文档库 最新最全的文档下载
当前位置:文档库 › 066二维非线性温度渗流变形耦合

066二维非线性温度渗流变形耦合

1求解步骤

1.1模块挂载

(1)启动SciFEA,选择“工具”—>“模块挂载”菜单弹出如图1-1所

示的对话框,在对话框当中选择“三维各向异性稳态渗流。

图1-1 选择项目类型对话框

(2)点击“SciFEA模块挂载”栏中的“二维非线性温度渗流变形耦合”选项。如图1-1所示。

(3)点击“确定”按钮完成项目类型的选择。

(4)单击工具条中的按钮弹出如图1-2所示,找到SciFEA下的tempudm 目录,并且选择打开udm.pro文件。

图1-2

(5)点击“打开”按钮之后,弹出如图1-3:

图1-3

(6)最后点击“OK”按钮。

1.2设置材料参数和边界条件

(1)单击工具条中的按钮弹出如图1-4所示材料参数数据输入表格。依次

输入固体参数、渗流参数和传热参数。

图1-4 材料参数输入

(2)单击工具条中的按钮弹数据输入表格。按照问题描述中的参数依次填入荷载边界、渗流边界、传热边界数据表格。填写完成后如图1-5所示。

图1-5填写完成扩散边界

2建模、设置材料属性和施加边界条件

(1)启动GID以创建模型。单击工具条中的按钮弹出如图1-6所示前

处理初始化窗口。

图1-6前处理初始化窗口

2.1建模。

a. 点击菜单【Geometry】-【Create】-【Line】,在命令栏依次输入点坐标,最后得到模型图如1-7所示:

图1-7建成的模型图

b.定义材料特性、施加载荷约束。点击菜单【Data】-【Conditions】弹出“Conditions”对话框。

①施加线单元初始条件。点击线单元按钮,选中下拉菜单中的“line-htmn2da”,设置条件,如图1-8所示。

图1-8 a场线边界条件

选中line-htmn2dc,设置条件,如图1-9所示。

图1-9 c场边界条件

选中line-htmn2de,设置条件,如图1-10

图1-10 e场线边界条件

②施加面单元条件。点击线单元按钮,选中下拉菜单中的“surface-D1htmn2de”,设置初始条件,如图1-11所示。

图1-11 e场初始值

选中下拉菜单中的surface-aeq4,设置材质条件,如图1-12所示。

图1-12

需要说明的是,这几步定义材料,施加载荷的操作没有先后顺序要求,但必须保证不能遗漏某个条件的定义。

2.2划分网格和导出数据

(1).划分网格。点击菜单【Meshing】-【Generate】,要求定义单元尺寸大小,

点击“OK”按钮,此时弹出“Progress in meshing”进度条,网格划分完毕后弹出消息框显示总的单元数和节点数,如图1-13所示。

图1-13划分网格得到的单元节点信息

点击“OK”按钮后即可得到划分完的网格模型,如图1-14

图1-14网格图

(2)把前处理数据转化为SciFEA所需计算格式。点击【Files】-【Save】菜单,

保存为GID文件。点击菜单【Calculate】-【Calculate】,弹出“process info”

消息框,如图1-15所示,点击“ok”按钮,然后退出Gid,至此前处理工作结束。

图1-15 转化数据消息框

3有限元计算

(1) 单击工具条中的按钮弹出如图1-16所示计算模拟窗口。

图1-16 计算模拟窗口

4结果分析

对计算结果进行分析属于后处理,GID提供了丰富的后处理操作,可以从不同角度,不同方式来输出计算结果。

(1)点击工具菜单中的进入后处理,如图1-17所示。

图1-17 进入后处理结果分析

(2)点击菜单【Files】-【Postprocess】进入后处理程序。

(3)点击菜单【View results】-【Contour fill】-【unoda0】显示沿x方向的位

移云图,如图1-18所示。

依次可查看其它位移、温度、渗流结果。

热处理过程控制

热处理过程控制 热处理过程中的质量控制,实际上是贯彻热处理相关标准的过程,包括热处理设备及仪表哦那个之、工艺材料及槽液控制、工艺过程控制等,只有严格执行标准,加强工艺纪律,才能将热处理缺陷消灭在质量的形成过程中,获得高质量的热处理零件。 1、相关热处理工艺及质量控制要求标准 GB/T16923-1997 钢的正火与退火处理;GB/T16924-1997 钢的淬火和回火处理;GB/T18177-1997 钢的气体渗氮;JB/T3999-1999 钢件的渗碳与碳氮共渗淬火回火;JB/T4155—1999 气体氮碳共渗;JB/T9201—1999 钢铁件的感应淬火回火处理 JB/T6048—1992 盐浴热处理;JB/T10175—2000 热处理质量控制要求 2、加热设备及仪表要求: 2.1、加热设备要求: 2.1.1加热炉需按有效加热区保温精度(炉温均与性)要求分为六类,其控温精度、仪表精度和 允许用修改量程的方法提高分辨力 温仪表。其中一个仪表应具有报警的功能。 2.1.3 每台加热炉必须定期检测有效加热区,检测方法按GB/T9452和JB/T6049的规定,其保温精度应符合表7要求。应在明显位置悬挂带有有效加热区示意图的检验合格证。加热炉只能 记录表热电偶的热距离应靠近。校验应在加热炉处于热稳定状态下进行,当超过上述允许温度

2.1.5保护气氛炉和化学热处理炉的炉内气氛应能控制和调节。进入加热炉的气氛不允许直接冲刷零件。 2.1.6 对气体渗碳(含碳氮共渗)炉,渗氮(含氮碳共渗(软氮化))炉,在有效加热区检验合格后还应进行渗层深度均匀性检验,试样放置位置参照有效加热区保温精度检测热电偶布点位置,检验方法按GB/T9450和GB/T11354的规定。气体渗碳炉、渗氮炉中有效硬化层深度偏差,见表11和表12: 2.1.7 炉内的加热介质不应使被加热工件表面产生超过技术文件规定深度的脱碳、增碳、增氮和腐蚀等现象。 2.1.8 感应热处理加热电源及淬火机床: 2.1.8.1 感应加热电源输出功率及频率必须满足热处理要求,输出功率控制在±5%,或输出电压在±2.5%范围内。感应热处理机床和限时装置应满足工艺要求。 2.1.8.3限时装置:感应加热电源或淬火机床应根据需要装有控制加热、延迟、冷却时间的限时 2.2 淬火槽要求: 2.2.1 淬火槽的设置应满足技术文件条件对工件淬火转移时间的规定。 2.2.2淬火槽的容积要适应连续淬火和工件在槽中移动的需求。 2.2.3淬火过程中,油温一般保持在10——80℃,水温一般保持在10——40℃。 2.2.4 淬火槽一般应有循环搅拌和冷却装置,可选用循环泵、机械搅拌或喷射对流装置。必要时,淬火槽可配备加热装置。 2.2.5 淬火槽应装有分辨力不大于5℃的测温。 2.3 仪表要求: 2.3.1 现场使用的控温和记录仪表等级应符合表7要求,检定周期按表9执行。 2.3.2 现场系统校验用的标准电位差计精度应不低于0.05级,分辨力不低于1Uv,检定周期为6个月。

热处理变形的原因

热处理变形的原因 在实际生产中,热处理变形给后续工序,特别是机械加工增加了很多困难,影响了生产效率,因变形过大而导致报废,增加了成本。变形是热处理比较难以解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。 一、热处理变形产生的原因 钢在热处理的加热、冷却过程中可能会产生变形,甚至开裂,其原因是由于淬火应力的存在。淬火应力分为热应力和组织应力两种。由于热应力和组织应力作用,使热处理后零件产生不同残留应力,可能引起变形。当应力大于材料的屈服强度时变形就会产生,因此,淬火变形还与钢的屈服强度有关,材料塑性变形抗力越大,其变形程度越小。 1.热应力 在加热和冷却时由于零件表里有温差存在造成热胀冷缩的不一致而产生热应力。零件由高温冷却时表面散热快,温度低于心部,因此表面比心部有更大的体积收缩倾向,但受心部阻碍而使表面受拉应力,而心部则受压应力。表里温差增大应力也增大。 2.组织应力 组织应力是因为奥氏体与其转变产物的比容不同,零件的表面和心部或零件各部分之间的组织转变时间不同而产生的。由于奥氏体比容最小,淬火冷却时必然发生体积增加。淬火时表面先开始马氏体转变,体积增大,心部仍为奥氏体体积不变。由于心部阻碍表面体积增大,表面产生压应力,心部产生拉应力。 二、减少和控制热处理变形的方法 1.合理选材和提高硬度要求 对于形状复杂,截面尺寸相差较大而又要求变形较小的零件,应选择淬透性较好的材料,以便使用较缓和的淬火冷却介质淬火。对于薄板状精密零件,应选用双向轧制板材,使零件纤维方向对称。对零件的硬度要求,在满足使用要求前提下,尽量选择下限硬度。 2.正确设计零件 零件外形应尽量简单、均匀、结构对称,以免因冷却不均匀,使变形开裂倾向增大。尽量避免截面尺寸突然变化,减少沟槽和薄边,不要有尖锐棱角。避免较深的不通孔。长形零件避免截面呈横梯形。 3.合理安排生产路线,协调冷热加工与热处理的关系

稳定渗流计算

5.5.6渗透和稳定性复核 5.5. 6.1石坑水陂防渗复核计算 石坑水陂基础为粘土,根据《水闸设计规范》SL265-2001“表6.0.4”知, 水平段允许渗流坡降值[J x ]=0.40,出口段允许渗流坡降值[J ]=0.70。陂前 水深: H 设 =2.66m;地基为粘土c=3;地下轮廓线最小长度[L]=c×H=3×2.66=7.98m; 附图5-4 石坑水陂防渗计算简图 a.渗透变形复核 由附图5-4地下轮廓线实际长度L=13.88m,L>[L]=7.98m,不会发生渗透变形,满足安全要求。 b.渗透稳定性复核计算 由附图5-4计算渗透压力: H 1=2.05m H 2 =1.96m H 3 =1.92m H 4 =1.85m H5=1.20m H 6 =1.06m H 7 =0.98m H 8=0.88m H 9 =0.29m H 10 =0.19m H 11 =0.11m H 12 =0.04m H 13 =0m 计算得渗透坡降: 出口 J = H 12 /L 12-13 =0.04 /0.25=0.16<[J0]=0.40 水平 Jw=(H 5 -H 12 )/(L 5 -L 12 )=0.50/8.00=0.06<[Jx]=0.70

石坑水陂陂基满足抗渗要求,不会发生渗透破坏。 5.5. 6.1塘村水陂防渗复核计算 塘村水陂基础为粘土,根据《水闸设计规范》SL265-2001“表6.0.4”知, 水平段允许渗流坡降值[J x ]=0.40,出口段允许渗流坡降值[J ]=0.70。陂前 水深: H 设 =2.16m;地基为粘土c=3;地下轮廓线最小长度[L]=c×H=3×2.16=6.48m; 附图5-4 塘村水陂防渗计算简图 a.渗透变形复核 由附图5-4地下轮廓线实际长度L=7.67m,L>[L]=6.48m,不会发生渗透变形,满足安全要求。 b.渗透稳定性复核计算 由附图5-4计算渗透压力: H 1=1.16m H 2 =1.07m H 3 =1.02m H 4 =0.96m H5=0.75m H 6 =0.66m H 7 =0.61m H 8=0.55m H 9 =0.19m H 10 =0.12m H 11 =0.08m H 12 =0.03m H 13 =0m 计算得渗透坡降: 出口 J = H 12 /L 12-13 =0.03/0.20=0.15<[J0]=0.40

热处理变形控制及校正方法在实际生产中的应用

内容提要 在热处理过程中,工件变形是一种不可避免的现象。变形量保持在一定的要求范围内不影响工件的使用,但变形过大、以至于超出公差要求范围则工件报废,不能使用,造成浪费。 本文通过对多年实际操作经验的总结,从理论上阐述了工件热处理产生变形的原因,并联系生产实际,介绍了在热处理各个环节中产生变形的因素并极具针对性的介绍了控制各种产生变形的因素,诸如:分级淬火、等温淬火、预冷淬火等热处理控制变形方法及其他确实有效的变形控制方法。并以实际生产中的产品为例,对比证明了相关控制并减小热处理变形的方法。以及实际生产过程中,在产生较大变形的情况下,针对不同的产品特性所采取的校型方法。

1、热处理变形产生的原理及危害 工件淬火中引起的变形(宏观或微观)是操作中一种常见庛病,碳素钢薄板类工件在淬火前采用综合工艺可以在不同程度控制变形,对于模具钢、高速钢、量具钢可以结合分级淬火、等温淬火、预冷淬火减小变形量。 热处理的各个环节,都存在导致产生变形的因素。物体的“热胀冷缩”是众所周知的一种现象,钢材同样也是如此,淬火时当高温工件放入淬火冷却剂时,遇冷工件必然会产生收缩。工件截面上各部分的冷却是有先后的,因此各部分发生收缩也就有了先后,工件表面先冷却、先发生收缩,工件中心后冷却,还没有发生收缩。这样表面的收缩就必然要受到中心部分的牵制。这种由于工件表里热胀冷缩的不一致(即有温差)而造成的内应力称热应力。钢在淬火冷却过程中还要发生奥氏体向马氏体组织的转变过程,由于奥氏体的比容较马氏体小得多,所以在奥氏体向马氏体转变的同时,也就伴随着发生体积的膨胀。由于工件截面上各部分的冷却速度不一致,因此发生组织的转变和体积的膨胀也就不一致。工件表面先冷到Ms点,先发生转变和膨胀,而此时中心部分却尚未(或正在)开始发生转变和膨胀,这样表面的体积必然要受到中心部分的约束。这种由于工件表里组织转变的不一致而造成的内应力称组织应力。对每一个淬火工件来讲,既有热应力,又有组织应力,问题在于这两种应力综合的结果如何。当这两种应力的综合结果超过了钢材的屈服强度(δs)时,则引起变形,当这两种内应力综合的结果超过了钢材的强度极限(δb)时,则将引起钢材发生开裂的危险。 2、变形的控制方法 2.1 热处理过程中控制变形的方法 2.1.1 加热控制法 2.1.1.1 对于形状复杂的重要零件及薄板件或工具,可在加热淬火前进行一次或两次预热,这样可以减少工件表里的温差所造成的热应力。 2.1.1.2 在保证硬度的前提下选正常淬火温度下限和采用冷却能力较为缓慢的淬火冷却剂。

渗透变形简介

渗透变形 渗透变形又称为渗透破坏,是指在渗透水流的作用下,土体遭受变形或破坏的现象。渗透水流作用于岩土上的力称为渗透水压或动水压力,只要有渗流存在就存在这种压力,当此力达到一定大小时,岩土中的某颗粒就会被渗透水流携带和搬运,从而引起沿岩土的结构变松,强度降低,甚至整体发生破坏。 一、渗透变形类型 土工建筑物及地基由于渗流的作用而出现的变形或破坏称为渗透变形或渗透破坏,如土体表面的上浮隆起和土体内部孔隙中的细颗粒土被水流带走而流失等。由于各种土类颗粒成分、级配及结构的差异及其在地基中分布部位的不同,土的渗透变形表现的形式有多种,一般可分为管涌、流土、接触冲刷、接触管涌或接触流土等类型。 1、管涌 渗流将土体中细颗粒带走的现象,又称潜蚀。在砂砾石层中,特别在缺乏中间粒径的砂砾石层中最易发生。在未胶结的断层破碎带中也可见到管涌。当岩层的胶结物为易溶的岩盐和石膏时,在渗流作用下,胶结物被溶解带走,又称化学管涌。根据管涌随时间发展的不同情况,可分为发展性管涌和非发展性管涌。前者是指在一定渗透流速下,管涌随时间连续发展,最终引起土体破坏;后者是指在某一渗透流速下,发生管涌,有细粒移动和带出,但其带出量不大,也不随时间而增加,经一段时间后细颗粒甚至停止跳动和带出,渗透系数并不增大,土体仍不失去抗渗强度。 2、流土 渗流动水压力使土体表层颗粒呈现浮动的现象。坝基往往由于排水失效,致使下游边坡逸出部位的动水压力大于土体自重,而导致流土发生。流土一般多发生在表层为弱透水层,下部为强透水的砂砾石层组成的双层地质结构中。 3、接触冲刷 当渗流沿着粗细两种土层接触面或建筑物与地基的接触面流动时,沿接触面

减小和控制热处理变形的有效措施(1)

热处理变形产生的原因及控制方法 学院:化学化工学院班级:09材料化学姓名:张怡群学号:090908050 摘要:热处理变形是热处理过程中的主要缺陷之一,对于一些精密零件和工具、模具,常常会因为热处理变形超差而报废。为此,本文对热处理变形产生的原因进行了阐述,并总结了减少和控制热处理变形的几种方法。 关键词:热处理变形、产生原因、控制方法 前言:金属热处理是将金属工件在适当的温度下通过加热、保温和冷却等过程,使金属工件内部组织结构发生改变,从而改善材料力学、物理、化学性能的工艺。热处理是改善金属工件性能的一种重要手段。在工件制造中选取合适的材料后,为了达到工艺要求而经常采用热处理工艺,但是热处理除了具有积极作用外,在处理过程中也不可避免地会产生形变。在实际生产中,热处理产生的变形,对后续工序的影响是至关重要的,有些贵重材料和一些机器中的重要零部件,因变形过大而导致报废。钢件在热处理过程中由于钢中组织转变时比容变化所造成的体积膨胀,以及热处理所引起的塑性变形,使钢件体积及形状发生不同程度改变。变形是热处理较难解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。 正文:1热处理变形的原因在生产实际中,热处理变形的表现形式多种多样,有体积和尺寸的增大和收缩变形,也有弯曲、歪扭、翘曲等变形,就其产生的根源来说, 可分为内应力造成的应力塑性变形和比容变化引起的体积变形两大类。 (1) 内应力塑性变形 热处理过程中加热冷却的不均匀和相变的不等时性, 都会产生内应力, 在一定塑性条件的配合下, 就会产生内应力塑性变形。在加热和冷却过程中, 零件的内外层加热和冷却速度不同造成各处温度不一致,致使热胀冷缩的程度不同, 这样产生的应力变形叫热应力塑性变形。在加热和冷却过程中, 零件的内部组织转变而发生的时间不同, 这样产生的应力变形叫组织应力变形塑性变形。 (2) 比容变形在热处理过程中, 各种相结构的组织比容不同,在相变时发生的体积和尺寸变化为比容变形。比容变形一般只与奥氏体中碳和金元素的含量、游离相碳化物、铁素体的多少、淬火前后组织比容变化差和残余奥氏体的多少和钢的

某滑坡的变形和破坏机理分析研究

某滑坡的变形和破坏机理分析研究 介绍了某滑坡的特征,分析了滑坡区区域工程地质和水文地质特征,对该滑坡体的变形和破坏机理进行了研究和分析。分析表明:人为活动和地形地貌是滑坡发生变形破坏的主要因素,降雨诱发、岩层产状等因素是造成滑坡发生滑动和进一步破坏的诱发因素。 标签:滑坡变形破坏诱发因素 1概述 塔山滑坡位于广东省开平市长沙区平岗村塔山开元塔底。由于建设工程的需要,在塔山的东南侧进行采石,采用放炮等土石法,致使塔山南侧岩石大量开采形成陡崖,并使周边岩土体产生裂缝,之后由于人为因素和自然因素的影响,塔山南侧裂缝逐渐扩大,至90年代,开始形成滑坡。1999~2001年,在修建塔山公园公路时对山体坡脚进行开挖,在公路北侧形成高约10~17m,坡度约35~45°的高陡边坡,滑坡距公路最近的平岗村居民区约22m,山坡坡脚距公路最近仅2m左右。2004年和2005年雨季,由于连降暴雨,滑坡有活动下滑的趋势,滑坡体前缘公路路面隆起,最高处隆起约40cm,隆起部分面积约有20~30m2,公路北侧排水沟产生变形歪斜,部分已经破坏,水沟上方在雨水后有地下水浸出,形成间歇性下降泉,平岗村内部分房屋墙面产生裂痕,进出塔山公园的公路曾数次被塔山山坡上崩塌的土体破坏。 2滑坡变形形态特征 X 根据实地踏勘,除滑坡体后壁出现较大裂缝外,滑坡周界及滑坡体底部也有约13处裂缝,现将裂缝走向一致的裂缝分为一组,共五组裂缝(表1)。 3滑坡体的工程地质与水文地质特征 塔山滑坡滑坡体主要由第四系坡积土层、风化残积土层、侏罗系中上统百足山群、全风化、强风化、少量中风化基岩组成(见图1)。滑坡体中上部为残积土层,主要由粉土、粉质粘性土组成,呈可塑状或松散状,含较多的碎石和砂、砾石,透水性较好;风化残积土层主要由粉质粘性土,含少量碎石和砂砾石组成,局部夹有全风化、强风化岩,其透水性较差;基岩主要为全风化、强风化泥质粉砂岩,含少量强、中风化岩块,其透水性较好;滑床基本处在中—微风化泥质粉砂岩、粉砂质泥岩中,岩石呈中厚层状,岩质坚硬,局部裂隙发育,透水性好。 滑坡区地下水主要为第四系冲积土层、残坡积土层中的孔隙水和基岩裂隙水,地下水补给来源主要为大气降水的渗入补给和相邻含水层之间的侧向补给。

影响淬火热处理变形的原因

影响淬火热处理变形的原因 淬火是将钢件加热到临界温度以上,保温适当的时间,然后以大于临界冷却速度冷却,获得马氏体或贝氏体组织的热处理工艺,它是强化钢材的最重要的热处理方法。大量重要的机器零件及各类刀具、刃具、量具等都离不开淬火处理。需要淬火的工件,经过加热后,便放到一定的淬火介质中快速冷却。但冷却过快,工件的体积收缩及组织转变都很剧烈,从而不可避免地引起很大的内应力,容易造成工件变形及开裂。由于淬火变形影响因素非常复杂,导致变形控制十分棘手。而采用校直办法纠正变形或通过加大磨削加工余量,都会增加成本,因此研究钢件淬火热处理变形的影响因素,提出防止变形的措施是提高产品质量、延长零部件使用寿命、提高经济效益的重要课题。 零件热处理变形原因分析 1 热应力引起的变形 钢件在加热和冷却过程中,将发生热胀冷缩的体积变化以及因组织转变时新旧相比容差而产生的体积改变。零件加热到淬火温度时,屈服强度明显降低,塑性则大大提高。当应力超过屈服强度时,就会产生塑性变形,如果造成应力集中,并超过了材料的强度极限,就会使零件淬裂。导热性很差的高碳合金钢,如合金模具钢Cr12MoV、高速钢W18Cr4V之类的工具钢,淬火加热温度很高,如不采用多次预热和缓慢加热,不但会造成零件变形,而且会导致零件开裂而报废。此外,铸钢件和锻件毛坯,如果表层存在着一层脱碳层,由于表层和心部导热性能不同,在淬火加热较快时,也会产生热应力而引起变形。冷却时由于温差大,热应力是造成零件变形的主要原因。 2 组织应力引起的变形 体积的变化往往与加热和冷却有关,因为它和钢的膨胀系数相关。比容的变化导致零件尺寸和形状的变化。组织应力的产生起源于体积的收缩和膨胀,没有体积的膨胀,就没有组织转变的不等时性,也就没有组织应力引起的变形,导致热处理变形的内应力是热应力和组织应力共同作用形成的复合应力,热应力和组织应力综合作用的结果是不定的,可能因冷却条件及淬火温度的不同而产生不同情况,淬火应力是由急冷急热应力及由组织转变不同时所引起的应力综合构成的。 影响淬火热处理变形的主要因素 在实际生产中,影响淬火热处理变形的因素有很多,其中主要包括钢的原始组织、含碳量、零件尺寸和形状、淬火介质的选择、淬火工艺、钢的淬透性等。 1 钢中的含碳量对零件淬火热处理变形的影响 形成显微裂纹敏感度随马氏体中碳含量增高增大。当钢中碳含量大于1.4%时,形成显微裂纹敏感度反而减小。因为钢中碳含量大于 1.4%时马氏体的形态改变了,片变得厚而短,马氏体片之间的夹角变小,撞击机会和应力都有所减小。

热处理变形与裂纹

热处理变形与裂纹 工件热处理后常产生变形和开裂,其结果不是报废,也要花大量工时进行修整。 工件变形和开裂是由于在冷、热加工中产生的应力所引起的。当应力超过弹性极限时,工件产生变形;应力大于强度极限时,工件产生裂纹。 热处理中热应力和组织应力是怎样产生的只有不断认识这个问题,才能采用各种工艺方法来减小和近控制这两种应力。 在加热和冷却时,由于工件热胀冷缩而产生的热应力和组织转变产生的组织应力是造成变形和开裂的主要原因,而原材料缺陷、工件结构形状等因素也促使裂纹的产生和发展。 后面主要叙述热处理操作中的变形和开裂产生原因及一般防止方法,也讨论原材料质量、结构形状等对变形和开裂的影响。 一、钢的缺陷类型 1、缩孔:钢锭和铸件在最后凝固过程中,由于体积的收缩,得不到钢液填充,心部形 成管状、喇叭状或分散的孔洞,称为缩孔。缩孔将显著降低钢的机械性能。 2、气泡:钢锭在凝固过程中会析出大量的气体,有一部分残留在处于塑性状态的金属 中,形成了气孔,称为气泡。这种内壁光滑的孔洞,在轧制过程中沿轧制方向延伸,在钢材横截面的酸浸试样上则是圆形的,也叫针孔和小孔眼。气泡将影响钢的机械 性能,减小金属的截面,在热处理中有扩大纹的倾向。 3、疏松:钢锭和铸件在凝固过程中,因部分的液体最后凝固和放出气体,形成许多细 小孔隙而造成钢的一种不致密现象,称为疏松。疏松将降低钢的机械性能,影响机 械加工的光洁度。 4、偏析:钢中由于某些因素的影响,而形成的化学成份不均匀现象,称为偏析。如碳 化物偏析是钢在凝固过程中,合金元素分别与碳元素结合,形成了碳化物。碳化物 (共晶碳化物)是一种非常坚硬的脆性物质,它的颗粒大小和形状不同,以网状、 带状或堆集不均匀地分布于钢的基体中。根据碳化物颗粒大小、分布情况、几何形 状、数量多少将它分为八级。一级的颗粒最小,分布最均匀且无方向性。二级其次,八级最差。碳化物偏析严重将显著降低钢的机械性能。这种又常常出现于铸造状态 的合金具钢和高速钢中。对热处理工艺影响很大,如果有大块碳化物堆集或严重带 状分布,聚集处含碳量较高,当较高温度淬火时,工件容易因过热而产生裂纹。但 为了避免产生裂纹,而降低淬火温度,结果又会使硬度和红硬性降低。碳化物偏析 严重将直接影响产品质量,降低使用寿命或过早报废。 5、非金属夹杂物:钢在冶炼、浇铸和冷凝等过程中,渗杂有不溶解的非金属元素的化 合物,如氧化物、氮化物、硫化物和硅酸盐等、总称为非金属夹杂物。钢中非金属 夹杂物存在将破坏基体金属的连续性,影响钢的机械性能、物理性能、化学性能及 工艺性能。在热处理操作中降低塑性和强度而且夹杂物处易形成裂纹。在使用过程 中也容易造成局部应力集中,降低工件使用寿命。夹杂物的存在还降低钢的耐腐蚀 性能。 6、白点:钢经热加工后,在纵向断口上,发现有细小的裂纹,其形状为圆形或椭圆形 的,呈银亮晶状斑点。在横向热酸宏观试样上呈细长的发裂,显微观察裂缝穿过晶 粒,裂缝附近不发现塑性变形,裂缝处无氧化与脱碳现象。这种缺陷称为白点。白 点将显著降低横向塑性与韧性,在热处理中易形成开裂。 7、氧化与脱碳:钢铁在空气或氧化物气氛中加热时,表面形成一层松脆的氧化皮,称

金属材料损坏与变形

金属材料与热处理陈健 晶体的缺陷第二章金属材料的性能 ⑴了解金属材料的失效形式, ⑵了解塑性变形的基本原理, ⑶提高对金属材料的性能的认识。 正确理解载荷,内力、应力的含义。 应力的应用意义。 ⑴与变形相关的概念 ⑵金属的变形 讲授、提问引导、图片展示、举例分析、

一,晶体的缺陷: 1点缺陷:间隙原子,空位原子,置代原子,在材料上表现为:使材料强度,硬度和电阻增加。 2线缺陷:刃位错(如图:P-6),在材料上表现为:使得金属材料的塑性变形更加容易。 3面缺陷:有晶界面缺陷和亚晶界面缺陷,表现为金属的塑性变形阻力增大,内部具有更高的强度和硬度。因此晶界越多,金属材料的力学性能越好。 第二章金属材料的性能 导入新课: 我们经常见到一些机械零件因受力过大被破坏,而失去了工作能力。大家能否举些身边的例子呢? ——如:弯曲的自行车辐条,断掉的锯条、滑牙的螺栓等。 机械零件常见的损坏形式有三种: 变形:如铁钉的弯曲。 断裂:如刀具的断崩。 磨损:如螺栓的滑扣。 本次课给大家介绍金属材料损坏的形式、变形概念与本质等等,首先我们来了解一些基本概念。

一、与变形相关的概念 ㈠、载荷 1、概念 金属材料在加工及使用过程中所受的外力。 2、分类:根据载荷作用性质分,三种: ⑴、静载荷:大小不变或变化过程缓慢的载荷。 ——如:桌上粉笔盒的受力,用双手拉住一根粉笔两端慢慢施力等。 ⑵、冲击载荷:突然增加的载荷。 ——如:用一只手捏住粉笔的一端,然后用手去弹击粉笔。 ⑶、变交载荷:大小、方向或大小和方向随时间发生周期性变化的载荷。 ——如:通过在黑板上绘图分析自行车轮转动时辐条的受力。 根据载荷作用形式分,载荷又可以分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭曲载荷等。 拉伸载荷压缩载荷弯曲载荷 剪切载荷扭曲载荷 ㈡、内力 见车工工艺书 P32, 图2—20

岩体的变形与破坏的本构关系

第三章岩体的变形与破坏 变形:不发生宏观连续性的变化,只发生形、体变化。 破坏:既发生形、体变化、也发生宏观连续性的变化。 1.岩体变形破坏的一般过程和特点 (1)岩体变形破坏的基本过程及发展阶段 ①压密阶段(OA段): 非线性压缩变形—变形对应力的变化反应明显; 裂隙闭合、充填物压密。 应力-应变曲线呈减速型(下凹型)。 ②弹性变形阶段(AB段): 经压缩变形后,岩体由不连续介质转变为连续介质; 应力-应变呈线性关系; 弹性极限B点。 ③稳定破裂发展阶段(BC段): 超过弹性极限(屈服点)后,进入塑性变形阶段。 a.出现微破裂,随应力增长而发展,应力保持不变、破裂则停止发展; b.应变:侧向应变加速发展,轴向应变有所增高,体积压缩速率减缓(由于微破裂的出现);

④不稳定破裂发展阶段(CD段): 微破裂发展出现质的变化: a.破裂过程中的应力集中效应显著,即使是荷载应力保持不变,破裂仍会不断地累进性发展; b. 最薄弱部位首先破坏,应力重分布导致次薄弱部位破坏,直至整体破坏。“累进性破坏”。 c. 应变:体积应变转为膨胀,轴向及侧向应变速率加速增大; ※结构不均匀;起始点为“长期强度”; ⑤强度丧失、完全破坏阶段(DE段): 破裂面发展为宏观贯通性破坏面,强度迅速降低, 岩体被分割成相互分离的块体—完全破坏。 (2)岩体破坏的基本形式 ①张性破坏(图示); ②剪切破坏(图示):剪断,剪切。 ③塑性破坏(图示)。 破坏形式取决于:荷载条件、岩体的岩性及结构特征; 二者的相互关系。 ①破坏形式与受力状态的关系: a.与围压σ3有关: 低围压或负围压—拉张破坏(图示); 中等围压—剪切破坏(图示); 高围压(150MN/m2=1500kg/cm2)—塑性破坏。 的关系: b.与σ 2 σ2/σ 3 <4(包括σ 2 =σ3),岩体剪断破坏,破坏角约θ=25°; σ2/σ 3 >8(包括σ 2 =σ1):拉断破坏,破坏面∥σ1,破坏角0°; 4≤σ2/σ3≤8:张、剪性破坏,破坏角θ=15°。 ②破坏形式与岩体结构的关系: 完整块体状—张性破坏; 碎裂结构、碎块结构—塑性破坏; 裂隙岩体—取决于结构面与各主应力之间的方位关系。

岩体的变形与破坏

岩体的变形与破坏 1 基本概念及研究意义 变形:岩体的宏观连续性无明显变化者。 破坏:岩体的宏观连续性已发生明显变化。 岩体破坏的基本形式:(机制)剪切破坏和拉断(张性)破坏。 一、岩体破坏形式与受力状态的关系 岩体破坏形式与围岩大小有明显关系。 注意:岩全破坏机制的转化随围压条件的变化而变化。 破坏机制转化的界限围压称破坏机制转化围压。 一般认为,1/5~1/4[σ]不可拉断转化为剪切。 1/3~2/3[σ]可由剪切转化为塑性破坏。 有人认为(纳达),可用2σ偏向1σ的程度来划分应力状态类型。 应力状态类型参数 3 13122σσσσσα---= (=1,即σ2=σ1; =-1,即σ2=σ3) 二、岩体破坏形式与岩体结构的关系 低围压条件下岩石三 轴试验表明。 坚硬的完整岩体主要表现为张性破坏。 含软弱结构面的块状岩体,当结构面与最大主应力夹角合适时,则表现为沿结构面的剪切。 碎裂岩体的破坏方式介于二者之间。 碎块状或散体状岩体主要为塑性破坏。 对第一种情况,某破坏判据已经介绍很多了。 第二种情况,可采用三向应力状态莫尔圆图解简单判断。 三、岩体的强度特征 单轴应力状态时,结构与1σ方向决定了岩体的破坏形式。 复杂应力状态时,含一组结构面的岩体破坏形式与岩体性质、结构面产状,应力状态关系很大。 2 岩体在加荷过程中的变形与破坏 2.1 拉断破坏机制与过程 一、拉应力条件下的拉断破坏 当0331≤+σσ时,拉应力对岩石破坏起主导作用。

t S -=][3σ 二、压应力条件下的拉断破坏 压应力条件下裂缝尖端拉应力集中最强的部位位于与主压应力是?=40~30β地方向上,并逐渐向与 1σ平行地方向扩展。当0 331>+σσ时,破坏准则为: t S 8)/()(31231=+-σσσσ 3σ=0时为单轴压拉断。 2.2 剪切变形破坏机制与过程 一、潜在剪切面剪断机制与过程 A .滑移段 B .锁固段 进入稳定破裂阶段后,岩体内部应力状态变化复杂。产生一系列破裂。 (1)拉张分支裂隙的形成,原理同前。 (2)不稳定破裂阶段法向压碎带的形成,削弱锁固段岩石。 (3)潜在剪切面贯通。 剪胀,压碎带剪坏,锁固段变薄弱,最终全面贯通。 剪切破坏过程中岩石销固段被各个击破,所以整个剪切过程中剪切位段具有脉动的特征。 二、单剪应力条件下变形破坏机制与过程 即力偶作用于有一定厚度的剪切带中。 这种应力条件下可出现的两种破坏,张性雁裂和压扭性雁裂。其中张性雁裂对软弱带的强度削弱最大。 三、沿已有结构面剪切机制及过程(略) 2.3 弯曲变表破坏机制与过程 一、弯曲变形的基本形式 按受力条件:横弯、纵弯。 按约束条件:简支梁、外伸梁、悬臂梁。 梁弯曲时,轴受挤压,两翼受剪力作用→板梁滑脱 二、横弯条件下岩体的弯形与破坏 a. 轴部区 若以[] 2)()()(2121213231σσσσσσσ-+-+-=,y σ代表岩石的曲服应力。 极梁弯曲变形分三个阶段。 ①轻微隆起阶段 弯曲初期。梁底中心两侧出现局部塑性破坏,顶部受拉,但尚未破坏。(H/D=1.8%),H 上隆量。 ②强列隆起阶段

淬火变形问题的解决办法

淬火变形问题的解决办法 本文基于淬火变形的机理及其影响因素,浅谈淬火变形的预防控制及后期的机加工补救方法。 一,导致淬火变形的因素 1,碳含量及其对淬火变化量的影响 高碳钢屈服强度的升高,其变形量要小于中碳钢。对碳素钢来说,在大多数情况下,以T7A钢的变形量为最小。当碳的质量分数大于0.7%时,多趋向于缩小;但碳的质量分数小于0.7%时,内径、外径都趋向于膨胀。 碳素钢本身屈服强度相对较低,因而带有内孔(或型腔)类的碳素钢件,变形较大,内孔(或型腔)趋于胀大。合金钢由于强度较高,Ms点较低,残余奥氏体量较多,故淬火变形较小,并主要表现为热应力型的变形,其钢件内孔(或型腔)趋于缩小。因此,在与中碳钢同样条件下淬火时,高碳钢和高合金钢工件往往以内孔收缩为主。 2,合金元素对淬火变形的影响 合金元素对工件热处理变形的影响主要反映在对钢的Ms点和淬透性的影响上。大多数合金元素,例如,锰、铬、硅、镍、钼、硼等,使钢的Ms点下降,残余奥氏体量增多,减小了钢淬火时的比体积变化和组织应力,因此,减小了工件的淬火变形。合金元素显著提高钢的淬透性,从而增大了钢的体积变形和组织应力,导致工件热处理变形倾向的增大。此外,由于合金元素提高钢的淬透性,使临界淬火冷却速度降低,实际生产中,可以采用缓和的淬火介质淬火,从而降低了热应力,减小了工件的热处理变形。硅对Ms点的影响不大,只对试样变形起缩小作用;钨和钒对淬透性和Ms点影响也不大,对工件热处理变形影响较小。故工业上所谓微变形钢,均含有较多量的硅、钨、钒等合金元素。 3,原始组织和应力状态对热处理变形的影响 工件淬火前的原始组织,例如,碳化物的形态、大小、数量及分布,合金元素的偏析,锻造和轧制形成的纤维方向都对工件的热处理变形有一定影响。球状珠光体比片状珠光体比体积大,强度高,所以经过预先球化处理的工件淬火变形相对要小。对于一些高碳合金工具钢,例如,9Mn2V、CrWMn和GCr15钢的球化等级对其热处理变形开裂和淬火后变形的校正有很大影响,通常以2.5-5级球化组织为宜。调质处理不仅使工件变形量的绝对值减小,并使工件的淬火变形更有规律,从而有利于对变形的控制。 条状碳化物分布对工件的热处理变形有很大影响。淬火后平行于碳化物条带方向工件膨胀,与碳化物条带相垂直的方向则收缩,碳化物颗检愈粗大,条带方向的膨胀愈大。对于Cr12类型钢和高速钢等莱氏体钢来说,碳化物的形态和分布对淬火变形的影响尤为显著。 总之,工件的原始组织愈均匀,热处理变形愈小,变形愈有规律,愈易于控制。 4,淬火前工件本身的应力状态对变形有重要影响。特别是形状复杂,经过大进给量切削加工的工件,其残余应力若未经消除,对淬火变形有很大影响。 5,工件几何形状对热处理变形的影响 几何形状复杂,截面形状不对称的工件,例如带有键槽的轴,键槽拉刀、塔形工件等,淬火冷却时,一个面散热快,另一面散热慢,是一种不均匀的冷却。如果在Ms以上的不均匀冷却引起的变形占优势,则冷却快的一面是凹面, 若在Ms以下的不均匀冷却引起的变形占优势,则冷却快的一面是凸面,增加等温时间,增长贝氏体转变量,使残余奥氏体更加稳定,减小空冷中的马氏体转变量,可使工件的变

齿轮零件热处理变形及控制方法 孙显辉

齿轮零件热处理变形及控制方法孙显辉 发表时间:2018-05-22T16:35:06.510Z 来源:《基层建设》2018年第7期作者:孙显辉 [导读] 摘要:齿轮在热处理过程中经常变形,导致齿轮零件的精度降低,对应用范围和工业企业的发展也有严重的影响。 齐齐哈尔齐车热处理有限责任公司黑龙江齐齐哈尔 161002 摘要:齿轮在热处理过程中经常变形,导致齿轮零件的精度降低,对应用范围和工业企业的发展也有严重的影响。齿轮热处理变形所涉及的范围不明显,在齿轮热处理过程中,经常需要对齿轮进行热处理。本文对目前的变形现象进行了有效的分析,并采取了相应的措施,有效控制齿轮热处理中的变形现象。 关键词:齿轮零件;热处理变形;控制方法 前言 一般来说,齿轮在热处理之后会出现变形现象,这一现象不仅仅受热处理工艺的影响,其他方面一场也会导致齿轮在热处理之后出现变形现象,在这种条件下需要对热处理中影响齿轮变形的因素实施有效分析,制定齿轮变形控制方案,保证齿轮自身性能,为我国工业制造顺利实施提供有效参考依据。 1齿轮热处理变形主要受以下因素影响 1.1齿轮的形状 由于齿轮加工形状不一,严重影响和制约齿轮加工质量的瓶颈出现在毛坯锻造工艺和热处理工艺,其中尤以热处理工艺为重。一是圆环类齿轮。主要是车桥中盆桥齿和主动减速齿轮,这两种齿轮在渗碳淬火中的主要问题是端面翘曲变形和安装平面上多个螺纹孔的位置度变化,其中后者主要表现为内孔椭圆度超差。如果变形量过大,在齿面精加工过程中,存在单侧轮齿磨不起来而发生废品。或是齿形齿向在精磨中发生改变,使得接触区偏向一边,影响接触区位置,达不到要求。二是轴类齿轮。轴齿类的变形主要表现在两个方面:一方面是齿跳;另一方面是齿形、齿向变化。轴类产品渗碳淬火后要进行校直才能进行齿形齿向的检测。 1.2齿轮材料 在齿轮选材正确的前提下,原材料的纯洁性、均匀性、淬透性是影响渗碳淬火齿轮变形的主要因素。原材料质量的优劣,对变形也有很大的影响。如若组织粗大、带状组织严重等。因此,即使是同种材料不同炉号的材料,其变形也是不一样的。由于原材料淬透性不同,导致了淬透性带宽的不同,渗碳淬火后的组织就会出现差异,变形也就不一样。如果进厂钢材的淬透性每批都不一样且波动很大,即淬透性带宽过宽,必然会导致齿轮热处理变形无规律。 1.3齿轮的锻坯因素 在进行齿轮零件加工处理之前,需要相关人员对齿轮锻件的强度、韧性、成分和组织等方面实施有效分析,并在齿轮锻件加工制造过程中保证齿轮锻件的金属流线的对称性,严格控制齿轮锻件的加工时出现问题。受多方面因素的影响,在进行齿轮锻件加工的过程中经常出现齿轮锻件结构不合理的现象,这不仅仅影响锻件金属流线的对称性,还会造成齿轮锻件加工完成后冷却不均匀,无形中加大齿轮零件出现变形现象的可能。此外,齿轮锻件硬度超差也会导致齿轮零件热处理的过程中出现变形现象,因此,在这种条件下就需要对造成齿轮锻件实施有效分析,并按照分析结果制定合理的变形控制方案,从根本的角度上减少齿轮零件在热处理过程中出现变形现象的可能,侧面提升齿轮零件加工质量。对于齿轮零件来说,造成这种现象的原因主要表现在两个方面:第一,在齿轮锻件加工时,相关人员没有按照相关规定对齿轮加工原材料和钢材等有效成分实施综合分析,齿轮零件各个加工环节所使用的材料存在些许差异,在对这种齿轮零件进行热处理时,所产生的变形幅度大行径庭。 2关于控制热处理变形的一些建议 影响齿轮热处理变形的因素众多,要具体确定哪种是主要因素十分困难。设计方面,齿轮结构和尺寸要尽量合理,使齿轮淬火时均匀冷却;机械加工方面,必要时应在齿轮渗碳淬火前采取措施消除加工应力;材料方面,采用细晶、纯净度高、淬透性窄的齿轮钢;齿坯锻造与预备热处理方面,足够的锻造比、合理的锻造流线是必需的,经过锻造及预备热处理后的齿坯,尽可能消除带状、混晶组织,确保基体组织细而均匀。渗碳淬火方面,合理的淬火温度、装夹方式、淬火介质及合理的搅拌是关键的变形控制措施。因此,渗碳齿轮的变形控制应该系统地整体,具体问题具体分析,分清主次因素,综合采取相应的控制技术。控制渗碳淬火齿轮变形的关键点如下: 齿轮的设计对热处理变形有着极其重要的影响,因此,尽量设计形状较为简单、对称性好、各部分厚薄均匀的齿轮,可以有效减少热处理变形。 材料淬透性、晶粒度:最近,国外对渗碳淬火齿轮用材提出了一个新的特征考核指标即变形因子K,K由下式决定: K=(430-Ms)×(10-Ng)×JH(1) 式中,Ms为马氏体转变开始点;Ng为奥氏体晶粒度;JH为淬透性。变形因子综合考虑了影响渗碳淬火齿轮热处理变形的材料因素,能直观地标定材料的热处理变形倾向,因此是一个值得推荐应用的考核指标。 在进行零件加工之前,需要相关人员对齿轮零件加工过程中使用的原材料进行有效分析,尽可能采用相互一致的原材料进行齿轮零件加工,在保证齿轮零件加工质量的同时,减少齿轮零件在热处理过程中出现变形现象的可能。第二,一般来说,在进行齿轮加工处理时经常采用正火处理模式,因此,在这种条件下还需要对正火组织的均匀性、正火硬度和冷却方式等方面实施有效分析,尽可能保证正火组织的合理性,避免在齿轮零件热处理的过程中出现问题,有效抑制齿轮零件在热处理的过程中出现变形现象。 预热处理:齿坯锻造后的预备热处理非常重要,一方面可以消除锻造应力,否则切齿时应力重新分布,将引起附加变形;另一方面预备热处理可以减轻甚至消除锻造后的不良组织,并使之均匀细化。比如采用均匀化退火加等温正火工艺处理,能够有效改善材料的带状组织。 模压淬火:对于后桥从动锥齿轮及薄壁齿套,尽量采用压床淬火,这是减小此类零件变形非常有效的手段。 3热处理时的参数 在对齿轮零件热处理过程中变形现象进行深入分析的过程中,了解到齿轮零件出现变形现象的根本原因在于零件热处理过程中温度梯度不合理,这种温度梯度主要由齿轮加热和淬火过程中冷热不均匀造成的。而且在进行齿轮材料热处理的过程中还会产生一些列特定效

减少热处理变形的方法

热处理变形会使工件前期加工获得的精度受到严重损失,这些损失有时甚至通过复杂、先进的修形技术(磨齿、校直等)也难以恢复。这将直接影响工件的精度、强度、运转时的噪音、振动、传输功率损失、和使用寿命等。这样即使我们拥有世界上最先进的机床、磨床,也很难加工出高精度、高附加值的产品来。 为了帮助本国企业减少和控制热处理变形提高市场竞争力,美国联邦政府甚至为此专门设立了100亿美金的专题科研支持基金[1]。减少和控制热处理变形的意义由此可见一斑。 1 热处理变形产生的原因 减少和控制工件的热处理变形是材料和热处理工作者最为关注的难题,迄今为止人们还难于提出一个定量化、完整的可以预示工件热处理畸变的数学模型。 学者们普遍认为,工件热处理变形的影响因素涉及到工件的设计、原材料以及加工整个过程中的诸多环节。 笔者在多年的热处理生产和科研中,先后参与了多次国内外学术交流,实际接触了很多国内外最新资料和技术,并先后在热处理变形控制方面进行了诸多实践。笔者认为从其它方面综合考虑固然重要,但影响热处理变形最主要的矛盾还是热处理工艺温度的合理控制。 工件在900℃下的强度很低,与铅的室温强度相当;虽然热处理设备愈来愈先进,但工件在加热、冷却时各部位的温度变化也很难完全一致;工件在加热、冷却时各部位温度变化的不同时性,会引起工件热(膨胀)应力和组织(转变时体积产生变化)应力的变化。当热应力、组织应力或两者之合,大于该瞬间温度下工件某部位的塑性抗力时,就会在这一部位发生不可逆的变形——热处理变形。 a) 如果工艺温度降低,工件的高温强度损失减少,塑性抗力增强。这样工件的抗应力变形、抗高温蠕变(工件因自重或受压而产生变形,大件、薄壁件更显著)的综合能力就会增强,变形就会减少。 b) 如果工艺温度降低,工件加热、冷却的温度时间减少,各部位温度不一致性也会减少,导致的热应力和组织应力也相对减少,这样变形就会减少。 c) 热处理工艺时间缩短,工件的高温蠕变时间减少,变形也会减少。 3 降低热处理温度的方法 降低工艺温度、提高渗碳或碳氮共渗速度,几十年来一直是国内外热处理界人士孜孜以求的理想目标,但由于基础技术条件的限制和传统热处理理论的束缚,多年来大家一直很难突破。 目前一种新的渗碳技术已经被法士特齿轮、株洲齿轮、洛轴、瓦轴、一汽等国内多家大型龙头企业采用。这种技术可以在工艺温度降低40℃以上条件下实

土的渗透变形判别

通过查询资料可画出泵房基底图层的级配曲线为: 土的不均匀系数计算: 10 60d d C u = 式中:u C —土的不均匀系数; 60d —小于该粒径的含量占总土重60%的颗粒粒径(mm ),0.033; 10d —小于该粒径的含量占总土重10%的颗粒粒径(mm ),0.005。 经计算,u C =6.6。 细颗粒含量的确定,依据《GB 50487-2008 水利水电工程地质勘察规范》附录G 土的渗透变形判别: 级配不连续的土:颗粒大小分布曲线上至少有一个以上粒组的颗粒含量小于或等于3%的土,称为级配不连续的土。以上述粒组在颗粒大小分布曲线上形成的平缓段的最大粒径和最小粒径的平均值或最小粒径最为粗、细颗粒的区分粒径d ,相应于该颗粒含量的细颗粒含量P 。经过资料显示,该土层有三个粒组的颗粒含量小于3%,故该土层为级配不连续土。颗粒大小分布曲线的平缓段为0.25—2段上,取最小值0.25为粗细粒的区分粒径,该粒径对应的细颗粒含量P 为96.77%。 对于不均匀系数大于5,P ≥35%的土为流土。 流土的临界水力坡降计算公式为: )1)(1(n G J s cr --=

式中:cr J —土的临界水力坡降; s G —土粒的比重,计算结果得2.68,过程见下文; n —土的孔隙率,0.433。 经计算得cr J =0.953。 土粒比重s G 的计算过程为: 干重度w d +=1γ γ 式中:γ—天然重度,18.883/m kN ; w —含水量,26.82%。 经计算得89.14=d γ3/m kN 。 土粒比重s G =w d e γγ)1(+ 式中:e —孔隙比,0.764; w γ—水的重度,9.813/m kN 。 经计算得,s G =2.68。 无粘性土的允许比降的确定: 以土的临界水力比降除以1.5-2.0的安全系数,计算得该土层的允许比降为0.48-0.64,满足u C ≥5,流土型允许水力比降0.50-0.80。

热处理变形问题的解决办法

热处理变形问题的解决办法 本文基于热处理变形的机理及其影响因素,浅谈热处理变形的预防控制及后期的机加工补救方法。 一,导致热处理变形的因素 1,碳含量及其对热处理变化量的影响 高碳钢屈服强度的升高,其变形量要小于中碳钢。对碳素钢来说,在大多数情况下,以T7A钢的变形量为最小。当碳的质量分数大于0.7%时,多趋向于缩小;但碳的质量分数小于0.7%时,内径、外径都趋向于膨胀。 碳素钢本身屈服强度相对较低,因而带有内孔(或型腔)类的碳素钢件,变形较大,内孔(或型腔)趋于胀大。合金钢由于强度较高,Ms点较低,残余奥氏体量较多,故淬火变形较小,并主要表现为热应力型的变形,其钢件内孔(或型腔)趋于缩小。因此,在与中碳钢同样条件下淬火时,高碳钢和高合金钢工件往往以内孔收缩为主。 2,合金元素对热处理变形的影响 合金元素对工件热处理变形的影响主要反映在对钢的Ms点和淬透性的影响上。大多数合金元素,例如,锰、铬、硅、镍、钼、硼等,使钢的Ms点下降,残余奥氏体量增多,减小了钢淬火时的比体积变化和组织应力,因此,减小了工件的淬火变形。合金元素显著提高钢的淬透性,从而增大了钢的体积变形和组织应力,导致工件热处理变形倾向的增大。此外,由于合金元素提高钢的淬透性,使临界淬火冷却速度降低,实际生产中,可以采用缓和的淬火介质淬火,从而降低了热应力,减小了工件的热处理变形。硅对Ms点的影响不大,只对试样变形起缩小作用;钨和钒对淬透性和Ms点影响也不大,对工件热处理变形影响较小。故工业上所谓微变形钢,均含有较多量的硅、钨、钒等合金元素。 3,原始组织和应力状态对热处理变形的影响 工件淬火前的原始组织,例如,碳化物的形态、大小、数量及分布,合金元素的偏析,锻造和轧制形成的纤维方向都对工件的热处理变形有一定影响。球状珠光体比片状珠光体比体积大,强度高,所以经过预先球化处理的工件淬火变形相对要小。对于一些高碳合金工具钢,例如,9Mn2V、CrWMn和GCr15钢的球化等级对其热处理变形开裂和淬火后变形的校正有很大影响,通常以2.5-5级球化组织为宜。调质处理不仅使工件变形量的绝对值减小,并使工件的淬火变形更有规律,从而有利于对变形的控制。 条状碳化物分布对工件的热处理变形有很大影响。淬火后平行于碳化物条带方向工件膨胀,与碳化物条带相垂直的方向则收缩,碳化物颗检愈粗大,条带方向的膨胀愈大。对于Cr12类型钢和高速钢等莱氏体钢来说,碳化物的形态和分布对淬火变形的影响尤为显著。 总之,工件的原始组织愈均匀,热处理变形愈小,变形愈有规律,愈易于控制。

相关文档
相关文档 最新文档