文档库 最新最全的文档下载
当前位置:文档库 › 单片机控制的开关电源

单片机控制的开关电源

单片机控制的开关电源
单片机控制的开关电源

广西科技大学

毕业设计(论文)说明书课题名称基于单片机控制的开关电源的设计

系别职业技术教育学院

专业电子信息工程

班级电子 Z091

学号 200802203044

姓名石瑜琦

指导教师刘胜永

2013年 5月 10 日

摘要

开关电源是利用现代电子电力技术控制功率开关管(MOSFET;三极管)的导通和关断的时间比来稳定输出电压的一种新型稳压电源。它是在电子、计算机、通信、电气、航空航天、军事以及家电等领域应用非常广泛的一种电力电子装置。具有电能转换效率高、体积小、重量轻、控制精度高和快速性好等优点。

本次设计的主要目的是实现一个单片机控制开关电源,开关电源在日常生活中应用非常广泛,如今是数字化时代,用单片机实现电子产品十分方便,所以在这次设计中使用了单片机实现。在这次设计文档中,详细阐述了开关电源与线性电源的比较,方案论证,总体结构设计,通过键盘预置期望输出电压值,模/数转换器对输出电压进行采样,由软件控制单片机输出相应的脉冲宽度,对开关电源进行脉宽调制,输出预期的电压。并采用PID算法控制输出电压稳定,构成可输出0v到12v的可调电压,并显示实时电压和预置值。

关键字:开关电源半导体 PID算法闭环控制数控

Abstrat

Switching power supply is to use the power of modern electronic technology to control power switch (MOSFET; transistor) on-and off time than to stabilize the output voltage of a new power supply.It is in electronics, computers, communications, electrical, aerospace, military and home appliances, is widely used as a power electronic devices.With high power conversion efficiency, small size, light weight, high control accuracy and fast and good.

The design of the main aim is to realize a single-chip microcomputer control switch power supply, switching power supply in daily life are widely used in digital times, is microcontroller is used electronic products, very convenient, so in this design USES a microcontroller. In this design documents, this paper expounds the switch power compared with linear power supply, scheme comparison, general structure design, through the keyboard expected output voltage values, preset d/a converter for output voltage by sampling, the corresponding software control microcontroller output pulse width, switch power for pulse width modulation, the voltage output expected. which constitutes the output 0v to 12v adjustable voltage, and display real-time voltage and the preset value. Key word: switch power semiconductor PID algorithm closed-loop control CNC

目录

绪论 (1)

1 概述 (2)

1.1 课题研究环境背景 (2)

1.1.1 绿色节能型开关电源 (2)

1.1.2 智能化数字电源 (2)

1.1.3 可编程开关电源 (2)

1.2 开关电源技术的发展和环境现状 (3)

1.2.1 线性电源和开关电源 (3)

1.2.2 电源技术的发展方向 (4)

1.2.3 开关电源的市场前景和研究现状 (4)

1.3 本文研究的主要内容 (5)

2 系统方案设计 (6)

2.1 开关电源工作原理 (6)

2.2 开关电源与线性电源的比较 (6)

2.2.1线性电源的缺点 (6)

2.2.2开关电源的优点 (7)

2.3 系统方案论证 (7)

2.3.1方案1 (8)

2.3.2方案2 (8)

2.3.3 方案3 (8)

2.3.4方案分析 (8)

2.3.5总体结构设计 (9)

2.4系统难点分析 (10)

2.4.1如何提高电源工作频率 (10)

2.4.2储能电感的绕制 (11)

2.4.3标度转换技术 (11)

2.5 开关变换器结构分析与选择 (12)

2.5.1降压变换电路分析 (12)

2.5.2升压型变换电路 (14)

2.5.3Buck-Boost型变换器 (14)

2.6 开关电路器件参数选择 (15)

2.6.1功率开关管的选择 (15)

2.6.2 滤波电容的选择 (16)

2.6.3储能电感的选择 (16)

2.6.4续流二极管的选择 (17)

3 硬件电路设计 (18)

3.1 电源主电路设计 (18)

3.1.1整流滤波电路 (18)

3.1.2开关变换电路 (18)

3.1.3保护电路 (19)

3.2 控制电路设计 (20)

3.2.1反馈电路设计 (21)

3.2.2显示电路设计 (21)

3.2.3单片机与键盘接口电路设计 (22)

4 软件设计 (24)

4.1 总体编程思想 (24)

4.2键盘防抖动子程序 (24)

4.3显示子程序 (25)

4.4采样子程序 (26)

4.5 中断处理程序设计 (27)

4.6 PID控制算法 (28)

5 系统调试 (30)

5.1 硬件模块调试 (30)

5.1.1整流滤波电路的调试 (30)

5.1.2 AD转换的调试 (30)

5.1.3脉冲输出电路的调试 (30)

5.1.4功率开关管的调试 (30)

5.2 电源性能指标的测试 (31)

5.2.1开关电源的技术指标 (31)

5.2.2输出电压的测试 (32)

5.2.3最大输出电流的测试 (33)

5.2.4过流保护的测试 (33)

5.2.5电压调整率的测试 (34)

5.2.6纹波电压的测试 (34)

6 结论 (35)

致谢 (36)

参考文献 (37)

附录(子程序和电路图)........................................ .38

绪论

开关电源是利用现代电子电力技术控制功率开关管(MOSFET;三极管)的导通和关断的时间比来稳定输出电压的一种新型稳压电源。它是在电子、计算机、通信、电气、航空航天、军事以及家电等领域应用非常广泛的一种电力电子装置。具有电能转换效率高、体积小、重量轻、控制精度高和快速性好等优点。

本次设计中研究的单片机控制开关电源,可以通过键盘预置期望输出电压值,模/数转换器对输出电压进行采样,由软件控制单片机输出相应的脉冲宽度,对开关电源进行脉宽调制,输出预期的电压。并采用PID算法控制输出电压稳定,构成可输出0v到15v的可调电压,并显示实时电压和预置值,通过键盘可随时修改PID参数以优化控制效果。

单片机控制的开关电源具有设计弹性好的优点,可以按照设计者的思想灵活的工作。目前电子设备的日益小型化需要供电电源的小型化,这样制作小型化电源是未来电源制作的一个趋势,传统开关电源线路一般很复杂体积也较大,如果使用的单片机作为控制核心必将可以大大简化电源的结构,制作更加小的电源将成为可能,并且使用单片机可以扩展许多功能,如显示,实时控制调整电压,可维护性强,由于目前国内有专门的PWM输出的单片机价格昂贵,普通的单片机I/O口模拟的脉宽频率较低,速度较慢,远远达不到现代电源要求的工作频率,所以目前单片机控制的电源使用并不广泛,但是单片机在智能化以及可实现的用户友好界面,扩展性强等等方面的优势使其成为未来电源重要的发展方向。因此,我们研究单片机控制的开关电源,非常有现实意义。随着半导体技术和微电子技术的高速发展,集成度高、功能强大的大规模集成电路的不断出现,使得电子设备的体积和重量不断下降,这就要求有效率更高、体积更小、重量更轻的开关电源,使之能满足电子设备的日益小型化的需要。这是未来开关电源设计所应考虑的第一个问题。

开关电源的效率是与开关管的变换速度成正比的,要进一步提高开关电源的效率,就要提高电源的工作频率。但频率提高后,对整个电路中的元器件又有了新的要求。进一步研制生产出适合于高频工作的开关管、高频电容、开关变压器、储能电感等元器件是开关电源设计所面临的另一个问题。

在开关电源中,由于功率晶体管工作在开关状态,当开关速度提高后,会受到电路中分布电感、电容成分或二极管中储存的电荷的影响而产生较大的浪涌和噪声,其交变电压和电流会通过电路中的元器件产生较强的尖峰干扰和谐波干扰,这些尖峰电压或电流可能会损坏电路的器件,同时污染市电电网,影响邻近的电子仪器与设备的在正常工作。虽然也可以采取一些抑制干扰的措施,在一定程度上降低这些干扰的影响,但目前阶段的精密电子仪器中,仍难以使用开关电源。因此,克服开关电源产生的各种噪声干扰,是我们要努力解决的第三个问题。

1 概述

1.1 课题环境背景

随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。

开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。

推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在安防监控,节约能源、节约资源及保护环境方面都具有重要的意义。

开关电源第一次出现在1955年,Royer电路。实用化在1966年前后,电路种类很多,直到10年前,开关电源才被分为几个基本拓扑:

1、BUCK降压型:

象单管正激、双管正激、全桥、LLC电路都是BUCK的变形;

2、BOOST 升压型:

象PFC用得最多,

3、BUCK-BOOST型:

即可降压,也可以升压,反激电路就是BUCK-BOOST的一种理想版本;

4、CUK电路:

这是美国CUK先生在30年前的发明,实现零纹波输出的电源,但一直未能成为主流。

1.1.1绿色节能型开关电源

早期的开关电源因为技术不够成熟,待机功耗大且效率低。例如,早期的36W电源适配器的待机功耗为2W左右,而效率仅为78%。如何降低开关电源的的功耗和提高开关电源的效率是全球能源行业共同关注的问题。随着科技的发展以及单片机的出现,使得设计出一个绿色节能的开关电源已经算不上是难事。尤其在06年之后美国推出了“能源之星”计划后,对开关电源的设计以及制造业产生了推波助澜的作用。

1.1.2 智能化数字电源

进入21世纪后,关电源正朝着智能化、数字化的方向发展。最近刚问世的智能数字电源系统以其优良的特性和完备的监控功能,正引起人们的关注。它是以数字信号处理器(DSP)或微控制器(MCU)为核心,将数字电源驱动器及PWM控制器作为控制对象而

构成的智能化开关电源系统。数字电源提供了智能化的适应性与灵活性,具备直接监控、处理并适应系统条件的能力,能满足任何复杂的电源要求。此外,数字电源还可通过远程诊断来确保系统长期工作的可靠性,包括故障管理、过电流保护以及避免停机等。

1.1.3 可编程开关电源

可调式开关电源都是通过手动调节电阻值来改变稳压器输出电压的,不仅调节精度低,而且使用不够方便,数字电位器(Digital Potentiometer)亦称数控电阻器(Digitally Controlled Potentiometer),可简称为DCP。利用数字电位器代替可调电阻,可构成由计算机控制的可编程开关电源。

传统电源存在不足的地方,例如,传统电源效率不高,线性电源由于功率管是工作在线性放大状态,功率管的电流和输出电流是成比例的,因此当输出电流越大时,功耗就越大。通常,线性电源效率只有45%到50%左右,因此提高电源效率是未来电源设计,应着重解决的问题,而开关电源能够很好的解决这个问题,开关电源的功率开关管是工作在开关状态的,也就是,只是在开关管导通时,管子才会产生损耗,因此开关电源的效率比线性电源要高得多,通常可以达到80%以上,本设计选择开关电源作为研究对象,利用其输出电压和输入电压之间占空比的关系,假定输入基本稳定,利用单片机控制占空比,就可以控制输出电压,通过A/D转换,采样输出电压,使用LCD显示,通过键盘预置电压,实现可调开关电源的制作。

1.2 电源技术的发展与方向

1.2.1 线性电源和开关电源

线性稳定电源,其特点是:它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出,稳定性高,纹波小,可靠性高,易做成多路、输出连续可调的成品。线性电源的主要问题在于:输出精度低、效率低、散热问题大以及很难在一个通用的输入电压范围内工作,但最主要的缺陷还是在体积和重量上。通过输入调整器可以使输出精度增加,但这更增加功率消耗,并使效率更低。线性电源要达到50%的效率就不容易了,这些白白消耗掉的功率还带来散热问题。如果要使线性电源在一个通用输入电压范围(85V—265VAC)工作,会导致线性电源的效率更低。

开关电源就是开关型直流稳压电源,它的电路形式要有单端反激式、单端正激式、半桥式、推挽式和全桥式。它和线性电源的根本区别在于它的变压器不工作在工频上,而是工作在几十千赫兹到几兆赫兹频率上。功率开关管工作在饱和区截止区,即工作在开关状态,开关电源因此而得名。开关电源的优点是体积小,重量轻,稳定可靠。多年来,由于技术上的障碍(高压,大功率),开关电源集成电路在集成化上一直因一种电流模式PWM开关电源控制器的设计得不到很大的进步。上世纪80年代,提出了电源制造中电力电子集成概念,明确了集成化是电力电子技术未来发展的方向,是解决电力电子技术发

展面临障碍的最有希望的出路。电源集成电路逐步成为功率半导体器件中的主导器件,把电源技术推向了电源管理的新时代。电源管理集成电路分成电压调整器和接口电路两方面。正是因为这么多的集成电路(IC)进入电源领域,人们才更多地以电源管理来称呼现阶段的电源技术。

1.2.2 电源技术的发展方向

从日常生活到最尖端的科学都离不开电源技术的参与和支持,而电源技术和产业对提高一个国家劳动生产率的水平,即提高一个国家单位能耗的产出水平,具有举足轻重的作用。

高频化使开关电源小型化,并使开关电源更进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各在开关电源制造商都致力同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对联高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。

模块化是开关电源发展的总体趋势,可以用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化,其噪声也必将随着增大,而用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,使得多项技术得以实用化

1.2.3 开关电源的市场前景和研究现状

线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉动直流电后经滤波得到带有微小波纹电压的直流电。要达到高精度的直流电压,必须经过稳压电路进行稳压。应用于科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等领域。

开关电源(Switching power supply)是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控

制IC和MOSFET构成。应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通信设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通信设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了开关电源的发展,产品不断向着轻、小、薄、低噪声、高可靠的方向发展。

开关电源是电子电源的主要大类产品,由于其小型化、重量轻、功率密度/转换效率高、输入电压范围广、热消耗较少等众多种优点,并得益于电子产品轻薄短小的需求趋势,其发展迅速,迅速取代线性电源普及于各种电子产品领域。根据中国电源学会收集整理的数据,2008年全国开关电源(主要包含消费类开关电源、工业类开关电源、通信电源、PC电源)产值达到855亿元,2009年达931亿元,增长8.8%;2010年达到1027亿元,增长10.3%。按开关电源应用领域细分,占据全行业产出份额第一的是工业类开关电源,2010年达到全行业产值的比重为56%,居第二位的是消费类开关电源,占32%,通信开关电源占6%,个人电脑开关电源占3%。

1.3 本文研究主要内容

(1)设计、制作开关电源;

(2)使用单片机构成嵌入式控制系统,通过键盘预置输入电压,可显示预置电压和输出电压;

(3)开关电源的设计方法;

(4)单片机软件编程方法;

(5)PID控制原理;

2 系统方案设计

2.1 开关电源工作原理

开关电源是指调整管工作在开关方式,即导通和截止状态的稳压电源,缩写为SPS (Switching Power Supply)。开关电源的核心部分是一个直流变换器。利用直流变换器可以把一种直流电压变成极性、数值不同的多种直流电压。

图2.1所示电路的工作过程为:假设基准电压为5v,由于电网波动导致输入电压减小,那么输出电压也将会减少,此时,所采样的电压将减小,假设为4.9v,误差为0.1v,经过比较放大后,脉冲调制电路根据这个误差,提高占空比使输出电压增大,同理,当由于电网波动导致输出电压增大时,脉冲调制电路降低占空比使输出电压减小,以此来控制输出电压的稳定。

输入整流

滤波

电路

开关管

89C52

滤波电路

ADC0804采样电路

输出图2.1开关电源原理框图

按电源电路中功率管的工作方式划分,电源可以分为开关电源与线性电源两大类。线性电源是发展较早的一种电源,其功率管工作在线性放大区。

2.2 开关电源与线性电源的比较

2.2.1线性电源的缺点

(1)功耗大,效率低,效率一般只有35%-45%;(2)体积大、重量大,不能小型化;(3)必须有较大容量的滤波电容。

造成这些缺点的原因是:(1)线性电源中功率晶体管V在整个工作过程中,一直工作在晶体管特征曲线的线性放大区。功率晶体管本身的功耗与输出电流成正比。这样功率晶体管的功耗就会随电源的输出功率的增加而增大。为了保证功率晶体管能正常工作,除选用功率大的管子外,还必须给管子加上较大的散热片。(2)线性电源使用了50赫兹的工频变压器,他的效率只有80%-90%。这样不但增加了电源的体积和重量,而且

也大大降低了电源的效率,就必须增大滤波电容的容量。

2.2.2开关电源的优点

(1)功耗小,效率高。图2.1中,开关管V在脉冲信号的控制下,交替工作在导通-截止和截止-导通的开关状态,转换速度快,频率一般在50到200千赫兹。这就使得功率开关管的损耗较小,电源的效率可以大幅度提高,其效率可以达到80%以上。

(2)体积小,重量轻。由于没有采用大型的工频变压器,并且在开关管上的耗散功率大幅度降低后,又省去较大的散热片,因此开关电源的体积和重量都可以得到减小。(3)稳压范围宽。开关电源的输出电压是由控制信号的占空比或者激励信号的频率来调节的,输入电压的变化可以通过变频或者调宽来进行补偿。在工频电网电压有较大变化或负载有较大变化时,它仍能保证有较稳定的输出电压,所以稳压范围宽、稳压效果好。

(4)滤波的效率大为提高,使滤波电容的容量和体积大为减小。例如,若开关电源的工作频率为25千赫兹,是线性稳压电源频率500倍(25000/50赫兹),这使滤波电容的容量可以相应的缩小500倍,这使滤波电路中元件的体积和重量得以减少,同时也节省了成本。

2.3 系统方案论证

开关电源具有较快的发展,从而产生了不同的设计思路。开关电源的一般结构框图如图2.1所示,本设计通过对不同的方案的对比得出了最佳方案的设计。

图2.1 开关电源的一般框图

单片机控制的开关电源,从对输出电压控制的角度分析,可以有几种可行的方案。

2.3.1方案1

主回路采用非隔离推挽式拓扑结构(如图2.2所示),只能获得低于输入电压的输出电压,且输出电压与输入电压不隔离,容易引起触电事故。

+

Vin

PWM

Vout

图2.2 非隔离式DC-DC结构

2.3.2方案2

主回路采用隔离推挽式拓扑结构(如图2.3所示),输入与输出电气不相连,通过开关变压器的磁偶合方式传递能量,适合实验室使用。本设计采用方案二。

+Vout

+

-

图2.3 隔离式DC-DC结构

2.3.3 方案3

方案3:单片机扩展A/D转换器,不断检测输出端的电压,并根据电源输出电压与键盘预置电压的差值,输出一个PWM脉冲,直接控制电源的工作。

2.3.4方案分析

方案1分析:采用脉冲频率调制FPM(Pulse Frequency Modulation)的控制方式,其特点是固定脉冲宽度,利用改变开关频率的方法来调节占空比。输出电压的调节范围大,但要求滤波电路必须在宽频带下工作。

方案2分析:采用脉冲宽度调制PWM(Pulse Wildth Modulation)的控制方式,其特征是固定开关的频率,通过改变脉冲宽度改变占空比控制型效率高并具有良好的输出

电压和噪声。基于上述考滤及题目的具体要求,本设计选用PWM调制方式。

方案3分析:这个方案,单片机不仅加入了反馈控制系统,而且作为控制核心,单片机得以充分利用,而且省去了D/A芯片,成本大大降低,是真正的单片机控制。

综上所述,本设计选择第三种控制方案,单片机使用89C52,A/D芯片采用ADC0809,采用LCD显示采样值,键盘预置电压,设计任务要求输出可调,所以设定值需要从键盘输入,实现输入不同的电压,输出便可以输出不同的电压。

2.3.5总体结构设计

系统工作原理图如图2.2所示:市电经过整流滤波后,一路电压经过7805稳压得到一个+5v电压,该电压作为单片机的工作电源,另外一路电压直接作为开关变换电路的输入电压。单片机根据键盘输入值和取样值之间的差值,修改脉冲占空比,并输出控制功率开关管,以便得到期望的输出电压值,并根据模/数转换器所采样的电压和键盘输入比较,根据差值调用PID算法再次修改脉宽使输出电压稳定。开关变换器采用磁铁心电感作为储能元件,在功率开关管导通时,电感储能,在开关管截止时,电感释放能量给负载。单片机定时采样输出端的电压,通过ADC0809送进单片机进行处理,单片机根据处理结果输出更新的控制信号,经过光电耦合器滤除干扰后输出控制信号控制功率开关管工作状态。在本系统中,用户可以根据需要从键盘输入期望的电压,单片机会根据键盘输入与采样电压的差值,更新脉宽,使电源输出相应电压,更新脉宽后,单片机会马上调用PID控制算法,对输出电压进行稳定控制。

闭环时,电源自动进行脉宽调制,当系统读取到键盘预置的电压变化时,先将键盘输入值和从输出端的取样值相比较,假设当前键盘输入为10v,从输出端取样的值为6v,差值为4v,则系统会根据这个差值,更新脉宽使得输出端电压上升为10v;同样,当键盘输入为6v,输出端取样值为10v,差值为-4v,系统会根据算法,将占空比减小以使输出电压变小,这就是系统脉宽调制过程。

同时,电源可以自动稳压,假定在某一正常状态下,输出为V0,反馈电压问Vf (Vf=V0),用户设定电压为Vs,当V0=Vs时,偏差为0,单片机不进行脉宽更新,当电网波动导致输出增加时,即V0>Vs时,单片机采样的电压也增加,单片机根据偏差修改占空比使导通时间变小,从而使电压下降,同样当电网波动使输出电压下降时,即V0

图2.2 单片机控制开关电源系统框图

2.4系统难点分析

2.4.1如何提高电源工作频率

困难分析:

现代开关电源的工作频率已经可以达到300千赫兹,本次设计虽然采用了24M 赫兹的晶振频率,可以通过单片机定时输出40千赫兹的频率,但是开关电源要求的是单片机的处理速度要足够快,51系列的单片机,即使使用24M 的晶振,相对于开关电源需要很快开关工作频率,它的速度仍是比较慢的,而且这里单片机还需要做采样电压,扫描键盘,PID 控制等等很多的工作,那么单片机就更加慢了,就算忽略这方面的影响,单片机可以通过定时器中断产生40千赫兹的频率,但是定时器中断产生的脉冲的有效电平,即占空比是不能够改变的,只能是50%,要设计输出可调的开关电源,显然行不通。 解决办法:

现在的问题在于单片机输出的脉冲占空比无法改变,硬件更改,只能是更换处理速度高的单片机,但是成本又增加了,而且还不一定比使用专门的PWM 控制芯片的控制性能可靠,所以在此选择在软件上解决,具体思路为:首先定义两个变量,一个周期T ,一个占空比D ,给它们赋值,T 大于D ,先让单片机I/O 输出高电平,让T ,D 同时计数,当D 计算到预计值,I/O 口为低电平,然后低电平一直延续到T 值时,I/O 口输出高电平。改变D ,T 的值可以改变脉冲频率,改变D 值可以控制占空比。算法需要使用定时器,根据电源的工作频率设定定时时间。 整流滤波电路 开关变换电路 整流滤波电路

单片机控制电路 辅助电源 LCD 显示 ADC0809取样

电路

键盘预置

算法为:

D=100,T=1000;//定义变量,并赋值,占空比为100/1000=10%

VOID tim0 ()//定时中断

{P1.0=1;//P1.0输出高电平

D++;//同时计数

T++;

If (D==100){P1.0=0;}//D 到预计值,输出低电平

If (T==1000){P1.0=1;//T 到预计值,输出高电平

D=0;T=0;//清零

}

只要单片机时钟频率足够高,可以输出任意的频率。

2.4.2储能电感的绕制

使用储能电感目的在于,在功率开关管截止时,为负载存储能量,电气上的作用是把开关方波脉冲积分成直流电压。本次设计储能电感的磁体要求为工作频率为100千赫兹,直流电阻小于0.3欧姆,饱和电流大于2A 。需要自己绕制,所需最小电感值可以由公式计算

min

4.1)max (min Iout Ton Vout Vin L -=

式中Ton 为估计最大输入电压下,开关管导通时间,根据设计前辈们的经验,估计为开关周期的30%是比较合适的。 代入数据求得uH L 8.76m in =,取uH L 100=

电感的设计方法为AeAw Ap = 其中Ae 为加入气隙的高磁导率材料铁心电感的截面积,Aw 为电感窗口截面积,NBm

L Ae Im =,Kcj NI Aw =,其中I 为电感电流有效值,j 为 导线的电流密度,Kc 为绕组填充因数,(0<1?Kc )。B m K c j I L Ap Im =

?,Bm 为铁心中的磁通密度。计算出Ap 值,对照铁心产品手册,选择大于Ap 值的产品,即可查得对应的铁心截面积,由式BmAe

L N Im =确定绕组匝数。 2.4.3标度转换技术

本次设计使用了ADC0809,这种芯片只能采样0到5V 的电压,所采集回来的电压对

应的是0到255的数字量,而用户从键盘输入的是电压值,为了进行比较,需要经过标度转换,转换为数字量,以得到同样的单位量纲。

控制系统检测的被控对象的参数有着不同的量纲和数值。所有这些参数都需要通过变送器转换为电信号,再通过A/D转换器或者V/F变换器转换为计算机所能处理的数字量。由于不同参数的变化范围和量纲是不同的,因此同样的数字量表示的模拟量可能是不同的。如同样是数字量255,可能表示的是5V的直流电压,也可以表示其他的量;即使是相同的量纲,如果变化范围不同,相同的数字量表示的模拟量也是不同的,数字0所以控制系统在进行显示、打印、记录和报警等操作时,必须把这些数据转换成相应的不同量纲的物理量。这就是标度变换技术。

本次设计的标度转换为:

键盘输入为:0到12V;采样0到5V电压对应数字量为0到255

变换程序:

r=input*255/12;//input为键盘输入值,r为转换后的数字量

就是说使预置的0到12v的转换为0到255的数字量,这样单片机系统才能够进行正确的比较处理。

2.5 开关变换器结构分析与选择

开关电源的核心是高频开关变换电路和脉冲控制电路。高频变换电路把直流输入变换成高频脉冲输出。输出电压平均值)

Vo+

=?Vi,控制电路根据反馈电压

Ton

Ton

/(Toff

控制高频开关管的导通时间(Ton)与截止时间(Toff),达到控制输出电压目的。隔离电路采用高频变换器件和高频隔离变压器。开关电源的四中组态为:(1)Buck变换器;(2)Boost变换器;(3)Buck-Boost变换器;(4)CUK变换器。

2.5.1降压变换电路分析

这种开关型电源是直流供电,经过开关电路得到单方向方波,再经过滤波后又得到与输入电压不同的稳定的直流。它们的输出电压总是比输入电压低。

当开关管饱和导通时,电能储存在电感中,同时也流向负载。当开关元件被控制截止时,由于电感上的电流不能跳变,储存于电感中的能量继续供给负载,此时,续流二极管正向导通,构成闭合回路。电容起到平滑输出的作用。电路中开关管和负载电阻是串联的,所以也称它为串联开关电源。

D3

1N5817 Q1

vt1L1

100uH

C4470uf

电路的输入电压脉宽调制信号输入

输出电压

图2.4 Buck 变换器

当开关管导通时,电感上的电流处于最小值,此后电感电流开始上升,但电流仍低于负载电流Io ,于是电容仍向负载供电,因此输出电压下降。当电感电流上升到等于Io 时,电容停止向负载供电,此时输出电压达到最小值。随着电感电流的继续上升,电容开始充电,Vo 从最低值开始上升。当开关管截止时,电感上电流处于最大,此后电感上电流开始下降,但电流仍比Io 大,所以电容仍处于充电状态,输出电压Vo 继续上升。当电感电流下降到Io 时,电容停止充电,此时电容上电压达到最大值。随着电感电流的下降,电容开始放电,Vo 由最大值逐渐开始下降。假设开关管的导通时间为Ton ,截止时间为Toff ,并且开关管和电感为理想元件,则DVi Ui Toff Ton Ton Vo =+=*)/(,其中T Ton Toff Ton Ton D /)/(=+=为开关的脉冲占空比。若开关管一直处于导通状态,截止时间为零,则Vi Vo =;若开关管一直截止,导通时间为零,则0=Vo ,随着Ton 与Toff 的比例不同,输出电压Vo 为0—Vo 之间的各种值。

下面具体分析该电路的工作过程:开关管导通时,发射极上的电压为

Vces Vi Ve -= 2-1

Vces 为开关管饱和压降,Vi 为输入电压,那么电感电压VL 为dt

dIL L Vo Ve =-,IL 为电感电流,则在经历Ton 以后,开关管截止,此时电感电流最大,电流值为

L Ton Vo Ve IL /)(max -= 2-2 在这一瞬间,电感储能为: L Ton Vo Ve LI WL 2/)(2

1222-==,输入电压通过电感对电容充电,充电的电量为

L ton Vo Ve Ton IL Q 2/)(max **2

112-== 2-3 在此期间,输入给电路提供的能量为

L ton Vo Ve Ve Q Ve W 2/)(2*-*=*= 2-4

(4)式经过变换得:22)])()[(ton Ve Vo Ve Vo Ve W **---=/L 2Q Vo LIL *+=max 2

1即是电感中储存的磁能和电容储存的电能。可见,输入电能完全转换为电路的能量,效率很高,正是开关电源的优势所在。

当开关管截止后,电感电流不能突变,电感产生感应电势,使得续流二极管导通,电感通过电路向负载释放能量,设二极管正向导通压降为Vd ,根据电路知识,可知电感上的电压与输出电压、二极管压降之间有这样的关系:dt

dIL L Vo Vd =+-)( 电感电流将从最大值一直减少为0,电感所储存的磁能将转化为电源的电能,假设磁能完全转换为电能,那么可以通过下面的式子算出电感电流由最大值减为0的时间,

Vo L IL t *=max ton Vo

Vo Ve *-= 2-5 开关管截止期间电容的充电量为

22

22)(max 21max 212ton LVo

Vo Ve Vo L IL t IL Q *-=*=**= 2-6 续流二极管的作用是使电感电流在开关管截止时能连续变化,这样电感存储的能量才能够转化为电容中储存的电能。由此可见,如果要控制信号的每一个脉冲都能完全的工作,应有t ton T +>,也就是让电感在导通期间存储的能量,能在t 时间内,完全释放给电路。

根据能量守恒定理,电感中的磁能转化为电能,对电容再次充电,那么输入电能应等于导通时电容所充电能加上电感的磁能,即

=W VoIoT 2-7

代入(4)式得T

Q Vo Ve ton LT Vo Ve Vo Ve Io *=*-*=22 2-8 可见,当导通时间越大或者脉冲周期越小,输出电流越大,当需要提高电源输出功率时,可以提高开关管的工作频率。

2.5.2升压型变换电路

升压式开关电源的输出电压总是高于输入电压 Ui ,并且极性是相同的。当开关管饱和导通时,电感进行储能。当开关管截止,电感中的电能通过续流二极管供给负载,同时对电容C 充电。当负载电压下降时,电容再次放电,这时可获得高于输入的稳定电压。由于开关管和负载是并联的,也称它为并联开关电源。

2.5.3Buck-Boost 型变换器

极性变换式电源输出电压与输入电压极性是相反的,输出电压的绝对值还要高于输

入电压的绝对值,否则将和降压式开关电源混淆,由此可见,极性变换式开关电源是上述降压式和升压式电源的综合。当开关管导通时,输入电压加在电感上,产生电流,电感进行储能,二极管反向截止。晶体管截止时,电感上电流逐渐减小,感应电动势使二极管导通,给电容充电,电容上的电压与输入电压极性相反。当负载上的电压要跌落时,电容再次给负载放电,这时可使输出电压高于输入电压。

这4种开关电路有各自的特点,本次设计任务要求电源在3到12伏内可调,而输入电压为14.4V ,所以采用降压型开关变换电路,即Buck 变换器,通过调制输出占空比为0到90%的一系列脉冲,使电源在要求范围内可调。

2.6 开关电路器件参数选择

2.6.1功率开关管的选择

开关管是整个电源主要的工作器件,正确的选用,是电源成功制作的前提。

首先,开关管的截止时间不宜过长,假如截止时间过长,当开关管的上一个控制脉冲已经结束,而下一个控制脉冲已经到来时,会造成开关管还没有完全关断,马上就进入下一个导通周期,这样开关管几乎是一直在导通,开关完全失去控制,功耗和输出电压会迅速增加,造成电源的损坏。

其次,开关的导通时间也不宜过长。当开关频率较高时,开关管导通和截止的频率频繁,导通时间长,意味着开关管有更多的时间是在放大状态下工作(开关导通后是利用晶体管的放大作用而工作的),这样开关管的功耗就会迅速增加,电源的效率将大为下降。

本论文中电源工作频率为25千赫兹,根据设计前辈们的经验,功率开关管的导通时间不宜超过1.5us ,截止时间不宜超过1us 。

在开关管导通时,负载电流以及滤波电容的充电电流均通过开关管提供,因此,开关管的集电极电流必须大于输出的负载电流,集电极电流的计算如下:

电感电流的平均值等于负载电流Io ,则有Io IL IL =+2

min max ,流过开关管的电流平均值为Io D T

ton Io T ton IL IL I *=?=?+=2min max ,忽略开关管导通压降,有min max IL ton L

Vo Vi IL +-=,整理方程消去min IL 得到 toff L

Vo Io IL 2max += 2-9 流过开关管的最大电流应等于电感电流的最大值,则 toff L

Vo Io Icm 2+=,额定输出电流为A 1,算出集电极电流小于A 2

单片机控制开关电源

单片机控制开关电源 单片机控制开关电源,单从对电源输出的控制来说,可以有几种控制方式. 其一是单片机输出一个电压(经DA芯片或PWM方式),用作电源的基准电压.这种方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动.这种方式最简单. 其二是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作.这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法. 其三是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,输出PWM波,直接控制电源的工作.这种方式单片机介入电源工作最多. 第三种方式是最彻底的单片机控制开关电源,但对单片机的要求也最高.要求单片机运算速度快,而且能够输出足够高频率的PWM波.这样的单片机显然价格也高. DSP类单片机速度够高,但目前价格也很高,从成本考虑,占电源成本的比例太大,不宜采用.

廉价单片机中,AVR系列最快,具有PWM输出,可以考虑采用.但AVR单片机的工作频率仍不够高,只能是勉强使用.下面我们具体计算一下AVR单片机直接控制开关电源工作可以达到什么水平. AVR单片机中,时钟频率最高为16MHz.如果PWM分辨率为10位,那么PWM波的频率也就是开关电源的工作频率为16000000/1024=15625(Hz),开关电源工作在这个频率下显然不够(在音频范围内).那么取PWM分辨率为9位,这次开关电源的工作频率为16000000/512=32768(Hz),在音频范围外,可以用,但距离现代开关电源的工作频率还有一定距离. 不过必须注意,9位分辨率是说功率管导通-关断这个周期中,可以分成512份,单就导通而言,假定占空比为0.5,则只能分成256份.考虑到脉冲宽度与电源的输出并非线性关系,需要至少再打个对折,也就是说,电源输出最多只能控制到1/128,无论负载变化还是网电源电压变化,控制的程度只能到此为止. 还要注意,上面所述只有一个PWM波,是单端工作.如果要推挽工作(包括半桥),那就需要两个PWM波,上述控制精度还要减半,只能控制到约1/64.对要求不高的电源例如电池充电,可以满足使用要求,但对要求输出精度较高的电源,这就不够了.

开关电源浪涌吸收方法

开关电源的冲击电流控制方法 开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路。 由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

图3.通信系统的最大冲击电流限值(AC/DC电源) 图4.通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源) 欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。 冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。

2. AC/DC开关电源的冲击电流限制方法 2.1 串连电阻法 对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内。 图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。 图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。 2.2 热敏电阻法 在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。 用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压在电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

基于单片机控制的开关电源的设计

哈尔滨剑桥学院 毕业设计 论文题目:基于单片机控制的开关电源的设计 学生:孙中凯 指导教师:李德胜高级工程师 专业:电气工程及其自动化 班级: 12级电气2班 2016年5月

毕业设计(论文)审阅评语

毕业设计(论文)答辩评语及成绩

基于单片机控制的开关电源的设计 摘要 电源技术是一种应用功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术,随着科学技术的发展,电源技术又与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关。目前电源技术已逐步发展成为一门多学科互相渗透的综合性技术学科。他对现代通讯、电子仪器、计算机、工业自动化、电力工程、国防及某些高新技术提供高质量、高效率、高可靠的电源起着关键作用。 本文设计主要目的是实现一个单片机控制开关电源,所以在这次设计中使用了单片机实现。在这次设计文档中,详细阐述了开关电源与线性电源的比较,总体结构设计,通过键盘预置期望输出电压值,模/数转换器对输出电压进行采样,由软件控制单片机输出相应的脉冲宽度,对开关电源进行脉宽调制,输出预期的电压。并采用PID算法控制输出电压稳定,构成可输出12v到0v的可调节电压,并显示实时预置值与电压。 关键词:财开关电源;半导体;PID算法;闭环控制;数控

目录 摘要.................................................................................................................................................. I 1 绪论 (1) 1.1 课题环境背景 (2) 1.1.1绿色节能型开关电源 (2) 1.1.2 智能化数字电源 (1) 1.1.3 可编程开关电源 (1) 1.2 电源技术的发展与方向 (2) 1.2.1 线性电源和开关电源 (2) 1.2.2 电源技术的发展方向 (2) 1.2.3 开关电源的市场前景和研究现状 (3) 1.3 本文研究主要内容 (3) 2 系统方案设计 (4) 2.1 开关电源工作原理 (4) 2.2 开关电源与线性电源的比较 (4) 2.2.1 线性电源的缺点 (4) 2.2.2 开关电源的优点 (4) 2.3 系统方案论证 (5) 2.3.1 方案1 (5) 2.3.2 方案2 (5) 2.3.3 方案3 (6) 2.3.4 方案分析 (6) 2.3.5 总体结构设计 (6) 2.4 系统难点分析 (7) 2.4.1 如何提高电源工作频率 (7) 2.4.2 储能电感的绕制 (8) 2.4.3 标度转换技术 (9) 2.5 开关变换器结构分析与选择 (9) 2.5.1 降压变换电路分析 (9)

开关电源的数字控制实现方案

开关电源的数字控制实现方案 类别:电子综合阅读:5732 尽管业内不少人都认为,模拟和数字技术很快将争夺电源调节器件控制电路的主导权,但实际情况是,在反馈回路控制方面,这两种技术看起来正愉快地共存着。 的确,许多电源管理供应商都提供了不同的方案。一些数字控制最初的可编程优势现在甚至在采用模拟反馈回路的控制器和稳压器中也有了。当然,数字电源还是有一些吸引人之处。 本文主要讨论脉冲宽度调制(PWM)、脉冲密度调制(PDM)和脉冲频率调制(PFM)开关稳压器和控制器IC。其中一些集成了控制实际开关的一个或多个晶体管的驱动器,另一些则没有。还有一些甚至集成了开关FET,如果它们提供合适的负荷的话。因此,数字还是模拟的问题取决于稳压器的控制回路如何闭合。 图1显示了两种最常见的PWM开关拓朴布局的变化,降压和升压(buck/boost)转换器。在同步配置中,第二只晶体管将取代二极管。在某种意义上来讲,脉冲宽度调制的采用使得这些转换器“准数字化”,至少可与基于一个串联旁路元件的723型线性稳压器相比。事实上,PWM使得采用数字控制回路成为可能。不过,图1中的转换器缺少控制一个或几个开关占空比的电路,它可在模拟或数字域中实现。 不管采用模拟还是数字技术,都有两种方式实现反馈回路:电压模式和电流模式。简单起见,首先考虑它在模拟域中如何实现。 图1: 没有控制器的开关模式DC-DC电源十分简单。不论用于升压还是降压,其成功与否取决于设计者如何安排一些基本的元器件。 在电压模式拓朴中,参考电压减去输出电压样本就可得到一个与振荡器斜坡信号相比较的小误差信号(图2),当电路输出电压变化时,误差电压也产生变化,后者反过来改变比较器的门限值。反过来,这将使输出信号宽度发生变化。这些脉冲控制稳压器开关晶体管的导通时间。随着输出电压升高,脉冲宽度将变小。 图2: 电压模式反馈(本例中在模拟域)包含一个控制回路。 电流模式控制的一个优势在于其管理电感电流的能力。一个采用电流模式控制的稳压器具有一个嵌套在一个较慢的电压回路中的电流回路。该内回路感应开关晶体管的峰值电流,并通过一个脉冲一个脉冲地控制各晶体管的导通时间,使电流保持恒定。 与此同时,外回路感应直流输出电压,并向内回路提供一个控制电压。在该电路中,电感电流的斜率生成一个与误差信号相比较的斜坡。当输出电压下跌时,控制器就向负载提供更大的电流(图3)。 图3: 电流模式反馈采用了嵌套反馈回路。与电压模式不同,它需要计入电感上的电流。 在这些控制拓朴中,在回路的相移达到360°的任意频率处,控制回路的增益不能超过1。相移包括了将控制信号馈入反馈运放的倒相输入端所产生的固有180°相移、放大器和其它有源元件的附加延迟、以及由电容和电感(特别是输出滤波器的大电容)引入的延迟。 稳定回路要求对一定频率范围内的增益变化和相移进行补偿。传统上,采用模拟PWM 来稳定电源通常需要采用经验方法:你在一块与生产型电路板相同布局的实际电路板上,实

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

基于单片机控制的开关电源设计

基于单片机控制的开关电源设计 系部:电子与通信工程系 姓名:龚倩倩 专业班级:电信10D1 学号: 102222105 指导老师:邵雯 2012年9月21日

声明 本人所呈交的基于单片机控制的电源开关设计,是我在指导教师的指导和查阅相关著作下独立进行分析研究所取得的成果。除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名: 日期:

【摘要】 开关电源体积小、效率高,被誉为高效节能电源,现己成为稳压电源的主导产品。随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。 本文介绍了一款基于PWM技术的DC-DC开关稳压电源,用proteus仿真,输出纹波小,电压稳定可靠. [关键词]:开关电源,DC-DC,单片机,proteus [Abstract]: The small size of the switching power supply, high efficiency, known as energy-efficient power supply, has now become the leading products of the regulated power supply.With the wide application of switching power supplies in computers, communications, aerospace, instrumentation and household appliances, people growing their demand and higher power efficiency, size, weight, and reliabilityrequirements. Switching power supply for its high efficiency, small size, light weight advantages in many ways to gradually replace the inefficient, clunky, heavy linear power. This article describes a DC-DC switching power supply based on PWM technology, with proteus simulation output ripple voltage is stable and reliable. [Keywords]: switching power supplies, DC-DC, single-chip, proteus

(完整版)开关电源的用途

开关电源的用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域 开关电源的主要类型和分类 开关电源的主要类型 现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC 转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器 隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter)和半桥式(Half-Bridge Converter)四种。四管DC/DC转换器就是全桥DC/DC转换器(Full-Bridge Converter)。 非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种单管DC/DC 转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

用单片机控制LED流水灯方案(电路程序全部给出)开关电源方案制作

用单片机控制的LED流水灯设计<电路、程序全部给出)开关电源设计制作学习园地 »。您尚未登录注册 | 社区服务 | 勋章中心 | 帮助 | 首页 | 无图版 社区服务 银行 朋友圈 开关电源设计制作学习园地 -> 好好学习-天天向上 -> 用单片机控制的LED流水灯设计<电路、程序全部给出) XML RSS 2.0 WAP --> 本页主题: 用单片机控制的LED流水灯设计<电路、程序全部给出)加为IE收藏 | 收藏主题 | 上一主题 | 下一主题 pwmdy 级别: 电源-1级工程师 精华: 0 发帖: 212 威望: 126 点 金钱: 212 RMB 贡献值: 0 点 注册时间:2009-05-21 最后登录:2009-11-22 用单片机控制的LED流水灯设计<电路、程序全部给出) 1.引言 当今时代是一个新技术层出不穷的时代,在电子领域尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统,正以前所未见的速度被单片机智能控制系统所取代。单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。目前,一个学习与应用单片机的高潮正在工厂、学校及企事业单位大规模地兴起。学习单片机的最有效方法就是理论与实践并重,本文笔者用AT89C51单片机自制了一款简易的流水灯,重点介绍了其软件编程方法,以期给单片机初学者以启发,更快地成为单片机领域的优秀人才。 2.硬件组成 按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统及典型系统等。AT89C51单片机是美国ATMEL公司生产的低电压、高性能CMOS 8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个

开关电源控制模式的探讨

开关电源控制模式的探讨 随着科学技术的发展,开关电源数字化、模块化、高频化的实现,促进了开关电源控制技术的不断发展。文章主要对开关电源控制模式进行分析,结合开关电源发展的历程,探讨了开关电源数字化控制技术以及电流型控制模式,以供参考。 标签:开关电源;控制模式;电子技术 1 开关电源概述 开关电源是在现代电子电力技术的发展基础上,控制开关管的开通及关断时间比率,以稳定输出电压的一种特殊的电源。一般来说,开关电源由脉冲宽度调制控制IC、MOSFET组成。随着科学技术的发展,开关电源技术也不断进行改革和创新。开关电源效率能够高达85%,与普通线性电源相比,开关电源的利用效率提高了一倍。同时,开关电源采用了小体积的滤波元件及散热器,可靠性、安全性也较高。从开关电源的类别来看,可以分成AC/AC、DC/DC等类型,其中,DC/DC开关电源的变换器已经实现了模块化设计和发展,因而得到用户普遍认可。 从开关电源的产生和发展来看,自上个世纪六十年代以来,由于晶闸管控制模式的出现,大大促进了开关电源的发展。到七十年代初期,开关电源进入了长时期的瓶颈时期,开关电源的效率问题更加突出。直至七十年代后期,由于集成电技术的创新,催生了各种开关电源芯片的产生。当前,集成化电源已经广泛应用于航天、彩电、计算机等各个领域中,随着半导体技术、电子技术的快速发展,电子设备的总量和体积不断减小,导致电源体积与电子设备的体积不相匹配。因此,开关电源体积成为当前研究的重点。 从我国开关电源的研究情况来看,在上个世纪六十年代,我国已经成功研制出稳压电源。经过十年的发展,稳压电源已经成功应用于电视机和中小型计算机。到八十年代,我国已经成功研制出了0.5~5MHz谐振的软开关电源。从八十年代起,我国开关电源进入了大规模更新换代的时期,现代晶闸管稳压电源逐渐取代了传统铁磁稳压电源,对办公自动化产生了很大的影响。进入九十年代,我国成功研制了新型专用的开关电源,供特殊行业使用,如卫星及远程导弹系统所使用的开关电源。经历了约半个世纪的发展,我国开关电源技术研发已经取得了较大的成就,开关电源应用范围也逐渐扩展,但与国外开关电源技术相比,在使用方法和集成度方面,我国还存在很大的不足,还应该继续加强开关电源研究及应用。 2 开关电源数字控制技术分析 近年来,随着计算机技术及网络技术的快速发展,数字控制技术在社会生产生活中广泛应用。数字控制技术的产生,是由于控制领域的监控和计算任务的要

基于单片机控制的开关电源及其设计

2.基于单片机控制的开关电源的可选设计方案 由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种: ( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。这种方案仅仅是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。这种方式最简单。 ( 2) 单片机和开关电源专用PWM芯片相结合。此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。 ( 3) 单片机直接控制型。即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。这种方式单片机介入电源工作最多。 3.最优设计方案分析 三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。这种方案中, 仅仅是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。这种方案中单片机可以只是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。在这种方案中,对单片机的要求不是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机和许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型的开关电源普遍存在的问题———由于单片机输出的的PWM脉冲频率低, 导致精度低, 不能满足要求的问题。因此, 单片机和PWM芯片相结合, 是一种完全可行的方案。第三种方案: 是最彻底的单片机控制开关电源, 但对单片机的要求也高。要求单片机运算速度足够快, 且能输出足够高频率的PWM波。DSP 类单片机速度够快, 但价格也很高, 占电源总成本的比例太大, 不宜采用。廉价单片机中, AVR 系列最快, 具有PWM输出, 但AVR单片机的工作频率仍不够高, 只能是勉强

基于PID控制方式的8A开关电源Psim

基于PID控制方式的8A开关电源Psim 仿真研究 学院:电气与光电学院 专业:电气工程及其自动化 班级: 姓名: 学号: 时间:2016年04月04日

1、绪论 开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。例如,已知主电路的时间常数较大、响应速度相对缓慢,如果控制的响应速度也缓慢,使得整个系统对外界变量的响应变得很迟缓;相反如果加快控制器的响应速度,则又会使系统出现振荡。所以,开关调节系统设计要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。 常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。PD控制器可以提供超前的相位,对于提高系统的相位裕量、减少调节时间等十分有利,但不利于改善系统的控制精度;PI控制器能够保证系统的控制精度,但会引起相位滞后,是以牺牲系统的快速性为代价提高系统的稳定性;PID控制器兼有二者的优点,可以全面提高系统的控制性能,但实现与调试要复杂一些。本文中介绍基于PID控制器的Buck电路设计。 2、基于PID控制方式的Buck电路的综合设计 Buck变换器最常用的电力变换器,工程上常用的正激、半桥、全桥及推挽等均属于Buck族。现以Buck变换器为例,根据不同负载电流的要求,设计功率电路,并采用单电压环、电流-电压双环设计控制环路。 2.1设计指标 输入直流电压(V IN):10V; 输出电压(V O):5V; 输出电流(I I N):8A; 输出电压纹波(V rr):50mV; 基准电压(V ref):1.5V; 开关频率(f s):100kHz。 Buck变换器主电路如图1所示,其中Rc为电容的等效电阻ESR。

基于单片机控制的开关电源及其设计

2、基于单片机控制的开关电源的可选设计方案 由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种: ( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。这种方案仅仅就是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。这种方式最简单。 ( 2) 单片机与开关电源专用PWM芯片相结合。此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。 ( 3) 单片机直接控制型。即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。这种方式单片机介入电源工作最多。 3、最优设计方案分析 三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。这种方案中, 仅仅就是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。这种方案中单片机可以只就是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。在这种方案中,对单片机的要求不就是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机与许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型的开关电源普遍存在的问题———由于单片机输出的的PWM脉冲频率低, 导致精度低, 不能满足要求的问题。因此, 单片机与PWM芯片相结合, 就是一种完全可行的方案。第三种方案: 就是最彻底的单片机控制开关电源, 但对单片机的要求也高。要求单片机运算速度足够快, 且能输出足够高频率的PWM波。DSP 类单片机速度够快, 但价格也很高, 占电源总成本的比例太大, 不宜采用。廉价单片机中, AVR 系列最快, 具有PWM输出, 但AVR单片机的工作频率仍不够高,

PID控制方式的3A开关电源MATLAB

基于PID控制方式的3A开关电源MATLAB仿真研究 学院:电气与光电工程学院 专业:电气工程及其自动化 班级: 一绪论 Buck变换器是最常用的变换器,工程上常用的拓扑如正激、半桥、全桥、推挽等也属于Buck 族,现以Buck变换器为例,依据不同负载电流的要求,设计主功率电路,并采用单电压环、电

流-电压双环设计控制环路。开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。所以,开关调节系统设计要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。

常用的控制器有比例积分(PI)、比例微分(PD)、比例-积分-微分(PID)等三种类型。PD控制器可以提供超前的相位,对于提高系统的相位裕量、减少调节时间等十分有利,但不利于改善系统的控制精度;PI控制器能够保证系统的控制精度,但会引起相位滞后,是以牺牲系统的快速性为代价提高系统的稳定性;PID控制器兼有二者的优点,可以全面提高系统的控制性能,但实现与调试要复杂一些。本次设计就采用PID控制方式。 二设计过程 各项技术指标: 输入直流电压(V IN):10; 输出电压(V O):5V; 输出电流(I N):3A; 输出电压纹波(V rr):50mV; 基准电压(V ref):1.5V; 开关频率(f s):100kHz。 设计任务: 1.依据技术指标设计主功率电路,采用参数扫描法,对所设计的主功率电路进行仿真; 2.掌握小信号建模的方法,建立Buck变换器原始回路增益函数; 3.采用Matlab绘制控制对象的Bode图; 4.补偿网络设计,根据控制对象的Bode图,分析所需设计的补偿网络特性,采用PID调节方 式。 5.采用Matlab绘制补偿器和变换器的Bode图; 6.综合仿真,采用所选择的仿真软件进行系统仿真,要求有突加、突卸80%负载和满载时的 负载特性,分析系统的静态稳压精度和动态响应速度。 2.1 主电路设计:

基于STC系列单片机的串联型开关电源设计与实现

单片机及模数综合系统设计 课题名称:基于STC12系列单片机的串联型开关电源设计与实现 --单片机控制部分

一、实验目的:本模拟电路课程设计要求制作开关电源的模拟电路部分,在掌 握原理的基础上将其与单片机相结合,完成开关电源的设计。本报告旨在详述开关电源的原理分析、计算、仿真波形、相关控制方法以及程序展示。 二、总体设计思路 本设计由开关电源的主电路和控制电路两部分组成,主电路主要处理电能,控制电路主要处理电信号,采用负反馈构成一个自动控制系统。开关电源采用PWM 控制方式,通过给定量与反馈量的比较得到偏差,通过调节器控制PWM 输出,从而控制开关电源的输出。当键盘输入预置电压后,单片机通过PWM输出一个固定频率的脉冲信号,作用于串联开关电源的二极管和三极管,使三极管以一定的频率导通与断开,然后输出进行AD转化,转化后的结果再给单片机进行输出,进行数码管显示。 系统的基本框图及控制部分如下: 控制过程原理分析:单片机所采用的芯片为STC12C5A60S2,该芯片在拥有8051内核的基础上加入了10为AD和PWM发生器。通过程序,即可控制单片机产生一定占空比的PWM 脉冲,将此脉冲输入到模拟电路部分,在模拟电路的输出端即可产生一定的输出电压,可比较容易的通过程序来实现对输出电压的控制。但上述的开环控制是无法达到精确的调节电压,因此需要采用闭环控制来精确调制。即,对输出电压进行AD采样,将其输入回单片机中进行数据处理。单片机根据处理的结果来对输出电压做出修正,经过这样的逐步调节即可达到闭

环的精密输出。由此原理,可以将整个过程分成一下模块:PWM波形输出模块,模拟电路模块,AD转换模块,数码管显示模块,键盘输入模块。 控制过程基本思路为:首先从键盘输入一个电压值,并把该电压值在数码管上面显示出来,再由A/D转换模块对串联开关电源电路的输出端进行电压采集,将采集到的电压值与键盘输入的电压值进行比较,通过闭环算法,控制PWM的脉宽输出,由此控制串联开关电压电源电路,改变输出的电压值,使得输出值与设定的电压值相等。 三、系统各单元模块电路设计 1、键盘输入数据部分 分别接到单片机的P2.4,P2.5,P2.6,P2.7。每路通过电阻进行上拉,可以编程实现控制单片机运行不同程序。为了判断键盘上面的按键是否有按下的,可以事先对P2.4,P2.5,P2.6,P2.7端口赋值,便可以知道具体是哪个按键被按下了。例如:P2.4=0,便可知道P2.4对应的按键已经按下了。 键盘输入模块程序如下: void key( ) //键盘扫描函数 { if(P2_6== 0) { delay(10);//延时去抖动 if(P2_6== 0) { while(P2_6== 0)

基于PI控制方式的7A开关电源的MATLAB仿真

基于PI控制方式的7A开关电源MATLAB仿真研究 学院:电气与光电工程学院 专业:电气工程及其自动化 目录 0 绪论 --------------------------------------------------------------------- 3

1 设计要求 ----------------------------------------------------------------- 3 2 主电路参数计算 ----------------------------------------------------------- 3 2.1 电容参数计算 --------------------------------------------------------- 4 2.2 电感参数计算 --------------------------------------------------------- 4 3 补偿网络设计 ------------------------------------------------------------- 5 3.1原始系统的设计 -------------------------------------------------------- 5 3.2补偿网络相关参数计算 -------------------------------------------------- 6 4 负载突加突卸 ------------------------------------------------------------- 9 4.1满载运行 -------------------------------------------------------------- 10 4.2突加突卸80%负载 ------------------------------------------------------ 10 4.3 电源扰动20% --------------------------------------------------------- 11 5 小结 -------------------------------------------------------------------- 13 参考文献 ------------------------------------------------------------------ 13 一、绪论 随着电子技术的不断发展对电源的要求也不断的提高,开环的电源应该说早就不能满足要 求,无论是在输出参数的精度还是抗干扰能力方面都比不上闭环控制系统。为了使某个控制对 象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,

基于单片机控制的开关电源设计

摘要:开关电源是当代电子科技技术的产物,用于达到输出电压的稳定,开关电源主要是通过改变脉宽调制(PWM)进行输出电压的改变。它是一种电力电子装置,广泛应用于各种电子设备、工业、通信、航天航空以及军事等领域。具有输出电压稳定、噪音小、小型化和轻型化等特点。 为了设计并实现一个单片机控制的开关电源,可以通过软件编程让单片机输出一个PWM 波形给双运算放大电路,双运算放大电路对PWM波形进行变换调压,反馈到DC-DC降压电路进行降压和稳压后输出所需要的电压。输出电压可以通过按键调节,调节范围在0至25V,电压调节幅度为0.5V,由液晶显示屏实时显示。单片机控制开关电源,实现电源的智能化,具有输出电压范围大、电压可调和输出电压实时显等优点。 关键字:开关电源,单片机,PWM波形,调节,智能化

第一章概述 开关电源是改变开关管的通断的时间比较来控制输出电压的大小的电力电子器件。随着世界科技的快速发展,开关电源成为了人们生命中不可缺少的必需品,其应用于工业、农业、通信、航空和计算机等领域,具有高效率转换、重量小、小体积和高精度等特点。传统的开关电源系统存在调整之繁琐,电路很繁琐,可靠性低等问题,本文通过对单片机进行编程实现开关电源的有效输出,具体是将常用电源220V交流电通入变压器转换成24V的交流电,经过整流电路得到直流信号,通过电容滤波得到相对干净的直流电分别接入两个LM2596S-ADJ芯片,一个是构成DC-DC降压型电路,一个是构成5V稳压电路,前者是控制输出电压的,后者是给单片机和液晶显示屏供电的。输出电压的大小由PWM控制,将PWM 波形送到PWM调压电路,进行稳压和调压,并反馈到DC-DC降压电路后输出。按键能控制输出电压的大小,输出电压能在0-25V范围里可连续调节,步加步减在0.5V,复位按键可以是输出电压恢复到5V,并由液晶显示屏显示。 单片机控制开关电源,具有灵活性好的优势,可根据设计人员的想法进行设计。电子设备越来越小型化是未来的发展趋势,由于传统的开关电源电路的复杂性,如果以单片机为控制核心,则可以大大简化电源结构的复杂性,产生更小的电源变得可能,使用单片机可以扩展电压显示的实现,可以随时控制电压的大小,更容易维护。因为国内可以专门输出PWM 波的单片机价格很高,一般的单片机引脚口模拟的脉宽频率较低,速度较慢,远远小于所需的标准,因此单片机控制开关电源运用不多,而由单片机控制具有更多的控制和更多的可扩展性等,而正是这些必将是未来开关电源发展的发展方向。因此,探究单片机控制开关电源,具有极大地挑战。 本文将运用51单片机对开关电源进行控制,因为原先选考虑在51单片机和STM32单片机两者中选择,起初认为51单片机存在运算处理速度不够快,达不到设计要求,所以决定用STM32,但由于查询到用STM32单片机编程极其复杂,系统方案和硬件电路难度会有所增加。吸取教训,本文最后还是决定选用51单片机,可以达到设计要求,实现研究意义。 开关电源的功率晶体管处于闭合状态时,当开关速度提高后,会因电路中的电感、电容成分以及二极管中储存的电荷的影响而产生较大的浪涌影响和噪音影响,也会因输入电压和电流通过电路中的元器件影响产生较强的尖端峰值扰动和谐率波信扰动,这些干扰可能会损坏电路器件,同时污染居民用电。 在开关状态下切换功率晶体管的电源,由于电路构成中的电感和电容以及存储在二极管中的电荷的影响,开关速度增加,从而产生更大的浪涌和噪声,将通过输入电压和电流在电路中的元器件会影响强峰值干扰和谐波干扰,干扰可能会损坏电路,同时会居民用电产生影响,影响设备的正常工作。即使可以有一些行为进行制止,但由于水平有限,在这方面还是很难突破。于是,在设计制作过程中要着重留意噪声产生问题,并对其有效解决。

PI控制方式的6A开关电源PSIM

基于PI控制方式的6A开关电源PSIM仿真研究 学院:电气与光电工程学院 专业:电气工程及其自动化 班级:

绪论 开关调节系统常见的控制对象,包括单极点型控制对象、双重点型控制对象等。为了使某个控制对象的输出电压保持恒定,需要引入一个负反馈。粗略的讲,只要使用一个高增益的反相放大器,就可以达到使控制对象输出电压稳定的目的。但就一个实际系统而言,对于负载的突变、输入电压的突升或突降、高频干扰等不同情况,需要系统能够稳、准、快地做出合适的调节,这样就使问题变得复杂了。例如,已知主电路的时间常数较大、响应速度相对缓慢,如果控制的响应速度也缓慢,使得整个系统对外界变量的响应变得很迟缓;相反如果加快控制器的响应速度,则又会使系统出现振荡。所以,开关调节系统设计要同时解决稳、准、快、抑制干扰等方面互相矛盾的稳态和动态要求,这就需要一定的技巧,设计出合理的控制器,用控制器来改造控制对象的特性。 常用的控制器有比例积分(PI)、比例微分(PD)、比例+积分+微分(PID)等三种类型。PI 控制器提高了系统的类型,从而有效地改善了系统的稳态误差,但稳定性会有所下降。PD控制器可以预测作用误差,使修正作用提前发生,从而有助于增强系统的稳定性。PID控制器保持了PI控制器改善系统稳定性能的优点,同时多提供一个负实数零点,使得在提高系统动态性能方面具有更大的优越性。 1.基于PI控制方式的Buck电路的综合设计 Buck变换器最常用的变换器,工程上常用的拓扑如正激、半桥、全桥、推挽等也属于Buck 族,现以Buck变换器为例,依据不同负载电流的要求,设计主功率电路,并采用单电压环、电流-电压双环设计控制环路。 2.1技术指标 输入直流电压(VIN):10V 输出电压(VO):5V; 输出电流(IN):6A; 输出电压纹波(Vrr):50mV; 基准电压(Vref):1.5V; 开关频率(fs):100kHz。 2.2 Buck主电路的参数设计 Buck变换器主电路如图1所示,其中Rc为电容的等效电阻ESR。

相关文档