二级水化膜。 活度与活度系数: 活度:即“有效浓度”。 活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的 真实溶液与理想溶液的偏差。 i i i x αγ=

规定:活度等于1的状态为标准态。对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。 离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的 关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符 号为G ,单位为S ( 1S =1/Ω)。 影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。 当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。 离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的 相互作用,此时离子的运动是独立的,这时电解质溶液的当量电导等于电解质全部电离后所产生的离子当量电导之和: 同一离子在任何无限稀溶液中极限当量电导值不变! 离子淌度:单位场强(V/cm )下的离子迁移速度,又称离子绝对运动速度。 离子迁移数:某种离子迁移的电量在溶液中各种离子迁移的总电量中所占的百分数。 ∑= 2 2 1i i z m I I A ?-=±γlog L A G κ=KV =λN c N c k 1000=λ- ++=000λλλE V U + +=E V U - -=

电化学原理知识点

电化学原理第一章绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子 电解质分类: 定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。 分类: 1.弱电解质与强电解质—根据电离程度

2.缔合式与非缔合式—根据离子在溶液中存在的形态 3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。 水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。 电导:量度导体导电能力大小的物理量,其值为电阻的倒数。 符号为G ,单位为S ( 1S =1 /Ω)。 影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。 L A G κ=

当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。 与 K 的关系: 与 的关系: 或 相间:两相界面上不同于基体性质的过度层。 相间电位:两相接触时,在两相界面层中存在的电位差。 产生电位差的原因:荷电粒子(含偶极子)的非均匀分布 。 形成相间电位的可能情形: KV =λN c N c k 1000=λ

1.剩余电荷层:带电粒子在两相间的转移或利用外电源向界面两侧充电; 2.吸附双电层:阴、阳离子在界面层中吸附量不同,使界面与相本体中出现等值反号电荷; 3.偶极子层:极性分子在界面溶液一侧定向排列; 4.金属表面电位:金属表面因各种短程力作用而形成的表面电位差。

2018年-电化学原理与方法思考题

电化学原理与方法复习思考题 第一章绪论 1.你认为电化学体系与其它电子导体构成的电路体系的根本区别是什么? 2.简述电极反应的基本历程。 3.三电极体系指的是什么?三电极体系中有那些回路, 在每个回路中是否有电流 流过? 4.电化学反应与普通氧化还原反应的区别是什么? 5.电化学测量过程中一般采用三电极体系,为什么? 6.为什么电流或电流密度可以表示电化学反应的速度? 第二章电极-溶液界面结构 1.出现相间电势的可能原因有哪些?举例说明? 2.解释概念:内电为、外电位、表面电势、电化学势、零电荷电势、 3.金属/溶液相间平衡电势是如何建立的,以Zn|ZnSO4(α =1,水溶液)为例说明。 4.阐明电极|溶液界面双电层电容与紧密层和分散层电容的关系? 5.理想极化电极和理想不极化电极。 6.金属电极中电子在各能级上是如何分布的? 7.画出金属电极带净正电荷或负电荷时“电极/溶液”界面的电势分布曲线。 8.什么是ψ1效应?画出金属电极带净正电荷或负电荷并出现ψ1效应时的“电极/ 溶液”界面的电势分布曲线。 第三章传质过程动力学 1.液相传质过程有哪些,写出它们的作用范围? 2.液相传质过程有无电子转移?当该步骤成为电极过程的控速步骤时,该步骤的 速度如何表示?为什么? 3.当液相传质步骤成为电极过程的控速步骤时,能否应用能斯特方程?如果能应 注意什么?为什么? 4.什么是稳态和非稳态?造成稳态和非稳态的原因是什么?

5.列出理想情况下和实际情况下的稳态扩散过程的电流表达式。 6.解释概念:扩散层的有效厚度、稳态极限扩散电流密度 7.按以下情况列出电化学反应O+ne R在液相传质为控制步骤下的稳态I~?曲 线:反应生成独立相、反应产物可溶、开始反应前O与R均存在且可溶。 8.已知一个电化学反应,如何通过实验证明其是扩散控制过程? 9.液相传质过程为控制步骤时,用恒电位阶跃的暂态动力学关系说明单纯扩散过 程能否建立稳态传质过程。 10.解释液相传质过程为控制步骤时,恒电流阶跃暂态过程中“过渡时间”的概念 及物理意义。 11.对于电化学反应O+ne R,列出静止液层中平面电极上电位阶跃时的暂态电 流表达式。 第四章电化学步骤的动力学 1.当一个电子传递反应的交换电流密度较大时,线性电位扫描为什么会出现电流 峰?在峰电流是否对应与稳态扩散过程中的极限扩散电流? 2.电极过程中的电子传递控制和扩散控制 3.解释概念:极化、过电位、交换电流密度 4.外电流密度(I)与过电位之间(η)的线性关系和半对数关系各在什么条件下出 现?这是否意味着电化学极化有两种截然不同的动力学特征? 5.电极电势以哪两种不同的方式影响电化学反应速度的速度?阐述在上述两种 方式中电极电势如何影响电化学反应的速度? 6.从理论上推导出Tafel关系。 7.在不同的平衡电位下,交换电流密度是否相同?为什么? 8.对于电子传递步骤控制的电极过程,如何确定电极反应的基本动力学参数? 9.为什么说决定电化学极化程度的主要因素是净电流密度与交换电流密度的相 对大小? 10.从所学的电化学动力学方程推导出平衡时电极电势的能斯特方程。 11.当电化学极化和浓差极化共存时,利用I,i?和I d分析造成过电位的主要原因。 12.当电化学极化和浓差极化共存时,如何利用暂态恒电位阶跃法确定电极反应(电

电化学基础知识点归纳知识分享

第四章电化学基础知识点归纳 第四章电化学基础知识点归纳 一、原电池课标要求 1、掌握原电池的工作原理 2、熟练书写电极反应式和电池反应方程式要点精讲 1、原电池的工作原理(1)原电池概念:化学能转化为电能的装置,叫做原电池。若化学反应的过程中有电子转移,我们就可以把这个过程中的电子转移设计成定向的移动,即形成电流。只有氧化还原反应中的能量变化才能被转化成电能;非氧化还原反应的能量变化不能设计成电池的形式被人类利用,但可以以光能、热能等其他形式的能量被人类应用。(2)原电池装置的构成①有两种活动性不同的金属(或一种是非金属导体)作电极。②电极材料均插入电解质溶液中。③两极相连形成闭合电路。(3)原电池的工作原理原电池是将一个能自发进行的氧化还原反应的氧化反应和还原反应分别在原电池的负极和正极上发生,从而在外电路中产生电流。负极发生氧化反应,正极发生还原反应,简易记法:负失氧,正得还。 2、原电池原理的应用(1)依据原电池原理比较金属活动性强弱①电子由负极流向正极,由活泼金属流向不活泼金属,而电流方向是由正极流向负极,二者是相反的。②在原电池中,活泼金属作负极,发生氧化反应;不活泼金属作正极,发生还原反应。③原电池的正极通常有气体生成,或质量增加;负极通常不断溶解,质量减少。(2)原电池中离子移动的方向①构成原电池后,原电池溶液中的阳离子向原电池的正极移动,溶液中的阴离子向原电池的负极移动;②原电池的外电路电子从负极流向正极,电流从正极流向负极。注:外电路:电子由负极流向正极,电流由正极流向负极;内电路:阳离子移向正极,阴离子移向负极。 3、原电池正、负极的判断方法:(1)由组成原电池的两极材料判断一般是活泼的金属为负极,活泼性较弱的金属或能导电的非金属为正极。(2)根据电流方向或电子流动方向判断。电流由正极流向负极;电子由负极流向正极。(3)根据原电池里电解质溶液内离子的流动方向判断在原电池的电解质溶液内,阳离子移向正极,阴离子移向负极。(4)根据原电池两极发生的变化来判断原电池的负极失电子发生氧化反应,其正极得电子发生还原反应。(5)根据电极

电化学原理名词基本概念

电化学原理名词基本概念 第二章电化学热力学 1.离子双电层:带电粒子在两相间的转移或利用外电源向界面两侧充电,使两相中出 现剩余电荷,剩余电荷不同程度地集中在界面两侧,形成所谓的双电层。 2.吸附双电层: 荷电粒子在界面层中的吸附量不同,造成界面层与相本体中出现等值 反号的电荷,在界面的溶液一侧形成双电层。 3.偶极子层:溶液中的极性分子在界面溶液一侧定向排列。 4.金属表面电位:金属表面因各种短程作用而形成的的表面电位差。 5.内电位:将一个单位正电荷从无穷远处移入M相所作的电功,等于外电位与表面电 位之和。 6.电极电位:电极体系中,电极材料与离子导体(溶液)的内电位差。(金属/溶液之 间的相间电位) 7.参比电极:能作为基准的、其电极电位保持恒定的电极。 第三章电极/溶液界面的结构与性质 1.理想极化电极:界面上不发生电极反应,使外电源输入的全部电流用于建立或改变 界面结构或电极电位。(可用于界面结构和性质的研究) 2.理想不极化电极:当电极反应速率和电子反应速率相等时,极化作用和去极化作用 平衡,无极化现象,通向界面的电流全部用于电化学反应。(可用作参比电极) 3.电毛细现象:界面张力随电极电位变化的现象。 电毛细曲线:界面张力与电极电位的关系曲线。 4.零电荷电位(合理电势标PZC、φ0):电极/溶液界面不存在离子双电层时的电极电 位(不存在剩余电荷)。 5.微分电容C d:引起电极电位微小变化时所需引入电极表面的电量。 6.紧密层:电极/溶液两相中的剩余电荷所引起的静电作用,使符号相反的剩余电荷力 图相互靠近,趋近于紧贴着电极表面排布,形成紧密双电层结构。 7.分散层:热运动促使荷电粒子倾向于均匀分布,从而使剩余电荷不可能完全紧贴电 极表面分布,而具有一定分散性,形成分散层。 8.静电吸附:当电极表面带有剩余电荷时,会在静电作用下使荷相反符号电荷的离子 聚集到表面区。 9.特性吸附:溶液中的各种粒子因非静电作用而发生吸附。 10.表面活性物质:凡是能在电极/溶液界面发生吸附而使界面张力降低的物质。 第四章电极过程概述 1.平衡电位:处于热力学平衡态的电极体系,氧化还原反应速率相等,电流交换与物 质交换都处于动态平衡之中,净反应速率为零,电极上没有电流通过,此时的电极电位为平衡电位。 2.电极极化:有电流通过时,电极电位偏离平衡电位的现象。 3.过电位:一定电流密度下,电极电位与平衡电位的差值称为该电流密度下的过电位。 4.静止电位:电极没有电流通过时的电极电位成为静止电位。 5.极化值:有电流通过时的电极电位与静止电位的差值称为极化值。

电化学传感器的工作原理

电化学传感器的工作原理 一、简介: 最早的电化学传感器可以追溯到20世纪50年代,当时用于氧气监测。到了20世纪80年代中期,小型电化学传感器开始用于检测PEL范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。 二、工作原理: 电化学传感器通过与被测气体发生反应并产生与气体浓度成正比的电信号来工作。典型的电化学传感器由传感电极(或工作电极)和反电极组成,并由一个薄电解层隔开。 气体首先通过微小的毛管型开孔与传感器发生反应,然后是憎水屏障,终到达电极表面。采用这种方法可以允许适量气体与传感电极发生反应,以形成充分的电信号,同时防止电解质漏出传感器。 穿过屏障扩散的气体与传感电极发生反应,传感电极可以采用氧化机理或还原机理。这些反应由针对被测气体而设计的电极材料进行催化。 通过电极间连接的电阻器,与被测气浓度成正比的电流会在正极与负极间流动。测量该电流即可确定气体浓度。由于该过程中会产生电流,电化学传感器又常被称为电流气体传感器或微型燃料电池。 在实际中,由于电极表面连续发生电化发应,传感电极电势并不能保持恒定,在经过一段较长时间后,它会导致传感器性能退化。为改善传感器性能,人们引入了参考电极。 参考电极安装在电解质中,与传感电极邻近。固定的稳定恒电势作用于传感电极。参考电极可以保持传感电极上的这种固定电压值。参考电极间没有电流流动。气体分子与传感电极发生反应,同时测量反电极,测量结果通常与气体浓度直接相关。施加于传感电极的电压值可以使传感器针对目标气体。

三、电化学传感器包含以下主要元件: 1、透气膜(也称为憎水膜):透气膜用于覆盖传感(催化)电极,在有些情况下用于控制到达电极表面的气体分子量。此类屏障通常采用低孔隙率特氟隆薄膜制成。这类传感器称为镀膜传感器。或者,也可以用高孔隙率特氟隆膜覆盖,而用毛管控制到达电极表面的气体分子量。此类传感器称为毛管型传感器。除为传感器提供机械性保护之外,薄膜还具有滤除不需要的粒子的功能。为传送正确的气体分子量,需要选择正确的薄膜及毛管的孔径尺寸。孔径尺寸应能够允许足量的气体分子到达传感电极。孔径尺寸还应该防止液态电解质泄漏或迅速燥结。 2、电极:选择电极材料很重要。电极材料应该是一种催化材料,能够执行在长时间内执行半电解反应。通常,电极采用贵金属制造,如铂或金,在催化后与气体分子发生有效反应。视传感器的设计而定,为完成电解反应,三种电极可以采用不同材料来制作。 3、电解质:电解质必须有够促进电解反应,并有效地将离子电荷传送到电极。它还必须与参考电极形成稳定的参考电势并与传感器内使用的材料兼容。如果电解质蒸发过于迅速,传感器信号会减弱。 4、过滤器:有时候传感器前方会安装洗涤式过滤器以滤除不需要的气体。过滤器的选择范围有限,每种过滤器均有不同的效率度数。多数常用的滤材是活性炭,如图5所示。活性炭可以滤除多数化学物质,但不能滤除一氧化碳。通过选择正确的滤材,电化学传感器对其目标气体可以具有更高的选择性。 四、电化传感器的一些共同特性: 1、在三电极传感器上,通常由一个跳线来连接工作电极和参考电极。如果在储存过程中将其移除,则传感器需要很长时间来保持稳定并准备使用。某些传感器要求电极之间存在偏压,而且在这种情况下,传感器在出厂时带有九伏电池供电的电子电路。传感器稳定需要30分钟至24小时,并需要三周时间来继续保持稳定。 2、多数有毒气体传感器需要少量氧气来保持功能正常。传感器背面有一个通气孔以达到该目的。建议在使用非氧气背景气应用场合中与执行复检。 3、传感器内电池的电解质是一种水溶剂,用憎水屏障予以隔离,憎水屏障具有防止水溶剂泄漏的作用。然而,和其它气体分子一样,水蒸汽可以穿过憎水屏障。在大湿度条件下,长时间暴露可能导致过量水分蓄积并导致泄漏。在低潮湿条件下,传感

电化学原理

电化学原理与方法预习思考题 第一章 绪论 1.你认为电化学体系与其它电子导体构成的电路体系的根本区别是什么? 2.简述电极反应的基本历程。 3.三电极体系指的是什么?三电极体系中有那些回路, 在每个回路中是否有电流 流过? 4.电化学反应与普通氧化还原反应的区别是什么? 5.电化学测量过程中一般采用三电极体系,为什么? 6.为什么电流或电流密度可以表示电化学反应的速度? 第二章 电极-溶液界面结构 1.出现相间电势的可能原因有哪些?举例说明? 2.解释概念:内电为、外电位、表面电势、电化学势、零电荷电势、 3.金属/溶液相间平衡电势是如何建立的,以Zn|ZnSO4(α =1,水溶液)为例说明。 4.阐明电极|溶液界面双电层电容与紧密层和分散层电容的关系? 5.理想极化电极和理想不极化电极。 6.金属电极中电子在各能级上是如何分布的? 第三章 传质过程动力学 1.液相传质过程有哪些,写出它们的作用范围? 2.液相传质过程有无电子转移?当该步骤成为电极过程的控速步骤时,该步骤的 速度如何表示?为什么? 3.当液相传质步骤成为电极过程的控速步骤时,能否应用能斯特方程?如果能应 注意什么?为什么? 4.什么是稳态和非稳态?造成稳态和非稳态的原因是什么? 5.列出理想情况下和实际情况下的稳态扩散过程的电流表达式。 6.解释概念:扩散层的有效厚度 7.按以下情况列出电化学反应O+ne|R在液相传质为控制步骤下的稳态I~?曲

线:反应生成独立相、反应产物可溶、开始反应前O与R均存在且可溶。 8.已知一个电化学反应,如何通过实验证明其是扩散控制过程? 9.液相传质过程为控制步骤时,用恒电位阶跃的暂态动力学关系说明单纯扩散过 程能否建立稳态传质过程。 10.解释液相传质过程为控制步骤时,恒电流阶跃暂态过程中“过渡时间”的概念 及物理意义。 11.对于电化学反应O+ne|R,列出静止液层中平面电极上电位阶跃时的暂态电 流表达式。 第四章 电化学步骤的动力学 1.当一个电子传递反应的交换电流密度较大时,线性电位扫描为什么会出现电流 峰?在峰电流是否对应与稳态扩散过程中的极限扩散电流? 2.电极过程中的电子传递控制和扩散控制 3.解释概念:极化、过电位、交换电流密度 4.外电流密度(I)与过电位之间(η)的线性关系和半对数关系各在什么条件下出 现?这是否意味着电化学极化有两种截然不同的动力学特征? 5.电极电势以哪两种不同的方式影响电化学反应速度的速度?阐述在上述两种 方式中电极电势如何影响电化学反应的速度? 6.从理论上推导出Tafel关系。 7.在不同的平衡电位下,交换电流密度是否相同?为什么? 8.对于电子传递步骤控制的电极过程,如何确定电极反应的基本动力学参数? 9.为什么说决定电化学极化程度的主要因素是净电流密度与交换电流密度的相 对大小? 10.从所学的电化学动力学方程推导出平衡时电极电势的能斯特方程。 11.当电化学极化和浓差极化共存时,利用I,i°和I d分析造成过电位的主要原因。 12.当电化学极化和浓差极化共存时,如何利用暂态恒电位阶跃法确定电极反应(电 子传递步骤)的基本动力学参数? 第五章 电子传递步骤的机理

电化学原理试题

第六章电化学极化 1. 简述三种极化的概念,哪一种极化严格来讲不能称为极化。 电化学极化:当电极过程为电化学步骤控制时,由于电极反应本身的“迟缓性”而引起的极化。 浓度极化:当电极过程由液相传质步骤控制时,电极所产生的极化。 电阻极化:由电极的欧姆电阻引起的电位差。 电阻极化严格来讲不能称为极化 2. 简述电化学极化最基本的三个动力学参数的物理意义。 1) 对称系数:电位偏离形式电位时,还原反应过渡态活化能改变值占F 的分数。 物理意义:反应改变电极电位对还原反应活化能的影响程度;(1—)反应改变电极电位对氧化反应活化能的影响程度。 对称系数是能垒的对称性的变量,是由两条吉布斯自由能曲线的斜率决定的,而且曲线的形状和斜率是取决于物质的化学键特性。在CTP动力学中,可以用来推测过渡态的构型,研究电极反应的放电机理。 2)电极反应标准速率常数K:当电极电位等于形式电位时,正逆反应速率常数相等,称为标准速率常数。 物理意义:在形式电位下,反应物与产物浓度都为1时,K在数值上等于电极反应的绝对反应速度。 a.度量氧化还原电对的动力学难易程度;b体现电极反应的反应能力与反应活性;c.反应电极反应的可逆性。 3)交换电流密度J。:在平衡电位下,氧化反应和还原反应的绝对电流密度相等,称为交换电流密度。 物理意义:a.度量氧化还原电对的动力学难易程度;b体现电极反应的反应能力与反应活性;c.反应电极反应的可逆性;d.表示平衡电位下正逆反应的交换速度。 3.为什么电极电位的改变会影响电极反应的速度和方向? 4.写出Butler-Volmer公式在不同过电位范围下的近似公式。 5.简述J0对电极性质的影响。

电化学原理基本概念总结

第一章 电化学体系:由两类不同导体组成,在电荷转移时,不可避免地伴随有物质变化的体系。 电极反应:两类导体上发生的氧化反应或还原反应。电化学反应:电化学体系中发生的、伴随有电荷转移的化学反应。 电化学科学:研究电子导电相(金属、半导体)和离子导电相(溶液、固体电解质)之间的界面上所发生的各种界面效应的科学。即伴有电现象发生的化学反应的科学。电极:电子导电相和离子导电相相接触,且在相界面上有电荷的转移,整个体系称为电极。 电极电位:电极体系中,两类导体界面所形成的相间电位,即电极材料和离子导体(溶液)的内电位差。 第二章 绝对电位:金属与溶液之间的内电位差的数值。参比电极:能作为基准的、电极电位保持恒定的电极。 相对电位:将参比电极与被测电极组成一个原电池回路,所测出的电池端电压,叫做该被测电极的相对电位。习惯上直接称为电极电位,用 表示)标准氢电极 :气体分压为101325Pa 的氢气和离子活度为1的氢离子溶液所组成的电极体系。用氢标电位:相对于标准氢电极的电极电位。金属接触电位 :相互接触的两个金属相之间的外电位差。形成原因:当两种金属接触时,由于电子逸出功不等,相互逸入的电子数目将不相等,因此在界面形成了双电层结构。这一双电层结构的电位差就是金属的接触电位。电子逸出功:电子离开金属逸入真空所需要的最低能量 液体接界电位相互接触的两个组成不同或浓度不同的电解质溶液相之间存在的相间电位。形成原因:两溶液相组成或浓度不同;溶质离子发生迁移;正、负离子运动速度不同;两相界面形成双电层产生电位差在恒压下原电池电动势对温度的偏导数称为原电池电动势的温度系数 吉布斯—亥姆荷茨方程应用于电池热力学的另一种表达式,可通过测求反应的焓变 电解池是依靠外电源迫使一定的电化学反应进行的装置。电池反应需要从外界输入能量,体系自由能变化0>?G 腐蚀电池:只能导致金属材料破坏而不能对外作功的短路的原电池。电池反应所释放的化学能以热能的形式耗散,电池反应不能生成有价值的物质 浓差电池:原电池的电池总反应不是化学变化,而是一种物质从高浓度向低浓度状态的转移。 可逆电极:在平衡条件下工作的,电荷交换与物质交换都处于平衡的电极。可逆电极也就是平衡电极。 由不可逆的电极反应所建立的电极电位称为不可逆电位,或不平衡电位。其数值不能用能斯特公式计算,只能由实验测量。不可逆电位可以是稳定的,也可以是不稳定的,稳定的不可逆电位称为稳定电位。 水的热力学稳定性电位变正,电荷减少,氧化反应速度增大。电位变负,电荷增加,还原反应速度增大。 从电位—pH 图中了解金属的腐蚀倾向稳定区:金属处于热力学稳定,不发生腐蚀。腐蚀区:金属的各种可溶性离子处于热力学稳定,金属发生腐蚀。钝化区:金属的各种难溶性氯化物、氧化物或难溶性盐处于热力学稳定,金属表面发生钝化免于腐蚀。 第三章 理想极化电极:在电极上不发生任何电极反应,外电源输入的全部电流都用于建立或改变界面结构和电极电位。 电毛细现象:界面张力随电极电位变化的现象。电毛细曲线:界面张力与电极电位的关系。 零电荷电位:表面剩余电荷密度为零的电位,即界面张力最大值对应的电极电位。用 表示。 将界面层溶液一侧垂直于电极表面的单位截面积液柱中,有离子双电层存在时i 离子的摩尔数与无离子双电层存在时i 离子的摩尔数之差称为离子表面剩余量;特性吸附:溶液中的离子,由于与电极表面的短程作用(非静电作用)而发生物理或化学吸附。影响因素:电极材料、离子本性、水化程度等。发生特性吸附的离子:所有阴离子。不发生特性吸附的离子:阳离子。 零标:把以零电荷电位作为零点的电位标度称为零标。零标电位:在零标下的相对电极电位称为零标电位。 注意:零标电位在讨论界面结构时方便,但不同体系有不同的零电荷电位,因此零标电位不能通用。 表面活性剂:凡能在电极/溶液界面发生吸附而使界面张力降低的物质。表面活性剂在电极/溶液界面发生吸附的条件:体系自由能的降低大于体系自由能的增加。氢原子吸附只有金属表面对氢原子的亲合力很大,使氢以吸附氢存在的能量比以分子氢存在的能量小时,吸附才可能发生。 第四章 速度控制步骤:当几个步骤串联时,实际反应速度等于最慢的那个步骤,把控制整个电极过程速度的单元步骤(既最慢的那个步骤)称之。 浓差极化:由于液相传质步骤的迟缓,使得电极表面反应离子的浓度低于溶液本体浓度,造成电极电位偏离平衡电位(稳定电位)的现象。 电化学极化:由于电极表面得、失电子的电化学反应的迟缓,而引起的电极电位偏离平衡电位(稳定电位)的现象。 第五章 电迁移:电解质溶液中的带电粒子(离子)在电场作用下沿一定方向移动的现象。 电迁流量:由于电迁移作用使电极表面附近溶液中某种离子浓度发生变化的数量。 液相传质三种方式的互相影响:一定强度对流作用的存在是实现稳态扩散过程的必要条件。,当电解液中无大量局外电解质存在时,电迁移作用不能忽略。此时,电迁移对扩散过程起叠加作用。 扩散受对流过程影响,称为对流扩散,此时扩散区与对流区重叠没有明确分界。 浓差极化:当电极过程由液相传质控制时,电极所产生的极化 非稳态扩散在t 时的扩散层厚度称为非稳态扩散过程扩散层有效厚度 扩散极谱电流:扩散步骤成为电极过程的唯一控制步骤时,滴汞电极上通过的电流 固体电极表面重现性不好的原因:真实表面积不易测量和控制;表面各点活化能不同,反应能力不同。;由于吸附使电极表面不洁净。;电极表面液层离子浓度变化。 第六章 同一电极上:电极电位越正,氧化反应速度越大;电极电位越负,还原反应速度越大。 ?0?

相关文档