文档库 最新最全的文档下载
当前位置:文档库 › 单片机控制系统抗干扰技术及电路设计方案注意事项

单片机控制系统抗干扰技术及电路设计方案注意事项

单片机控制系统抗干扰技术及电路设计方案注意事项
单片机控制系统抗干扰技术及电路设计方案注意事项

第七章单片机控制系统抗干扰技术

本章将从干扰源的来源、硬件、软件以及电源系统各方面研究分析并给出有效可行的解决办法。

第一节干扰的来源及分析

一、主要的干扰源

影响正常工作的信号称为噪声,又称干扰。

举例:在单片机控制系统中,出现了干扰,就会影响指令的正常执行,造成控制事故或控制失灵;在测量通道中产生了干扰,就会使测量产生误差,计数器收到干扰有可能乱记数,造成记数不准,电压的冲击有可能使系统遭到致命的破坏。

凡是能产生一定能量,可以影响到周围电路正常工作的媒体都可认为是干扰源。干扰有的来自外部,有的来自内部。一般来说,干扰源可分为以下三类:

①自然界的宇宙射线,太阳黑子活动,大气污染及雷电因素造成的;

②物质固有的,即电子元器件本身的热噪声和散粒噪声;

③人为造成的,主要是由电气和电子设备引起。

举例:在系统工作的环境中广泛存在,包括动力电网的电晕量放电、绝缘不良的弧光放电、交流接触器、开关电感负载的继电器接点引起的电火花,照明灯管所引起的放电、变压器、电焊机、吊车,大功率设备启动浪涌,可控硅开关造成的瞬间尖峰,都会对电网产生影响。另外像大功率广播、电视、通讯、雷达、导航、高频设备以及大功率设备所发出的空间电磁干扰。系统本身电路的过渡过程,电路在状态转换时引起的尖峰电流,电感或电容所产生的瞬间电压和瞬变电流也会对系统工作产生千扰。另外,印制电路板布局不合理、布线不周到、排列不合理、粗细不合理,使电路板自身产生相互影响,系统安装布线不合理,强弱电走线不能分开,造成相互干扰。

二、噪声干扰产生的原因

①电路性干扰。电路性干扰是由于两个回路经公共阻抗耦合而产生的,干扰量是电流。

②电容性干扰。电容性干扰是由于干扰源与干扰对象之间存在着变化的电场,从而造成了干扰影响,干扰量是电压。

③电感性干扰。电感性干扰是由于干扰源的交变磁场在干扰对象中产生了干扰感应电压。而产生感应电压的原因则是由于在干扰源中存在着变化电流。

④波干扰。波干扰是传导电磁波或空间电磁波所引起的。空间电磁波的干扰量是电场强度和磁场强度。传导波的干扰量是传导电流和传导电压。

三、干扰窜入系统的渠道

环境对单片机控制系统的干扰一般都是以脉冲的形式进人系统的,干扰窜入系统的渠道主要有三条,如图7-1所示。

由图中可见,空间干扰<场干扰)是通过电磁波辐射入系统;过程通道干扰是通过和主机

系统相连接的输入通道、输出通道及与其他主机系统相连的通信通道进入单片机系统的;供电系统干扰,主要通过供电系统的直流电源线路或地线进人系统。一般情况下,空间干扰在强度上远小于其他两个渠道进人系统的干扰,而且空间干扰可用良好的屏蔽与正确的接地,或采用高频滤波器加以解决。因此抗干扰的重点应放在供电系统和过程通道的干扰。

第二节硬件抗干扰技术

一、选用可靠的元器件

一般情况下,元器件在出厂前都进行了测试。在通常应用时,不再进行测试,而直接将元器件用于电路中进行通电运行考验。在考验中发现问题,直接替换不合格芯片或器件。

按着一般的经验,如芯片在通电使用一个月左右而不产生损坏,就可以认为比较稳定。但在购买时,最好到较正规的大公司或商店购买元器件,一般都能保证元器件本身质量的可靠。

二、接插件的选择应用

单片机控制系统通常可由几块印制电路板组成,各板之间以及各板与基准电源之间经常选用接插件相联系。在接插件的插针之间也易造成干扰,这些干扰与接插件插针之间的距离以及插针与地线之间的距离都有关系。在设计选用时要注意以下几个问题。

1.合理地设置插接件

如电源插接件与信号插接件要尽量远离,主要信号的接插件外面最好带有屏蔽。

2.插头座上要增加接地针数

在安排插针信号时,用一部分插针为接地针,均匀分布于各信号针之间,起到隔离作用,以减小针间信号互相干扰。最好每一信号针两侧都是接地针,使信号与接地针理想的比例为1:1。

3.信号针尽量分散配置,增大彼此之间的距离。

4. 设计时考虑信号的翻转时差,把不同时刻翻转的插针放在一起。同时翻转的针尽量离开,因信号同时翻转会使干扰叠加。

三、印制电路板抗干扰设计技术

印制电路板是器件、信号线、电源线的高密度集合体,布线和布局好坏对可靠性影响很大。

1.印制电路总体布局原则

①印制电路板大小要适中,板面过大印制线路太长,阻抗增加,成本偏高;板子太小,板间相互连线增加,易增加干扰环境。

②印制板元件布局时相关元件尽量靠近。如晶振、时钟发生器及CPU时钟输入端相互靠近,大电流电路要远离主板,或另做一块板。

③考虑电路板在机箱内的位置,发热大的元器件放置在易通风散热的位置。

2.电源线和地线与数据线传输方向一致,有助于增强抗干扰能力。接地线可环绕印制板一周安排,尽可能就近接地。

3.地线尽量加宽,数字地、模拟地要分开,根据实际情况考虑一点或多点接地。

4.配置必要的去耦电容

①电源进线端跨接100up以上的电解电容以吸收电源进线引入的脉冲干扰。

②原则上每个集成电路芯片都配置一个0.01up的瓷片电容或聚乙烯电容,可吸收高频干扰。

③电容引线不能太长,高频旁路电容不能带引线。

四、执行机构抗干扰技术

在单片机控制系统输出回路中,存在着执行开关、线圈等回馈干扰。特别是感性负载,电机电枢的反电动势会损坏电子器件,甚至会破坏计算机系统或扰乱程序系统,为防止由于电感负载的瞬间通、断造成的干扰,常采用以下措施:

1.触点两端并联阻容吸收电路,控制触点间放电,如图7-2(a>所示。

2.电感负载两端并联反向二极管,形成反电动势放电回路,保护设备。如图7-2(b>所示,在继电器线圈两端并接二极管。当开关断开时,感应电动势通过二极管放电,防止击穿电源及开关。

第三节软件抗干扰技术

一、设置软件陷阱

由于系统干扰可能破坏程序指针PC,PC一旦失控,使程序“乱飞”可能进人非程序区,造成系统运行的一系列错误。设置软件陷阱,可防止程序“乱飞”。

方法:在ROM或RAM中,每隔一些指令<十几条即可),就把连续几个单元设置成空操作<所谓陷阱)。当失控的程序掉入“陷阱”,也就是连续执行几个空操作后,程序自动恢复正常,继续执行后面的程序,也可以在程序芯片没有被程序指令字节使用的部分全部置成空操作指令代码,在最后使用跳转指令,一般跳到程序开头。一旦程序飞出到非程序区,执行空操作之后,最后跳回到程序初始化,重新执行程序。或隔一段使用一条跳转到程序开头的指令。

二、增加程序监视系统

利用设置软件陷阱的办法虽在一定程度上解决了程序“飞出”失控问题,但不能有效地解决死循环问题。

设置程序监视器

1、利用单片机内部定时器进行监视

方法:在程序一开始就启动定时器工作,在主程序中增设定时器赋值指令,使该定时器维持在非溢出工作状态。定时时间要稍大于程序一次循环的执行时间。程序正常循环执行一次给定时器送一次初值,使其不能溢出。但若程序失控,定时器则计满溢出中断,在中断服务程序中使主程序自动复位又进入初始状态。

例8051单片机若晶振频率使用6MHz,选定时器T0定时监视程序。程序如下:ORG 0000H

START:AJMP .MAIN

ORG 000BH

AJMP START

MAIN:SETB EA

SETB IE0

SETB TR0

MOV TMOD,#01H

MAIN1:MOV TH0,datal

MOV TL0,datal

2、利用单稳触发器构成程序监视器

方法:利用软件经常访问单稳电路,一旦程序有问题,CPU不能照常访问,单稳电路则产生翻转脉冲使单片机复位,程序重新开始执行。

三、软件冗余技术

软件冗余技术,就是多次使用同一功能的软件指令,以保证指令执行的可靠性,这从以下几个方面考虑。

1.采取多次读入法,确保开关量输人正确无误

重要的输人信息利用软件多次读入,比较几次结果一致后再让其参与运算。对于按钮和开关状态读入时,要配合软件延时可消除抖动和误动作。

2.不断查询输出状态寄存器,及时纠正输出状态

设置输出状态寄存器,利用软件不断查询,当发现和输出的正确状态不一致时,及时纠正,防止由于干扰引起的输出量变化导致设备误动作。

3.对于条件控制系统,把对控制条件的一次采样、处理控制输出改为循环地采样、处理输出。这种方法对于惯性较大的控制系统具有良好的抗偶然干扰作用。

4.为防止计算错误,可采用两组计算程序,分别计算,然后将两组计算结果进行比较,如两次计算结果相同,则将结果送出。如出现误差,则再进行一次运算,重新比较,直到结果相同。

四、软件可靠性设计

1、利用软件提高系统抗干扰能力

在软件设计时采用如下措施,对提高系统抗干扰能力是积极有力的。

①增加系统信息管理软件。它与硬件相配合,对系统信息进行保护。其中包括防止信息被破坏,出故障时保护信息,故障排除之后恢复信息等。

②防止信息的输人输出过程中出错。如对关键数据采用多种校验方式,对信息采用重复传送校验技术,从而保证信息的正确无误。

③编制诊断程序,及时发现故障,找出故障位置,以便及时检修或启用冗余软件。

④用软件进行系统调度,包括出现故障时保护现场,迅速将故障装置切换成备用装置,在环境条件发生变化时,采取应急措施,故障排除后,迅速恢复系统,继续投人运行等。

2、提高软件自身的可靠性

1).程序分段和采用层次结构

在进行程序设计时,将程序分成若干个具有独立功能的子程序块。各个程序块可以

单独使用,也可与其他程序块一起使用。各程序块之间可通过一固定的通信区和一些指

定的单元进行信息传递。每个程序块都可单独进行调整和修改而不影响其他程序块。

2).采用可测试性设计

软件在编制过程中会出现一些错误。为便于查出程序错误,提高软件开发效率,可采用以

下三种方法:一是明确软件规格,使测试易于进行;二是将测试设计的程序段作为软件开发的一部分;三是把程序结构本身组成便于测试的形式。

3).对软件进行测试

测试软件的基本方法是,给软件一个典型的输入,观测输出是否符合要求。发现错误进行修改,直至消除错误,达到设计要求。

测试软件可按下述步骤进行:

①单元测试,即对每个程序块单独进行测试;

②局部或系统测试,即对多个程序块组成的局部或系统程序进行测试,以发现块间连接错误;

③系统功能测试,按功能对软件进行测试,如控制功能、显示功能、通信功能、管理功能、报瞥功能等;

④现场测试,即硬件安装调试后将软件进行安装测试,以便对整个控制系统的功能及性能作出评价。

五、软件自诊断技术

软件诊断技术主要从两个方面进行考虑,一方面是对系统硬件和过程通道的自诊断,另一方面是对过程软件本身进行诊断和故障排除。

1、对硬件系统进行诊断

对硬件系统诊断包含两个方面内容:一是确定硬件电路是否存在故障,这叫故障测试;二是指出故障的确切位置,给维护以操作指导,这叫故障定位。

单片机控制系统有的配备有系统测试程序,在系统上电时,首先对系统的主要部件以及外设I/0端口进行测试,以确认系统硬件工作是否正常。对接口故障的测试,主要是检测接口中元器件的故障,这就要求在进行接口电路设计时要考虑以下因素:

①在接口设计时,除考虑接口的功能外,要考虑提供检测的寄存器或缓冲器,以便检测使用;

②可将接口划分成若干个检测区,在每一检测区将检测点逐一编号,进行测试;

③可将测试点按顺序编制成故障字典,以便按测试结果给出故障部位,进行故障定

位。

2、软件运行自诊断

设置陷阱、使用程序监视器、时间冗余方法

时间冗余方法是通过消耗时间资源达到纠错的目的。时间冗余方法通常采用指令复执和程序卷回两种途径来实现。

1)指令复执技术

所谓复执,就是程序中的每条指令都是一个重新启动点,一旦发现错误,就重新执行被错误破坏的现行指令,指令复执既可用编制程序来实现,也可用硬件控制来实现,基本的实现方法是:

①当发现错误时,能准确保留现行指令的地址,以便重新取出执行;

②现实指令使用的数据必须保留,以便重新取出执行时使用。

指令复执的次数通常采用次数控制和时间控制两种方式,如在规定的复执次数或时间之内故障没有消失,称之复执失败。

2)程序卷回技术

程序卷回不是某一条指令的重复执行,而是一小段程序的重复执行。为了实现卷回,也要保留现场。程序卷回的要点是:

①将程序分成一些小段,卷回时也要卷回一小段,不是卷回到程序起点;

②在第n段之末,将当时各寄存器、程序计数器及其他有关内容移人内存,并将内存中被

第n段所更改的单元又在内存中另开辟一块区域保存起来。如在第(n+1>段中不出问题,则将第(n+1>段现场存档,并撤消第二段所存内容;

③如在第段起点开始重复执行第

第四节供电系统抗干扰技术

供电系统干扰分为:

①过压、欠压、停电使用各种稳压器和不间断电源UPS

②浪涌、下陷、降出快速响应的交流电压调压器

③尖峰电压使用具有噪声抑制能力的交流稳压器或隔离变压器

④射频干扰低通滤波器

一、建议的供电解决方案

为了防止电源系统窜人干扰,影响单片机控制系统的正常工作,可采用如图7-5所示的供电配置。

如图7-5所示,整个供电系统从以下几个方面考虑。

①交流进线端加交流滤波器,可滤掉高频干扰,如电网上大功率设备启停造成的瞬间干扰。滤波器市场上的成品有一级、二级滤波之分,安装时外壳要加屏蔽并使其良好接地,进出线要分开,防止感应和辐射耦合。低通滤波器仅允许50Hz交流通过,对高频和

中频干扰有很好的衰减作用。

②要求高的系统加交流稳压器。

③采用具有静电屏蔽和抗电磁干扰的隔离电源变压器。

④采用集成稳压块两级稳压。

⑤主电路板采取独立供电,其余部分分散供电,避免一处电源有故障引起整个系统颠覆。

⑥直流输出部分采用大容量电解电容进行平滑滤波。

⑦线间对地增加小电容滤波消除高频干扰。

⑧交流电源线与其他线尽量分开,减少再度耦合干扰。

⑨尽量提高接口器件的电源电压,提高接口的抗干扰能力。

第五节接地系统抗干扰技术

在设计时,若能将接地和屏蔽正确地结合起来使用,可以解决大部分干扰引起的故障。接地问题包括两个方面的内容:一个是接地点是否正确;另一个是接地点是否牢固。接地点选择正确可防止系统各部分的串扰,接地点牢固可使接地点处于零阻抗,从而降低了接地

电位,防止了接地系统的共模干扰。

一、系统地线分类

两大类:

保护接地主要是为了避免工作人员因设备绝缘损坏或性能下降时遭受触电危险和保证设备的安全

工作接地主要是保证控制系统稳定可靠的运行,防止地环路引起的干扰。

在单片机控制系统中,地线大致分为以下几类:

①数字地也叫逻辑地,它是数字电路的零电位;

②模拟地它是放大器、采样保持器以及A/D转换器和比较器等的零电位;

③功率地即大电流网络元件、功放器件的零电位;

④信号地即传感器件的地电平;

⑤交流地指交流50Hz电源的零线;

⑥直流地指直流电源的地线;

⑦屏蔽地一般同机壳相联,为防止静电感应和磁场感应而设置的,常和大地相接。

二、不同地线的处理原则

1.一点接地和多点接地

在低频<小于1MHz)电路中,布线和元件之间的电感不会产生太大影响,常采用一点接地。

在高频<高于10MHz)电路中,寄生电容和电感影响较大,易采用多点接地。

2. 数字地和模拟地必须分开。

3.交流地与信号地不要共用。

4.浮地和接地

系统浮地,是将系统电路的各个部分地线浮置起来,不与大地相联。通常采用系统浮地,机壳接地,可使抗干扰能力强,安全可靠。

5.印制电路板地线布线

其如下所示:

①TTL、CMOS器件的地线要呈辐射网状,其他地线不要形成环路;

②地线尽量加宽,最好不要小于3mm。

③旁路电容地线不要太长;

④大规模集成电路最好跨越平行的地线和电源线,以消除干扰。

6.传感器信号地

由于传感器和机壳之间易引起共模干扰,为提高抗共模干扰能力,一般A/D转换器的模拟地采用浮空隔离,并可采用三线采样双层屏蔽浮地技术,就是将地线和信号线一起采样,可有效地抑制共模干扰。

第六节输入输出通道抗干扰技术

一、开关信号的抗干扰技术、

1、开关量的电平转换

提高开关量电平进行开关信号传输,可以降低电磁干扰,而输人到单片机中的电平都是TTL电平,因此存在一个电平转换问题。可采用如图7-9所示的电路。若提高开关量输出的电平可参考图7-10所示的电路。

二、采用隔离技术

①对启停负荷不大、响应速度不太高的设备,一般采用继电器隔离比用光电隔离

更直接。继电器能直接控制动力电路,而驱动继电器的集成电路要用集电极开

路的集成电路

正常工作,如图7-11所示。

②在交流启停负荷较大时,大负荷触点在接通或断开时,所产生的火花和电弧具

有十分强烈的干扰作用,可采用如图7-12所示的电路,用两个对接的可控硅代替交流接触

器,它们的控制极由小继电器的一个触点控制,触点接通,两个可控硅轮流导通,触点断

开,两个可控硅完全关断。固态继电器也就是将对接的可控硅封装在一个模块中的器件。

③快速直流负载的光耦合驱动。如图7-13所示。

④快速驱动交流负载的光电耦合驱动。如图7-14所示。

二、模拟通道的抗干扰技术

1、硬件措施

1)模拟量输人回路

加入RC滤波器,以减小工频干扰信号对输入信号的影响,如图7-15所示。

2)光电耦合器隔离

在模拟通道使用光电耦合器要按照如图7-16的安排设计。

3)适当选用A/D芯片

在干扰严重的场合,可选用双积分式A/D转换器。要求转换速度快的场合,要选用逐次逼近方式的转换器。

2、软件措施

用软件对输入量的滤波处理是消除低频干扰的重要措施,常用的滤波算法有以下几

种:

1)限幅滤波

规定在相邻两次采样信号之间的差值不得超过一个固定数值。

2)中值滤波

每获得一个采样数据时连续采样三次,找出三个采样值中的一个居中的值作为本次采样值。

3)算术平均值滤波

连续记录几次采样值,求其平均值作为本次采样值。

4)五中取三平均值滤波

该办法是若得到一个采样值,要连续采样五次,然后按大小顺序排列,去掉一个最大的,去掉一个最小的,取其中间三个数求其平均值。

5)一阶惯性滤波

对于低频干扰信号,可用此滤波模拟RC滤波,来消除干扰。

三、长线传输的抗干扰技术

1、双绞线传输

在数字信号传输过程中,根据传送距离的不同,双绞线使用方法也有所不同,如图7-17所示。

当传送距离在5m以下时,发送和接收端连接负载电阻。若发送侧为集电极开路驱动,则接收侧的集成电路用施密特型电路,抗干扰能力更强。

当用双绞线作远距离传送数据时,或有较大噪声干扰时,可使用平衡输出的驱动器和平衡输入的接收器。发送和接收信号端都要接匹配电阻,如图7-17(b>、

用双绞线传输与光电耦合器联合使用时,可按图7-18所示的方式连接。图中

电路驱动器,则会大大加强抗噪声能力,如图中所示。

二、长线传输的阻抗匹配

长线传输时如匹配不好,会使信号产生反射,从而形成严重的失真。为了对传输线进行阻抗匹配,必须估算出其特性阻抗Rpo利用示波器观察的方法可以大致测定传输线特性阻抗的大小,测试方法如图7-19所示。调节可变电阻R,当R与特性阻抗Rp相匹配时,用示波器测量A门输出波形畸变最小,反射波几乎消失,这时R值可认为是该传输线的特性阻抗Rp。

传输线阻抗的匹配有以下四种形式:

1.终端并联匹配

如图7-20所示,终端匹配电阻Rl、R2的值,按Rp=RI/R2的要求选取。一般Rl为220-330Ω,而R2可在270-390Ω范围内选取。此种方法由于终端阻值偏低,相当于负载加

重,使高电平有所下降,使高电平抗干扰能力有所下降。

2.始端串联匹配

如图7-21所示,匹配电阻R的取值为Rp与A门输出低电平时输出阻抗Rsc<约20

Ω)之差值。此方法会使终端低电平抬高,相当于增加了输出阻抗,降低了低电平的抗干

扰能力。

3.终端并联隔直匹配

如图7-22所示,因电容C在较大时起隔直作用,并不影响匹配。所以只要求匹配电阻R与Rp相等即可。它不会引起输出低电平的降低,增加了高电平的抗干扰能力。

4.终端钳位二极管匹配

如图7-23所示,利用二极管D把B门输人端低电平钳位在0.3V以下,可以减少波的反射和振荡,可提高动态抗干扰能力。

三、长线电流传输

用电流传输代替电压传输,可获得较好的抗干扰能力。如图7-24所示,从电流转换器输出0-10mA<或4-20mA)电流,在接收端并上500Ω<或lkΩ)的精密电阻,将此电流转换为0-5V<或1-5V)的电压,然后送人A/D转换器。在有的实用电路里输出端采用光电耦合器输出驱动,也会获得同样的效果。此种方法可减少在传输过程中的干扰,提高传输的可靠性。

单片机抗干扰问题浅析

- 116 - 杜 川 付会凯 (新乡学院机电工程学院,河南 新乡 453003) 【摘 要】分析了单片机系统的干扰来源,主要从抗干扰和稳定性方面入手,利用硬件与软件相结合的方法,解决了一些单片机系统的抗干扰问题。 【关键词】抗干扰;指令冗余;软件陷阱;定时中断 【中图分类号】TP368 【文献标识码】A 【文章编号】1008-1151(2010)02-0116-02 引言 随着微电子技术和信息技术的发展,计算机技术已经深 入到了人们生产和生活的各个领域当中。单片机技术作为基 于计算机的原理而出现的一种新兴的技术手段,在当今的信 息社会中扮演着重要的角色。但是,由于单片机的工作环境 往往比较恶劣,尤其是系统周围存在强烈的电磁干扰情况, 这些因素都将严重影响单片机的可靠性和稳定性,甚至有可 能导致系统瘫痪。因此,提高单片机系统的抗干扰能力尤其 具有现实意义。 (一)单片机干扰来源的分析 所谓干扰就是叠加在有用信号上的不需要的信号。干扰 以某种电信号的形式,通过一定的渠道,混入有用信号中进 入单片机系统,造成系统工作不稳。在各种实际环境中,这 些干扰降低了单片机系统的准确性,要加以避免[1] 。 单片机的干扰主要来自于两个方面的影响: 1.外部环境所产生的干扰 单片机控制系统是为工业生产而设计制造的,所以单片 机系统经常工作于工业生产现场。在实际的生产现场,存在 着大量的电磁干扰信号,对单片机控制系统的正常工作造成极大的危害,甚至有可能带来系统复位乃至失控的危险。 2.单片机系统本身产生的干扰 单片机系统的本身由各种线路互相连接组成,线路之间会产生相互影响的磁场,从而引发干扰;单片机电源的供电方式以及各种元件的电气性能,也是产生干扰的重要来源;还有就是对单片机接地方式的处理。由于社会发展迅速,自动化进程加快,在工业环境较复杂的场所,地下密布着各种电气设备的导线,这些导线之间的相互影响也对单片机的稳定性构成了巨大的威胁。 (二)增强单片机抗干扰能力的方案 单片机抗干扰一般是从硬件和软件两方面入手。硬件抗 干扰设计主要是通过抑制干扰源,切断干扰传播路径,提高 敏感器件的抗干扰性能方面入手。而软件抗干扰措施主要是 通过对程序区、RAM 空间区、表格区进行特殊处理来实现的,在存储空间允许的条件下,可充分利用软件抗干扰措施,提高单片机系统的程序运行的可靠性和数据的安全性[2] 。 1.硬件抗干扰 (1)电源系统的处理 采用大功率电源,防止从电源系统引入干扰。条件允许的情况下可采取交流稳压器保证供电的稳定性,防止电源的过压和欠压。使用隔离变压器滤掉高频噪声,低通滤波器滤掉工频干扰。 (2)接地方案的分析 在电路设计中,要尽量减小接地回路中的电阻,同时要尽量保证一点接地,避免多点接地的情况;单片机是小功率器件,要避免和大功率器件接地距离较近而产生干扰[3]。 (3)输入、输出信号的保护 在数字信号的长距离传输时用双绞线,可以对传输过程 中的干扰起到很好的抑制作用。也可以在输入、输出信号上 加光电隔离器,从而切断主机以及各向通道的相互联系,从 而有效的防止干扰进入主机系统。 2.软件抗干扰 (1)指令冗余法 单片机操作流程完全由程序计数器P C 控制,一旦P C 受到干扰,程序便会脱离正常轨道,使程序“跑飞”,从而出现改变操作数数值以及将操作数误认为操作码等情况。为了使“跑飞”的程序能迅速纳入正轨,程序中应该多用单字节指令,并且在关键地方插入一些空操作指令NOP 或者将有效单字节指令重写,这就叫做指令冗余。 这种方法通常是在双字节指令和三字节指令后插入两个字节以上的空操作指令NOP,这样即使“跑飞”程序飞到操作 数上,由于NOP 的存在,也可以避免后面的指令被当作操作数执行,程序自动纳入正轨。此外,对程序执行方向起重要作用的控制转移类指令,如RET、RETI、LCALL、LJMP、JC 等指令之前插入两条NOP,也可将“跑飞”程序纳入正轨,保证程序的正确执行。 【收稿日期】2009-12-21 【作者简介】杜川(1982-),男,河南新乡人,新乡学院机电工程学院助教,从事信息工程、电气自动化方面的研究;付会凯(1980-),男,河南长葛人,新乡学院机电工程学院讲师,硕士,从事通信、电路与系统教学与研究。

单片机自身的抗干扰措施

单片机自身的抗干扰措施 为提高单片机本身的可靠性。近年来单片机的制造商在单片机设计上 采取了一系列措施以期提高可靠性。这些技术主要体现在以下几方面。 1.降低外时钟频率 外时钟是高频的噪声源,除能引起对本应用系统的干扰之外,还可能产 生对外界的干扰,使电磁兼容检测不能达标。在对系统可靠性要求很高的应用 系统中,选用频率低的单片机是降低系统噪声的原则之一。以8051 单片机为例,最短指令周期1μs时,外时钟是12MHz。而同样速度的Motorola 单片机系统时钟只需4MHz,更适合用于工控系统。近年来,一些生产8051 兼容单片机的厂商也采用了一些新技术,在不牺牲运算速度的前提下将对外时钟的需求 降至原来的1/3。而Motorola 单片机在新推出的68HC08 系列以及其16/32 位单片机中普遍采用了内部琐相环技术,将外部时钟频率降至32KHz,而内部总线速度却提高到8MHz 乃至更高。 2.低噪声系列单片机 传统的集成电路设计中,在电源、地的引出上通常将其安排在对称的两边。如左下角是地,右下角是电源。这使得电源噪声穿过整个硅片。改进的技 术将电源、地安排在两个相邻的引脚上,这样一方面降低了穿过整个硅片的电流,一方面使外部去耦电容在PCB 设计上更容易安排,以降低系统噪声。另一个在集成电路设计上降低噪声的例子是驱动电路的设计。一些单片机提供若干 个大电流的输出引脚,从几十毫安到数百毫安。这些大功率的驱动电路集成到 单片机内部无疑增加了噪声源。而跳变沿的软化技术可消除这方面的影响,办 法是将一个大功率管做成若干个小管子的并联,再为每个管子输出端串上不同 等效阻值的电阻。以降低di/dt。

传感器电路的噪声及其抗干扰技术研究

传感器电路的噪声及其抗干扰技术研究 作者:刘竹琴,白泽生延安大学物理与电子信息学院 尽量消除或抑制电子电路的干扰是电路设计和应用始终需要解决的问题。传感器电路通常用来测量微弱的信号,具有很高的灵敏度,如果不能解决好各类干扰的影响,将给电路及其测量带来较大误差,甚至会因干扰信号淹没正常测量信号而使电路不能正常工作。在此,研究了传感器电路设计时的内部噪声和外部干扰,并得出采取合理有效的抗干扰措施,能确保电路正常工作,提高电路的可靠性、稳定性和准确性。 传感器电路通常用来测量微弱的信号,具有很高的灵敏度,但也很容易接收到外界或内部一些无规则的噪声或干扰信号,如果这些噪声和干扰的大小可以与有用信号相比较,那么在传感器电路的输出端有用信号将有可能被淹没,或由于有用信号分量和噪声干扰分量难以分辨,则必将妨碍对有用信号的测量。所以在传感器电路的设计中,往往抗干扰设计是传感器电路设计是否成功的关键。

1 传感器电路的内部噪声 1.1 高频热噪声 高频热噪声是由于导电体内部电子的无规则运动产生的。温度越高,电子运动就越激烈。导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的平均总电流为零,但当它作为一个元件(或作为电路的一部分)被接入放大电路后,其内部的电流就会被放大成为噪声源,特别是对工作在高频频段内的电路高频热噪声影响尤甚。 通常在工频内,电路的热噪声与通频带成正比,通频带越宽,电路热噪声的影响就越大。在 通频带△f内,电路热噪声电压的有效值:。以一个1 kΩ的电阻为例,如果电路的通频带为1 MHz,则呈现在电阻两端的开路电压噪声有效值为4μV(设温度为室温T=290 K)。看起来噪声的电动势并不大,但假设将其接入一个增益为106倍的放大电路时,其输出噪声可达4 V,这时对电路的干扰就很大了。 1.2 低频噪声 低频噪声主要是由于内部的导电微粒不连续造成的。特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。 1.3 半导体器件产生的散粒噪声 由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的电子和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电

抗干扰设计原则

> 抗干扰设计原则 1.电源线的设计 (1)选择合适的电源 (2)尽量加宽电源线 (3)保证电源线、底线走向和数据传输方向一致 (4)使用抗干扰元器件 (5)电源入口添加去耦电容(10~100uf) 2.[ 3.地线的设计 (1)模拟地和数字地分开 (2)尽量采用单点接地 (3)尽量加宽地线 (4)将敏感电路连接到稳定的接地参考源 (5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开 (6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积 3.. 4.元器件的配置 (1)不要有过长的平行信号线 (2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件(3)元器件应围绕核心器件进行配置,尽量减少引线长度 (4)对pcb板进行分区布局 (5)考虑pcb板在机箱中的位置和方向 (6)缩短高频元器件之间的引线 4.】 5.去耦电容的配置 (1)每10个集成电路要增加一片充放电电容(10uf) (2)引线式电容用于低频,贴片式电容用于高频 (3)每个集成芯片要布置一个的陶瓷电容 (4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容 (5)电容之间不要共用过孔 (6)去耦电容引线不能太长 5.— 6.降低噪声和电磁干扰原则 (1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合) (2)用串联电阻的方法来降低电路信号边沿的跳变速率 (3)石英晶振外壳要接地 (4)闲置不用的们电路不要悬空 (5)时钟垂直于IO线时干扰小 (6)尽量让时钟周围电动势趋于零

(7)IO驱动电路尽量靠近pcb的边缘 (8)- (9)任何信号不要形成回路 (10)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略 (11)通常功率线、交流线尽量在和信号线不同的板子上 6.其他设计原则 (1)CMOS的未使用引脚要通过电阻接地或电源 (2)用RC电路来吸收继电器等原件的放电电流 (3)总线上加10k左右上拉电阻有助于抗干扰 (4)采用全译码有更好的抗干扰性 (5)~ (6)元器件不用引脚通过10k电阻接电源 (7)总线尽量短,尽量保持一样长度 (8)两层之间的布线尽量垂直 (9)发热元器件避开敏感元件 (10)正面横向走线,反面纵向走线,只要空间允许,走线越粗越好(仅限地线和电源线)(11)要有良好的地层线,应当尽量从正面走线,反面用作地层线 (12)保持足够的距离,如滤波器的输入输出、光耦的输入输出、交流电源线和弱信号线等(13)长线加低通滤波器。走线尽量短截,不得已走的长线应当在合理的位置插入C、RC、或LC低通滤波器。 (14)> (15)除了地线,能用细线的不要用粗线。 7.布线宽度和电流 一般宽度不宜小于(8mil) 在高密度高精度的pcb上,间距和线宽一般(12mil) 当铜箔的厚度在50um左右时,导线宽度1~(60mil) = 2A 公共地一般80mil,对于有微处理器的应用更要注意 8.} 9.电源线尽量短,走直线,最好走树形,不要走环形 9.布局 10.首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。 在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。 在确定特殊元件的位置时要遵守以下原则: (1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 (2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

计算机控制系统中的抗干扰技术

第9章计算机控制系统中的抗干扰技术 ●本章的教学目的与要求 掌握各种干扰的传播途径与作用方式以及软硬件抗干扰技术。 ●授课主要内容 ●干扰的传播途径与作用方式 ●软硬件抗干扰技术 ●主要外语词汇 ●重点、难点及对学生的要求 说明:带“***”表示要掌握的重点内容,带“**”表示要求理解的内容,带“*”表示要求了解的内容,带“☆”表示难点内容,无任何符号的表示要求自学的内容 ●干扰的类型*** ●干扰的传播途径***☆ ●各类干扰的抑制方法*** ●辅助教学情况 多媒体教学课件(POWERPOINT) ●复习思考题 ●干扰的类型 ●干扰的传播途径 ●各类干扰的抑制方法 ●参考资料 刘川来,胡乃平,计算机控制技术,青岛科技大学讲义

干扰是客观存在的,研究抗干扰技术就是要分清干扰的来源,探索抑制或消除干扰的措施,以提高计算机控制系统的可靠性和稳定性。 9.1 干扰的传播途径与作用方式 干扰是指有用信号以外的噪声或造成计算机设备不能正常工作的破坏因素。产生干扰信号的原因称为信号源。干扰源通过传播途径影响的器件或系统称为干扰对象。干扰源、传播途径及干扰对象构成了干扰系统的三个要素。 9.1.1 干扰的来源 1.外部干扰 2.内部干扰 9.1.2 干扰传播途径 干扰传播途径主要有:静电耦合、磁场耦合、公共阻抗耦合。 1. 静电耦合 静电耦合是通过电容耦合窜入其他线路的。 2. 磁场耦合 在任何载流导体周围都会产生磁场,当电流变化时会引起交变磁场,该磁场必然在其周围的闭合回路中产生感应电势引起干扰,它是通过导体间互感耦合进来的。 3公共阻抗耦合 公共阻抗耦合干扰是由于电流流过回路间公共阻抗,使得一个回路的电流所产生的电压降影响到另一回路。 9.1.3 干扰的作用方式 按干扰作用方式的不同,可分为串模干扰、共模干扰和长线传输干扰。 1. 串模干扰 串模干扰是指叠加在被测信号上的干扰噪声,它串联在信号源回路中,与被测信号相加输入系统. 图9.6 串模干扰示意图图9.7 共模干扰示意图

单片机抗干扰方法

如何提高抗干扰性能 搞过产品的朋友都有体会,一个设计看似简单,硬件设计和代码编写很快就搞定,但在调试过程中却或多或少的意外,这些都是抗干扰能力不够的体现。 下面讨论一下如何让你的设计避免走弯路: 抗干扰体现在2个方面,一是硬件设计上,二是软件编写上。 这里重点提醒:在MCU设计中主要抗干扰设计是在硬件上,软件为辅。因为MCU的计算能力有限,所以要在硬件上花大工夫。 看看干扰的途径: 1:干扰信号干扰MCU的主要路径是通过I/O口,一是影响了MCU的数据采集,二是影响内部其它寄存器。 解决方法:后面讨论。 2:电源干扰:MCU虽然适应电压较宽(3-5。5V),但对于电源的波动却很敏感,比如说MCU可以在3V电压下稳定工作,但却不能在电压在3V-5。5V波动的情况下稳定工作。 解决方法:用电源稳压块,做好电源的滤波等工作,提示:一定要在电源旁路并上0。1UF 的瓷片电容来滤除高频干扰,因为电解电容对超过几十KHZ的高频干扰不起作用。 3:上下电干扰:但每个MCU系统在上电时候都要经过这样一个过程,所以要尤其注意。MCU虽然可以在3V电压下稳定工作,但并不是说它不能在3V以下的电压下工作,当然在如此低的电压下MCU是超不稳定状态的。在系统加电时候,系统电源电压是从0V上升到额定电压的,比如当电压到2V时候,MCU开始工作了,但这时是超不稳定的工作,极容易跑飞。 解决方法:1让MCU在电源稳定后才开始工作。PIC在片内集成了POR(内部上电延时复位),这功能一定要在配置位中打开。 外部上电延时复位电路。有多种形式,低成本的就是在复位脚接个阻容电路。高成本的是用专用芯片。这方面的资料特多,到处都可以查找。 最难排除的就是上面第一种干扰,并且干扰信号随时可以发生,干扰信号的强度也不尽相同。但它们也有相同点:干扰信号也遵循欧姆定律,干扰信号偶合路径无非是电磁干扰,一是电火花,二是磁场。 其中干扰最厉害的是电火花干扰,其次是磁场干扰。电火花干扰表现场合主要是附近有大功率开关、继电器、接触器、有刷电机等。磁场干扰表现场合主要是附近有大功率的交流电机、变压器等。 解决方法: 第一点:也是最经典的,就是在PCB步线和元件位置安排上下工夫,这中间学问很多,说几天都说不完^^。 二:综合考虑各I/O口的输入阻抗,采集速率等因素设计I/O口的外围电路。 一般决定一个I/O口的输入阻抗有3种情况: A:I/O口有上拉电阻,上拉电阻值就是I/O口的输入阻抗。 一般大家都用4K-20K电阻做上拉,(PIC的B口内部上拉电阻约20K)。 由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。 由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。 (如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。)

控制系统抗干扰设计与措施

控制系统抗干扰设计与措施 发表时间:2019-01-25T15:03:19.950Z 来源:《基层建设》2018年第35期作者:刘江山[导读] 摘要:控制系统的抗干扰能力关系到整个系统的可靠运行。 国网新疆电力有限公司电力科学研究院新疆维吾尔自治区乌鲁木齐市 830011 摘要:控制系统的抗干扰能力关系到整个系统的可靠运行。抗干扰设计可以通过设备选型和综合抗干扰设计进行,采用优质电源、铠装屏蔽电缆以及选择正确的接地方式等措施提高抗干扰能力。 关键词:控制系统、电磁干扰、抗干扰设计 1概述 随着科学技术的发展,控制系统在工业中的应用越来越广泛。控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力关系到整个系统的可靠运行。自动化系统中所使用的各种类型控制系统,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多在强电电路和设备所造成的恶劣电磁环境中运行。要提高控制系统可靠性,这就要求控制系统生产厂家用提高设备的抗干扰能力;同时在工程设计、安装调试和使用维护中引起高度重视,增强系统的抗干扰性能。 2控制系统中电磁干扰源及对系统的影响 2.1系统信号的干扰 控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损坏。对于隔离性能差的系统,还将导致信号间互相干扰。控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。 接地是提高电子设备电磁兼容性的有效手段之一。正确的接地,既能抑制电磁干扰,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使控制系统无法正常工作。 此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,形成干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响控制系统内逻辑电路和模拟电路的正常工作。控制系统工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响控制系统的逻辑运算和数据存储,造成数据混乱、程序故障或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 2.2控制系统内部的干扰 主要由系统内部元器件及电路间的互相电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器间的互相不匹配使用等。这属于控制系统制造厂对系统内部进行电磁兼容设计内容,但要选择具有较多应用业绩或经过考验的系统。 3控制系统工程的抗干扰设计为了保证系统在工业电磁环境中免受或减少内外电磁干扰,必须从设计阶段开始便采取抑制措施:抑制干扰源、切断或衰减电磁干扰的传播途径、提高装置和系统的抗干扰能力。 控制系统的抗干扰是一个系统工程,要求制造单位设计生产有较强抗干扰能力的产品,使用部门在工程设计、安装调试和运行维护中予以全面考虑,才能保证系统的电磁兼容性的运行可靠性。 3.1设备选型 在选择设备时,首先要选择有较高抗干扰能力的产品,尤其是抗外部干扰能力,如采用浮空技术、隔离性能好的控制系统系统;其次还应了解生产厂给出的抗干扰指标,如共模拟制比、差模拟制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作;另外是靠考查其在类似工作中的应用实绩,国内工业现场的电磁干扰相比欧美地区高许多,对系统抗干扰性能要求更高,因此要求进口设备的抗干扰能力更高。 3.2综合抗干扰设计 主要考虑来自系统外部的几种干扰抑制措施。主要包括:对控制系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆,分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还必须利用软件手段,进一步提高系统的安全可靠性。 4抗干扰措施 4.1采用性能优良的电源 在控制系统中,电源占有极重要的地位。电源干扰串入控制系统主要通道(如CPU电源、I/O电源等)、变送器供电电源和与控制系统具有直接电气连接的仪表供电电源等耦合进入的。现在,对于控制系统供电的电源,一般都采用隔离性能较好电源,而对于变送器和控制系统的供电电源,并没受到足够的重视,虽然采取了一定的隔离措施,但效果不大。所以,对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少控制系统的干扰。目前采用在线式不间断供电电源(UPS)供电,提高供电的安全可靠性。并且UPS还具有较强的干扰隔离性能,是一种理想电源。 4.2电缆的选择及敷设 为了减少动力电缆辐射电磁干扰,尤其是变频装置馈电电缆,采用了铠装屏蔽动力电缆,从而降低了动力线产生的电磁干扰。 不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层敷设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,以减少电磁干扰。 4.3正确选择接地方式,完善接地系统 接地的目的通常有2个,其一为了安全,其二为了抑制干扰。完善的接地系统是控制系统抗电磁干扰的重要措施之一。 信号源接地时,屏蔽层应在信号侧接地;不接地时,应在控制系统侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理。选择适当的接地处单点接地。

抗干扰措施

抗干扰技术 在电路设计当中,抗干扰占有一个特别重要的地位。在一切的电子技术当中,都是重点。(或许你会说你是玩单片机的,感觉没这方面的必要,其实是因为数字电路就两种信号,一个高电平,一个低电平,本身就有一定的抗干扰性能,而模拟信号是连续的,容易被干扰,这也是现在的产品都数字化的原因之一,但是玩单片机的就不玩模拟信号?加点抗干扰技术以防万一也没错吧!)举个例子来说,如果要放大一个微弱的信号,当电源不是很好,有较大的纹波,经常4.5V到6V之间跳,工频信号又很强,你的电路有没有什么防护措施,你想想,当这个信号到最后,还是你想要的信号吗?打个比方,如果唐僧身边没有那么多能干的徒弟,菩萨,神仙,他到得了西天吗?那些妖精就是干扰源,徒弟什么的就是抗干扰措施,当然唐僧自身也有一定的抗干扰能力。这就是我们要讲的抗干扰技术。(请各位懒人直接跳到最后的总结) 理论上来说,抗干扰分为3个方面:1、干扰源。2、传输途径。3、敏感原件。也就是我们需要下功夫的地方。按照优先考虑的顺序,也是如上的1、2、3。你要是能把干扰抑制在源头,扼杀在摇篮里,那就不用其他的措施了。但是干扰源来自四面八方,说不定自己后院还起火(比如运放的自激振荡),所以3个方面都是需要加强的。 一般来说,电源的干扰时最普遍的,所以电源做得好就是一切的基础,尽量降低电源的纹波系数,电容可以滤去交流信号,因此在一些用运放的地方电源和地端可以并联10uF、1uF、0.1uF的电容,以滤去不同频率的波。小电容通低频,大电容通高频,但注意电解电容不要正负极接反了,那样也会产生噪声。再就是布线时,电源线和地线要尽量粗点(减小导线的电阻),避免90°折线;模拟电路和数字电路用不同的电源,;数字电路与模拟电路避免使用公共地线;最多模拟地与数字地仅有一点相连,信号连接时,可用光电隔离,防止互相干扰。接地线越短越好,避免地线形成环路。 在传输途径上下功夫,各模块之间连接线尽量短,远离干扰;高频信号传输可使用同轴电缆或多芯屏蔽电缆,对可能的干扰源输出线进行滤波,产生噪声的导线与地线绞合,信号地线、其它可能造成干扰的电路的地线分开,敏感电路加屏蔽罩(屏蔽罩是要接地才有用的),把干扰源围闭在屏蔽罩内也是允许的。隔离也是常用的,隔离分变压器隔离,继电器隔离,光电隔离,光电隔离比较常用。 有的继承电路 而加强自身的抗干扰性能,大部分是靠原件本省的性质和所用的材料等等,我们自己难以决定。 总而言之,想要抗干扰,可采取以下措施: 1、提高电源的稳定性,减小纹波。各个模块的电源可以和地之间用不同的电容 相连。 2、在信号线容易受到干扰的地方,使用滤波电路。 3、各级模块相连的信号线尽量短,也可以用同轴电缆相连。 4、使用屏蔽盒屏蔽各个模块,或者干扰源。 5、模拟电路与数字电路使用不同的电源,信号之间使用光电隔离。 6、布线时,避免地线成环状,接线尽量短,但避免交叉、飞线。各种模块布局 时分开,模拟电路与数字电路分开。电源线与地线要尽量粗一点。原件排列

PLC控制系统抗干扰技术设计策略

PLC控制系统抗干扰技术设计策略 中文摘要 自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。 关键词PLC,industry automation,anti-interference,可编程控制器,自动化

Title:PLC control system anti-jamming technology design strategy Abstract Automation systems used in various types of PLC , some centrally installed in the control room , some installation on production sites and electrical equipment , most of them in a harsh electromagnetic environment formed by the strong electric circuits and power installations . Keywords PLC industry automation anti-interference Programmable controllers automation

如何解决单片机的抗干扰问题

如何解决单片机的抗干扰问题 随着单片机的发展,单片机在家用电器、工业自动化、生产过程控制、智能仪器仪表等领域的应用越来越广泛。然而处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备。这对我们单片机系统的可靠性与安全性构成了极大的威胁。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。 1 干扰对单片机应用系统的影响 1.1测量数据误差加大 干扰侵入单片机系统测量单元模拟信号的输入通道,叠加在测量信号上,会使数据采集误差加大。特别是检测一些微弱信号,干扰信号甚至淹没测量信号。 1.2 控制系统失灵 单片机输出的控制信号通常依赖于某些条件的状态输入信号和对这些信号的逻辑处理结果。若这些输入的状态信号受到干扰,引入虚假状态信息,将导致输出控制误差加大,甚至控制失灵。 1.3 影响单片机RAM存储器和E2PROM等 在单片机系统中,程序及表格、数据存在程序存储器EPROM或FLASH中,避免了这些数据受干扰破坏。但是,对于片内RAM、外扩RAM、E2PROM 中的数据都有可能受到外界干扰而变化。 1.4 程序运行失常 外界的干扰有时导致机器频繁复位而影响程序的正常运行。若外界干扰导致单片机程序计数器PC值的改变,则破坏了程序的正常运行。由于受干扰后的PC 值是随机的,程序将执行一系列毫无意义的指令,最后进入“死循环”,这将使输出严重混乱或死机。 2 如何提高我们设备的抗干扰能力 2.1 解决来自电源端的干扰

从六方面提高单片机系统的抗干扰能力

从六方面提高单片机系统的抗干扰能力 干扰问题,一直是电力设备仪器的一个难点。对于单片机也不例外。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。单片机的干扰问题,一般可以从六个方面来解决。 模拟信号采样干扰 单片机应用系统中通常要对一个或多个模拟信号进行采样,并将其通过A/D转换成数字信号进行处理。为了提高测量精度和稳定性,不仅要保证传感器本身的转换精度、传感器供电电源的稳定、测量放大器的稳定、A/D转换基准电压的稳定,而且要防止外部电磁感应噪声的影响,如果处理不当,微弱的有用信号可能完全被无用的噪音信号淹没。在实际工作中,可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术。 数字信号传输通道的干扰 数字输出信号可作为系统被控设备的驱动信号(如继电器等),数字输入信号可作为设备的响应回答和指令信号(如行程开关、启动按钮等)。数字信号接口部分是外界干扰进入单片机系统的主要通道之一。在工程设计中,对数字信号的输入/输出过程采取的抗干扰措施有:传输线的屏蔽技术,如采用屏蔽线、双胶线等;采用信号隔离措施;合理接地,由于数字信号在电平转换过程中形成公共阻抗干扰,选择合适的接地点可以有效抑制地线噪声。 硬件监控电路的干扰 在单片机系统中,为了保证系统可靠、稳定地运行,增强抗干扰能力,需要配置硬件监控电路,硬件监控电路从功能上包括以下几个方面: (1)上电复位:保证系统加电时能正确地启动; (2)掉电复位:当电源失效或电压降到某一电压值以下时,产生复位信号对系统进行复位; (3)电源监测:供电电压出现异常时,给出报警指示信号或中断请求信号; (4)硬件看门狗:当处理器遇到干扰或程序运行混乱产生“死锁”时,对系统进行复位。 解决来自电源端的干扰 单片机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电网上的各种干扰便会引入系统。除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。电源干扰主要有以下几类: 1.电源线中的高频干扰(传导骚扰) 供电电力线相当于一个接受天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰;解决这种干扰,一般通过接口防护;在接口增加滤波器、或者使用隔离电源模块解决。 2.感性负载产生的瞬变噪音(EFT) 切断大容量感性负载时,能产生很大的电流和电压变化率,从而形成瞬变噪音干扰,成为电磁干扰的主要形式;解决这种干扰,一般通过屏蔽线与双胶线,或在电源接口、信号接口进行滤波处理。这二种方法都需要在系统接地良好的情况下进行,滤波器、接口滤波电路都必须良好的接地,这样才能有效的将干扰泄放。 软件抗干扰原理及方法 尽管我们采取了硬件抗干扰措施,但由于干扰信号产生的原因错综复杂,且具有很大的

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

单片机系统抗干扰

单片机系统的抗干扰 抗干扰问题是单片机控制系统工程实现中须解决的关键问题之一。对干扰产生的机理及其抑制技术的研究,受到国内外普遍重视。大约在50年代,就开始了对电磁干扰的系统研究,逐步形成了以研究干扰的产生、传播、抑制和使装臵在其所处电磁环境中既不被干扰又不干扰周围设备,从而都能长期稳定运行等为主要内容的技术学科—电磁兼容技术、EMC技术。 按国家军用标准GJB 72—85《电磁场干扰和电磁兼容性名词术语》其定义为:“设备(分系统、系统)在共同的电磁环境中能一齐执行各自功能的共存状态。即:该设备不会由于受到处于同一电磁环境中其它设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其它设备(分系统、系统),因受其电磁发射而导致或遭受不允许的降级。” 一、干扰的作用机制及后果 干扰对单片机系统的作用可分为三个部分,第一个部位是输入系统,它使模拟信号失真,数字信号出错,系统如根据该信号做出的反应必然是错误的。第二个部位是输出系统,使各输出信号混乱,不能正常反映系统的真实输出量,从而导致一系列严重后果。第三个部位是单片机的内核,干扰使三总线上的数字信号错乱,使CPU工作出错。 对单片机系统而言,抗干扰有硬件和软件措施,硬件如设臵得当,可将绝大多数的干扰拒之门外,但仍然有部分的干扰窜入系统,引起不良后果,因此,软件抗干扰也是必不可少的。但软件抗干扰是以CPU的开销为代价的,如果没有硬件措施消除大部分的干扰,CPU将忙于应付,会影响到系统的实时性和工作效率。成功的抗干扰系统是由硬件和软件相结合而构成的。硬件抗干扰具有效率高的优点,但要增加系统的成本和体积,软件抗干扰具有投资低的优点,但要降低系统的工作效率。 由于应用系统的工作现场,往往有许多强电设备,它们的启动和工作过程将对单片机产生强烈的干扰;也由于被控制对象和被测信号往往分布在不同的地方,即整个控制系统的各部分之间有较远的距离,信号线和控制线均可能是长线,这样电磁干扰就很容易以不同的途径和方式混入应用系统之中。如果上述来源于生产现场的干扰称为系统内部的干扰源的话,那么还有来源于现场以外的所谓外部干扰源,如外电源(如雷电)对电网的冲击,外来的电磁辐射等。 不管哪种干扰源,对单片机的干扰总是以辐射、电源和直接传导等三种方式进入的,其途径主要是空间、电源和过程通道。按干扰的作用形式分类,干扰一般有串模干扰和共模干扰两种。抗干扰的方法则针对干扰传导的源特征和传导方式,采取抑制源噪声,切断干扰路径,和强化系统抵抗干扰等三种方式。 控制干扰源的发射,除了从源的机理着手降低其产生电磁噪声的电平之外,广泛的应用着屏蔽(包括隔离)、滤波与接地技术。屏蔽主要用于切断通过空间的静电耦合、感应耦合或交变电磁场耦合形成的电磁噪声传播途径。此三种耦合分别对应于采取的静电屏

噪声干扰PCB布线与微小信号的放大

电路中干扰、噪声的应对与微弱信号的测量 摘要:微弱信号常常被混杂在大量的噪音中。噪声的来源多种多样,有来自电路之间的,有电子元器件本身所具有的,也有来自外部环境的。这其中,又分为了好多不同种类,比如电子元器件的噪声,有低频时的1/f噪声,有高频的热噪声等等。本文中分别对其进行介绍。为了消除这些噪声,从而获得正确的信号,就需要对电路采取一些措施。在PCB布局布线时,就有好多细节非常值得我们注意。当然,元器件的选择也是很有讲究的。当然,仅仅对噪声干扰进行抑制并不足以达到检测微弱信号的目的,为此,在设计检测微弱信号的电路时,又有很多重要的方法和注意点值得参考。只有做好这些,才能从噪声中得到可靠、稳定的信号。关键词:噪声;PCB布线;微弱信号检测 一、电路中的干扰与噪声 噪声是电路中相对于信号而言的一些干扰、无用的信号噪声干扰的产生原因有许多,如雷击、周边负载设备的开关机、发电机、无线电通讯等。在对微弱信号处理时,噪声的影响非常重要,必须对其采取措施,否则有用信号将淹没其中,而无法被检测到。具体到噪声来源、噪声特点等方面,噪声有许许多多的类别,下面分别简要对其进行介绍。 1.1低频噪声 低频噪声主要是由于内部的导电微粒不连续造成的。特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。 1.2半导体器件产生的散粒噪声 由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电压时,耗尽区的变化相反。当电流流经势垒区时,这种变化会引起流过势垒区的电流产生微小波动,从而产生电流噪声。其产生噪声的大小与温度、频带宽度△f成正比。 1.3高频热噪声 高频热噪声是由于导电体内部电子的无规则运动产生的。温度越高,电子运动就越激烈。导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的

高频电路中电源噪声分析及其干扰消除对策

高频电路中电源噪声分析及其干扰消除对策 一、电源噪声的分析 电源噪声是指由电源自身产生或受扰感应的噪声。其干扰表现在以下几个方面: 1)电源本身所固有的阻抗所导致的分布噪声。高频电路中,电源噪声对高频信 号影响较大。因此,首先需要有低噪声的电源。干净的地和干净的电源是同样重要的。电源特性如图1所示。 从图1可以看出,理想情况下的电源是没有阻抗的,因此其不存在噪声。但 是,实际情况下的电源是具有一定阻抗的,并且阻抗是分布在整个电源上的,因 此,噪声也会叠加在电源上。所以应该尽可能减小电源的阻抗,最好有专门的电源 层和接地层。在高频电路设计中,电源以层的形式设计一般比以总线的形式设计要好,这样回路总可以沿着阻抗最小的路径走。此外,电源板还得为PCB上所有产生 和接受的信号提供一个信号回路,这样可以最小化信号回路,从而减小噪声。 2)共模场干扰。指的是电源与接地之间的噪声,它是因为某个电源由被干扰电 路形成的环路和公共参考面上引起的共模电压而造成的干扰,其值要视电场和磁场 的相对的强弱来定。如图2。

在该通道上,Ic的下降会在串联的电流回路中引起共模电压,影响接收部分。如果磁场占主要地位,在串联地回路中产生的共模电压的值是: 式(1)中的ΔB为磁感应强度的变化量,Wb/m2;S为面积,m2。 如果是电磁场,已知它的电场值时,其感应电压为 式(2)一般适用于L=150/F以下,F为电磁波频率MHz。 如果超过这个限制的话,最大感应电压的计算可简化为: 3)差模场干扰。指电源与输入输出电源线间的干扰。在实际PCB设计中,笔者 发现其在电源噪声中所占的比重很小,因此这里可以不作讨论。 4)线间干扰。指电源线间的干扰。在两个不同的并联电路之间存在着互电容C 和互感M1-2时,如果干扰源电路中有电压VC和电流IC,则被干扰电路中将出现: a. 通过容性阻抗耦合的电压为 式(4)中RV是被干扰电路近端电阻和远端电阻的并联值。 b.通过感性耦合的串联电阻 如果干扰源中有共模噪声,则线间干扰一般表现为共模和差模两种形式。 5)电源线耦合。是指交流或直流电源线受到电磁干扰后,电源线又将这些干扰 传输到其他设备的现象。这是电源噪声间接地对高频电路的干扰。需要说明的是:

单片机和数字电路怎么抗干扰

单片机和数字电路怎么抗干扰 形成干扰的基本要素有三个: (1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。 抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。(类似于传染病的预防) 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 按干扰的传播路径可分为传导干扰和辐射干扰两类。 所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,

相关文档
相关文档 最新文档