文档库 最新最全的文档下载
当前位置:文档库 › 分析芯片封装技术的研究

分析芯片封装技术的研究

分析芯片封装技术的研究
分析芯片封装技术的研究

分析芯片封装技术的研究

我们经常听说某某芯片采用什么什么的封装方式,在我们的电脑中,存在着各种各样不同处理芯片,那么,它们又是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?在本文中,作者将为你介绍几个芯片封装形式的特点和优点。

一、DIP双列直插式封装

DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:(1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。(2)芯片面积与封装面积之间的比值较大,故体积也较大。Intel系列CPU中8088就采用这种封装形式,缓存和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。PFP方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:(1)适用于SMD表面安装技术在PCB电路板上安装布线。

(2)适合高频使用。(3)操作方便,可靠性高。(4)芯片面积与封装面积之间的比值较小。Intel

系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2~5圈。安装时,将芯片插入专门的PGA 插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。PGA封装具有以下特点:(1)插拔操作更方便,可靠性高。

(2)可适应更高的频率。Intel系列CPU中,80486和Pentium、Pentium Pro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA封装技术。BGA 一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

BGA封装技术又可详分为五大类:(1)PBGA基板:一般为2~4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均采用这种封装形式。(2)CBGA基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片的安装方式。

Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。(3)FCBGA

基板:硬质多层基板。(4)TBGA基板:基板为带状软质的1~2层PCB电路板。(5)CDPBGA基板:指封装中央有方型低陷的芯片区。

BGA封装具有以下特点:(1)I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。(2)虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。(3)信号传输延迟小,适应频率大大提高。(4)组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城公司开始着手研制塑封球栅面阵列封装的芯片。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒大不超过1.4倍。

CSP封装又可分为四类:(1)传统导线架形式,代表厂商有富士通、日立、Rohm、高士达等等。(2)硬质内插板型,代表厂商有摩托罗拉、索尼、东芝、松下等等。(3)软质内插板型,其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。(4)晶圆尺寸封装:有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研

发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:(1)满足了芯片I/O引脚不断增加的需要。(2)芯片面积与封装面积之间的比值很小。(3)极大地缩短延迟时间。CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电、数字电视、电子书、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽等新兴产品中。

六、MCM多芯片模块

为解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用SMD技术组成多种多样的电子模块系统,从而出现MCM 多芯片模块系统。MCM具有以下特点:(1)封装延迟时间缩小,易于实现模块高速化。(2)缩小整机/模块的封装尺寸和重量。(3)系统可靠性大大提高。

电子元件封装大全及封装常识

修改者:林子木 电子元件封装大全及封装常识 一、什么叫封装 封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连 接.封装形式是指安装半导体集成电路芯片用的外壳。它不仅起着安装、固定、 密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线 连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连 接,从而实现内部芯片与外部电路的连接。因为芯片必须与外界隔离,以防止空 气中的杂质对芯片电路的腐蚀而造成电气性能下降。另一方面,封装后的芯片也 更便于安装和运输。由于封装技术的好坏还直接影响到芯片自身性能的发挥和与 之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比 值越接近1 越好。封装时主要考虑的因素: 1、芯片面积与封装面积之比为提高封装效率,尽量接近1:1; 2、引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性 能; 3、基于散热的要求,封装越薄越好。 封装主要分为DIP 双列直插和SMD 贴片封装两种。从结构方面,封装经历了最 早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP 公司开发出了SOP 小外型封装,以后逐渐派生出SOJ(J 型引脚小外形封装)、 TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、 TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电 路)等。从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作 条件需求的电路如军工和宇航级别仍有大量的金属封装。 封装大致经过了如下发展进程: 结构方面:TO->DIP->PLCC->QFP->BGA ->CSP; 材料方面:金属、陶瓷->陶瓷、塑料->塑料; 引脚形状:长引线直插->短引线或无引线贴装->球状凸点; 装配方式:通孔插装->表面组装->直接安装 二、具体的封装形式 1、SOP/SOIC 封装 SOP 是英文Small Outline Package 的缩写,即小外形封装。SOP 封装技术由 1968~1969 年菲利浦公司开发成功,以后逐渐派生出SOJ(J 型引脚小外形封 装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、 TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电 路)等。 SOP(Small Out-Line package) 也叫SOIC,小外形封装。表面贴装型封装之一, 引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料和陶瓷两种。SOP 除了用 于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不 超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距 1.27mm,引脚数从8~44。另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配 高度不到1.27mm 的SOP 也称为TSOP。还有一种带有散热片的SOP。

芯片封装全套整合(图文精选对照)

芯片封装方式大全 各种IC封装形式图片 BGA Ball Grid Array EBGA 680L LBGA 160L PBGA 217L Plastic Ball Grid Array SBGA 192L QFP Quad Flat Package TQFP 100L SBGA SC-70 5L SDIP SIP Single Inline Package

TSBGA 680L CLCC CNR Communicatio n and Networking Riser Specification Revision 1.2 CPGA Ceramic Pin Grid Array DIP Dual Inline Package SO Small Outline Package SOJ 32L SOJ SOP EIAJ TYPE II 14L SOT220 SSOP 16L

DIP-tab Dual Inline Package with Metal Heatsink FBGA FDIP FTO220 Flat Pack HSOP28SSOP TO18 TO220 TO247 TO264 TO3

ITO220 ITO3p JLCC LCC LDCC LGA LQFP PCDIP TO5 TO52 TO71 TO72 TO78 TO8 TO92

PGA Plastic Pin Grid Array PLCC 详细规格PQFP PSDIP LQFP 100L 详细规格METAL QUAD 100L 详细规格PQFP 100L 详细规格TO93 TO99 TSOP Thin Small Outline Package TSSOP or TSOP II Thin Shrink Outline Package uBGA Micro Ball Grid Array uBGA Micro Ball Grid

芯片常用封装及尺寸说明

A、常用芯片封装介绍 来源:互联网作者: 关键字:芯片封装 1、BGA 封装(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配 LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚 LSI 用的一种封装。封装本体也可做得比 QFP(四侧引脚扁平封装)小。例如,引脚中心距为 1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚 QFP 为 40mm 见方。而且 BGA 不用担心 QFP 那样的引脚变形问题。该封装是美国 Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为 1.5mm,引脚数为225。现在也有一些 LSI 厂家正在开发500 引脚的 BGA。 BGA 的问题是回流焊后的外观检查。 现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国 Motorola 公司把用模压树脂密封的封装称为 OMPAC,而把灌封方法密封的封装称为 GPAC(见 OMPAC 和 GPAC)。 2、BQFP 封装(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和 ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见 QFP)。

芯片封装大全(图文对照)

封装有两大类;一类是通孔插入式封装(through-hole package);另—类为表面安装式封装(surface moun te d Package)。每一类中又有多种形式。表l和表2是它们的图例,英文缩写、英文全称和中文译名。图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。 DIP是20世纪70年代出现的封装形式。它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。 但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到很大限制。 为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引出方式,因而引脚数可高达500条~600条。 随着表面安装技术(surface mounted technology, SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。它的引脚节距也从DIP的2.54 mm减小到1.77mm。后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。 QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。引脚节距进一步降低到1.00mm,以至0.65 mm和0.5 mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。但在管脚数要求不高的情况下,SOP以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。 方形扁平封装-QFP (Quad Flat Package) [特点] 引脚间距较小及细,常用于大规模或超大规模集成电路封装。必须采用SMT(表面安装技术)进行焊接。操作方便,可靠性高。芯片面积与封装面积的比值较大。 小型外框封装-SOP (Small Outline Package) [特点] 适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。引脚离芯片较远,成品率增加且成本较低。芯片面积与封装面积比值约为1:8 小尺寸J型引脚封装-SOJ (Smal Outline J-lead) 有引线芯片载体-LCC (Leaded Chip Carrier) 据1998年统计,DIP在封装总量中所占份额为15%,SOP在封装总量中所占57%,QFP则占12%。预计今后DIP的份额会进一步下降,SOP也会有所下降,而QFP会维持原有份额,三者的总和仍占总封装量的80%。 以上三种封装形式又有塑料包封和陶瓷包封之分。塑料包封是在引线键合后用环氧树脂铸塑而成,环氧树脂的耐湿性好,成本也低,所以在上述封装中占有主导地位。陶瓷封装具有气密性高的特点,但成本较高,在对散热性能、电特性有较高要求时,或者用于国防军事需求时,常采用陶瓷包封。 PLCC是一种塑料有引脚(实际为J形引脚)的片式载体封装(也称四边扁平J形引脚封装QFJ (quad flat J-lead package)),所以采用片式载体是因为有时在系统中需要更换集成电路,因而先将芯片封装在一种载体(carrier)内,然后将载体插入插座内,载体和插座通过硬接触而导通的。这样在需要时,只要在插座上取下载体就可方便地更换另一载体。 LCC称陶瓷无引脚式载体封装(实际有引脚但不伸出。它是镶嵌在陶瓷管壳的四侧通过接触而导通)。有时也称为CLCC,但通常不加C。在陶瓷封装的情况下。如对载体结构和引脚形状稍加改变,载体的引脚就可直接与PCB板进行焊接而不再需要插座。这种封装称为LDCC即陶瓷有引脚片式载体封装。 TAB封装技术是先在铜箔上涂覆一层聚酰亚胺层。然后用刻蚀方法将铜箔腐蚀出所需的引脚框架;再在聚酰亚胺层和铜层上制作出小孔,将金属填入铜图形的小孔内,制作出凸点(采用铜、金或镍等材料)。由这些凸点与芯片上的压焊块连接起来,再由

(完整版)元器件封装大全

元器件封装大全 A. 名称Axial 描述轴状的封装 名称 AGP (Accelerate Graphical Port) 描述加速图形接口 名称 AMR (Audio/MODEM Riser) 描述声音/调制解调器插卡 B. 名称 BGA (Ball Grid Array) 描述 球形触点阵列,表面贴 装型封装之一。在印刷基板 的背面按阵列方式制作出 球形凸点用以代替引脚,在 印刷基板的正面装配LSI 芯片,然后用模压树脂或灌 封方法进行密封。也称为凸 点阵列载体(PAC) 名称 BQFP (quad flat package with bumper) 描述 带缓冲垫的四侧引脚扁 平封装。QFP封装之一,在 封装本体的四个角设置突 (缓冲垫)以防止在运送过 程中引脚发生弯曲变形。 C.陶瓷片式载体封装 名称 C- (ceramic) 描述 表示陶瓷封装的记号。 例如,CDIP 表示的是陶瓷 DIP。 名称C-BEND LEAD 描述名称CDFP 描述

名称Cerdip 描述 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。 名称CERAMIC CASE 描述 名称 CERQUAD (Ceramic Quad Flat Pack) 描述 表面贴装型封装之一, 即用下密封的陶瓷QFP,用 于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热 性比塑料QFP 好,在自然空 冷条件下可容许 1.5~2W 的功率 名称CFP127 描述 名称 CGA (Column Grid Array)描述 圆柱栅格阵列,又称柱栅阵列封装 名称 CCGA (Ceramic Column Grid Array) 描述陶瓷圆柱栅格阵列 名称CNR 描述CNR是继AMR之后作为INTEL的标准扩展接口 名称CLCC 描述 带引脚的陶瓷芯片载体,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G.

集成电路芯片封装技术

集成电路芯片封装技术(书) 第1章 1、封装定义:(狭义)利用膜技术及细微加工技术,将芯片及其他要素在框架或基板上布置、 粘帖固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构 成整体立体结构的工艺 (广义)将封装体与基板连接固定,装配成完整的系统或电子设备,并确保整个系统综合性能的工程 2、集成电路的工艺流程:芯片设计(上)芯片制造(中)封装测试(占50%)(下)(填空) 3、芯片封装实现的功能:传递电能传递电路信号提供散热途径结构保护与支持 4、封装工程的技术层次(论述题):P4图 晶圆Wafer -> 第零层次Die/Chip -> 第一层次Module -> 第二层次Card ->第三层次Board -> 第四层次Gate 第一层次该层次又称芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定、电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层组装进行链接的模块 第二层次将数个第一层次完成的封装与其他电子元器件组成一个电路卡的工艺 第三层次将数个第二层次完成的封装组装成的电路卡组合成在一个主电路板上使之成为一个部件或子系统的工艺 第四层次将数个子系统组装成为一个完整电子产品的工艺过程 5、封装的分类与特点: 按照封装中组合集成电路芯片的数目——单芯片封装(SCP)多芯片封装(MCP) 按照密封材料——高分子材料封装陶瓷材料封装 按照器件与电路板互连方式——引脚插入型(PTH)表面贴装型(SMT) 6、DCA(名词解释):芯片直接粘贴,即舍弃有引脚架的第一层次封装,直接将IC芯片粘贴到基板上再进行电路互连 7、TSV硅通孔互连封装 HIC混合集成电路封装 DIP双列直插式引线封装

芯片封装的主要步骤

芯片封装的主要步骤 板上芯片(Chip On Board, COB)工艺过程首先是在基底表面用导热环氧树脂(一般用掺银颗粒的环氧树脂)覆盖硅片安放点,然后将硅片直接安放在基底表面,热处理至硅片牢固地固定在基底为止,随后再用丝焊的方法在硅片和基底之间直接建立电气连接。 裸芯片技术主要有两种形式:一种是COB技术,另一种是倒装片技术(Flip Chip)。板上芯片封装(COB),半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB是最简单的裸芯片贴装技术,但它的封装密度远不如TAB和倒片焊技术。 COB主要的焊接方法: (1)热压焊 利用加热和加压力使金属丝与焊区压焊在一起。其原理是通过加热和加压力,使焊区(如AI)发生塑性形变同时破坏压焊界面上的氧化层,从而使原子间产生吸引力达到“键合”的目的,此外,两金属界面不平整加热加压时可使上下的金属相互镶嵌。此技术一般用为玻璃板上芯片COG。 (2)超声焊 超声焊是利用超声波发生器产生的能量,通过换能器在超高频的磁场感应下,迅速伸缩产生弹性振动,使劈刀相应振动,同时在劈刀上施加一定的压力,于是劈刀在这两种力的共同作用下,带动AI丝在被焊区的金属化层如(AI膜)表面迅速摩擦,使AI丝和AI膜表面产生塑性变形,这种形变也破坏了AI层界面的氧化层,使两个纯净的金属表面紧密接触达到原子间的结合,从而形成焊接。主要焊接材料为铝线焊头,一般为楔形。 (3)金丝焊 球焊在引线键合中是最具代表性的焊接技术,因为现在的半导体封装二、三极管封装都采用AU线球焊。而且它操作方便、灵活、焊点牢固(直径为25UM的AU丝的焊接强度一般为0.07~0.09N/点),又无方向性,焊接速度可高达15点/秒以上。金丝焊也叫热(压)(超)声焊主要键合材料为金(AU)线焊头为球形故为球焊。 COB封装流程 第一步:扩晶。采用扩张机将厂商提供的整张LED晶片薄膜均匀扩张,使附着在薄膜表面紧密排列的LED晶粒拉开,便于刺晶。 第二步:背胶。将扩好晶的扩晶环放在已刮好银浆层的背胶机面上,背上银浆。点银浆。

半导体集成电路封装技术试题汇总(李可为版)

半导体集成电路封装技术试题汇总 第一章集成电路芯片封装技术 1. (P1)封装概念:狭义:集成电路芯片封装是利用(膜技术)及(微细加工技术),将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构成整体结构的工艺。 广义:将封装体与基板连接固定,装配成完整的系统或电子设备,并确保整个系统综合性能的工程。 2.集成电路封装的目的:在于保护芯片不受或者少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。 3.芯片封装所实现的功能:①传递电能,②传递电路信号,③提供散热途径,④结构保护与支持。 4.在选择具体的封装形式时主要考虑四种主要设计参数:性能,尺寸,重量,可靠性和成本目标。 5.封装工程的技术的技术层次? 第一层次,又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层次的组装进行连接的模块元件。第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。第三层次,将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部件或子系统的工艺。第四层次,将数个子系统组装成为一个完整电子厂品的工艺过程。 6.封装的分类?

按照封装中组合集成电路芯片的数目,芯片封装可分为:单芯片封装与多芯片封装两大类,按照密封的材料区分,可分为高分子材料和陶瓷为主的种类,按照器件与电路板互连方式,封装可区分为引脚插入型和表面贴装型两大类。依据引脚分布形态区分,封装元器件有单边引脚,双边引脚,四边引脚,底部引脚四种。常见的单边引脚有单列式封装与交叉引脚式封装,双边引脚元器件有双列式封装小型化封装,四边引脚有四边扁平封装,底部引脚有金属罐式与点阵列式封装。 7.芯片封装所使用的材料有金属陶瓷玻璃高分子 8.集成电路的发展主要表现在以下几个方面? 1芯片尺寸变得越来越大2工作频率越来越高3发热量日趋增大4引脚越来越多 对封装的要求:1小型化2适应高发热3集成度提高,同时适应大芯片要求4高密度化5适应多引脚6适应高温环境7适应高可靠性 9.有关名词: SIP :单列式封装 SQP:小型化封装 MCP:金属鑵式封装 DIP:双列式封装 CSP:芯片尺寸封装 QFP:四边扁平封装 PGA:点阵式封装 BGA:球栅阵列式封装 LCCC:无引线陶瓷芯片载体 第二章封装工艺流程 1.封装工艺流程一般可以分为两个部分,用塑料封装之前的工艺步骤成为前段操作,在成型之后的工艺步骤成为后段操作

芯片封装技术

芯片封装技术 1封装技术简介 芯片的封装技术种类实在是多种多样,诸如DIP,PQFP,TSOP,TSSOP,PGA,BGA,QFP,TQFP,QSOP,SOIC,SOJ,PLCC,WAFERS......一系列名称看上去都十分繁杂,其实,只要弄清芯片封装发展的历程也就不难理解了。芯片的封装技术已经历经好几代的变迁,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近,适用频率越来越高,耐温性能越来越好,以及引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等,都是看得见的变化。 1.1 DIP封装 20世纪70年代时,芯片封装流行的还是双列直插封装,简称 DIP (Dual ln-line Package) 。DIP封装在当时具有适合PCB(印刷电路板)的穿孔安装,具有比TO型封装易于对PCB布线以及操作较为方便等一些特点,其封装的结构形式也很多,包括多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP等等。但是衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。比如一颗采用40根I / O引脚塑料双列直插式封装(PDIP)的芯片为例,其芯片面积/封装面积=(3 x3)/(15.24 x 50)=1:86,离l相差很远。不难看出,这种封装尺寸远比芯片大不少,说明封装效率很低,占去了很多有效安装面积。 1.1.1 介绍 DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏管脚。DIP封装结构形式有:多层陶瓷双列直插式DIP,单

集成电路芯片封装技术

引线键合应用范围: 低成本、高可靠、高产量等特点使得它成为芯片互连的主要工艺方法,用于下列封装:: 1、陶瓷和塑料BGA、单芯片或者多芯片 2、陶瓷和塑料(CerQuads and PQFPs) 3、芯片尺寸封装(CSPs) 4、板上芯片(COB) 硅片的磨削与研磨:硅片的磨削与研磨是利用研磨膏以及水等介质,在研磨轮的作用下进行的一种减薄工艺,在这种工艺中硅片的减薄是一种物理的过程。 硅片的应力消除:为了堆叠裸片,芯片的最终厚度必须要减少到了30μm甚至以下。用于3D互连的铜制层需要进行无金属污染的自由接触处理。应力消除加工方法,主要有以下4种。 硅片的抛光与等离子体腐蚀:研磨减薄工艺中,硅片的表面会在应力作用下产生细微的破坏,这些不完全平整的地方会大大降低硅片的机械强度,故在进行减薄以后一般需要提高硅片的抗折强度,降低外力对硅片的破坏作用。在这个过程中,一般会用到干式抛光或者等离子腐蚀。 干式抛光是指不使用水和研磨膏等介质,只使用干式抛光磨轮进行干式抛光的去除应力加工工艺。等离子腐蚀方法是指使用氟类气体的等离子对工件进行腐蚀加工的去除应 力加工工艺。 T AIKO工艺:在实际的工程应用中,TAIKO工艺也是用 于增加硅片研磨后抗应力作用机械强度的一种方法。在此 工艺中对晶片进行研削时,将保留晶片外围的边缘部分(约 3mm左右),只对圆内进行研削薄型化,通过导入这项技 术,可实现降低薄型晶片的搬运风险和减少翘曲的作用, 如图所示。 激光开槽加工:在高速电子元器件上逐步被采用的低介电常数(Low-k)膜及铜质材料,由于难以使用普通的金刚石磨轮刀片进行切割加工,所以有时无法达到电子元件厂家所要求的加工标准。为此,迪思科公司的工程师开发了可解决这种问题的加工应用技术。减少应力对硅片的破坏作用 先在切割道内切开2条细槽(开槽),然后再使用磨轮刀片在2条细槽的中间区域实施全切割加工。通过采用该项加工工艺,能够提高生产效率,减少甚至解决因崩裂、分层(薄膜剥离)等不良因素造成的加工质量问题。 DFL7160将短脉冲激光聚焦到晶片表面后进行照射。激光脉冲被Low-k膜连续吸收,当吸收到一定程度的热能后,Low-k膜会瞬间汽化。由于相互作用的原理,被汽化的物质会消耗掉晶片的热能,所以可以进行热影响极少的加工。 GaAs化合物半导体的薄型晶片切割:GaAs晶片因为材料比较脆,在切割时容易发生破裂或缺损,所以难以提高通常磨轮刀片切割的进给速度。如果利用激光全切割技术,加工进给速度可以达到磨轮刀片切割进给速度的10倍以上,从而提高生产效率。(进给速度仅为一例。实际操作时,因加工晶片的不同会有所差异。)

集成电路芯片封装技术试卷

《微电子封装技术》试卷 一、填空题(每空2分,共40分) 1.狭义的集成电路芯片封装是指利用精细加工技术及,将芯片及其它要素在框架或基板上,经过布置、粘贴及固定等形成整体立体结构的工艺。 2.通常情况下,厚膜浆料的制备开始于粉末状的物质,为了确保厚膜浆料达到规定的要求,可用颗粒、固体粉末百分比含量、三个参数来表征厚膜浆料。 3.利用厚膜技术可以制作厚膜电阻,其工艺为将玻璃颗粒与颗粒相混合,然后在足够的温度/时间下进行烧结以使两者烧结在一起。 4.芯片封装常用的材料包括金属、陶瓷、玻璃、高分子等,其中封装能提供最好的封装气密性。 5.塑料封装的成型技术包括喷射成型技术、、预成型技术。 6.常见的电路板包括硬式印制电路板、、金属夹层电路板、射出成型电路板四种类型。 7. 在元器件与电路板完成焊接后,电路板表面会存在一些污染,包括非极性/非离子污染、、离子污染、不溶解/粒状污染4大类。 8. 陶瓷封装最常用的材料是氧化铝,用于陶瓷封装的无机浆料一般在其中添加玻璃粉,其目的是调整氧化铝的介电系数、,降低烧结温度。 9. 转移铸膜为塑料封装最常使用的密封工艺技术,在实施此工艺过程中最常发生的封装缺陷是现象。 10. 芯片完成封装后要进行检测,一般情况下要进行质量和两方面的检测。 11. BGA封装的最大优点是可最大限度地节约基板上的空间,BGA可分为四种类型:塑料球栅阵列、、陶瓷圆柱栅格阵列、载带球栅阵列。 12. 为了获得最佳的共晶贴装,通常在IC芯片背面镀上一层金的薄膜或在基板的芯片承载架上先植入。 13. 常见的芯片互连技术包括载带自动键合、、倒装芯片键合三种。 14. 用于制造薄膜的技术包括蒸发、溅射、电镀、。 15. 厚膜制造工艺包括丝网印刷、干燥、烧结,厚膜浆料的组分包括可挥发性组分和不挥发性组分,其中实施厚膜浆料干燥工艺的目的是去除浆料中的绝大部分。 16. 根据封装元器件的引脚分布形态,可将封装元器件分为单边引脚、双边引脚、与底部引脚四种。 17. 载带自动键合与倒装芯片键合共同的关键技术是芯片的制作工艺,这些工艺包括蒸发/溅射、电镀、置球、化学镀、激光法、移植法、叠层制作法等。 18. 厚膜浆料必须具备的两个特性,一是用于丝网印刷的浆料为具有非牛顿流变能力的粘性流体;二是由两种不同的多组分相组成,即和载体相。 19. 烧结为陶瓷基板成型的关键步骤,在烧结过程中,最常发生的现象为生胚片的现

芯片封装类型图解

集成电路封装形式介绍(图解) BGA BGFP132 CLCC CPGA DIP EBGA 680L FBGA FDIP FQFP 100L JLCC BGA160L LCC

LDCC LGA LQFP LQFP100L Metal Qual100L PBGA217L PCDIP PLCC PPGA PQFP QFP SBA 192L TQFP100L TSBGA217L TSOP

CSP SIP:单列直插式封装.该类型的引脚在芯片单侧排列,引脚节距等特征和DIP基本相同.ZIP:Z型引脚直插式封装.该类型的引脚也在芯片单侧排列,只是引脚比SIP粗短些,节距等特征也和DIP基本相同. S-DIP:收缩双列直插式封装.该类型的引脚在芯片两侧排列,引脚节距为1.778mm,芯片集成度高于DIP. SK-DIP:窄型双列直插式封装.除了芯片的宽度是DIP的1/2以外,其它特征和DIP相同.PGA:针栅阵列插入式封装.封装底面垂直阵列布置引脚插脚,如同针栅.插脚节距为2.54mm或1.27mm,插脚数可多达数百脚. 用于高速的且大规模和超大规模集成电路. SOP:小外型封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,字母L状.引脚节距为 1.27mm. MSP:微方型封装.表面贴装型封装的一种,又叫QFI等,引脚端子从封装的四个侧面引出,呈I字形向下方延伸,没有向外突出的部分,实装占用面积小,引脚节距为1.27mm. QFP:四方扁平封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈L字形,引脚节距为 1.0mm,0.8mm,0.65mm,0.5mm,0.4mm,0.3mm,引脚可达300脚以上. SVP:表面安装型垂直封装.表面贴装型封装的一种,引脚端子从封装的一个侧面引出,引脚在中间部位弯成直角,弯曲引脚的端部和PCB键合,为垂直安装的封装.实装占有面积很小.引脚节距为0.65mm,0.5mm. LCCC:无引线陶瓷封装载体.在陶瓷基板的四个侧面都设有电极焊盘而无引脚的表面贴装型封装.用于高 速,高频集成电路封装. PLCC:无引线塑料封装载体.一种塑料封装的LCC.也用于高速,高频集成电路封装. SOJ:小外形J引脚封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈J字形,引脚节距为 1.27mm. BGA:球栅阵列封装.表面贴装型封装的一种,在PCB的背面布置二维阵列的球形端子,而不采用针脚引脚. 焊球的节距通常为1.5mm,1.0mm,0.8mm,和PGA相比,不会出现针脚变形问题. CSP:芯片级封装.一种超小型表面贴装型封装,其引脚也是球形端子,节距为0.8mm,0.65mm,0.5mm等. TCP:带载封装.在形成布线的绝缘带上搭载裸芯片,并和布线相连接的封装.和其他表面贴装型封装相比,芯片更薄,引脚节距更小,达0.25mm,而引脚数可达500针以上. 介绍:

芯片封装技术

先进的芯片尺寸封装(CSP)技术及其发展前景 摘要:概述了芯片尺寸封装(CSP)的基本结构和分类,通过与传统封装形式进行对比,指出了 CSP技术具有的突出优点,最后举例说明了它的最新应用,并展望了其发展前景。 关键词:微电子封装技术;芯片尺寸封装;表面组装技术中图分类号:TN305.94;TN407 文献标识码:A文章编号:1003-353X(2003)12-0039-05 1 引言汽车电子装置和其他消费类电子产品的飞速发展,微电子封装技术面临着电子产品“高性价比、高可靠性、多功能、小型化及低成本”发展趋势带来的挑战和机遇。QFP(四边引脚扁平封装)、TQFP(塑料四边引脚扁平封装)作为表面安装技术(SMT)的主流封装形式一直受到业界的青睐,但当它们在0.3mm引脚间距极限下进行封装、贴装、焊接更多的I/O引脚的VLSI时遇到了难以克服的困难,尤其是在批量生产的情况下,成品率将大幅下降。因此以面阵列、球形凸点为I/O 的BGA(球栅阵列)应运而生,以它为基础继而又发展为芯片尺寸封装(Chip Scale PACKAGE,简称 CSP)技术。采用新型的CSP技术可以确保VLSI在高性能、高可靠性的前提下实现芯片的最小尺寸封装(接近裸芯片的尺寸),而相对成本却更低,因此符合电子产品小型化的发展潮流,是极具市场竞争力的高密度封装形式。 CSP技术的出现为以裸芯片安装为基础的先进封装技术的发展,如多芯片组件(MCM)、芯片直接安装(DCA),注入了新的活力,拓宽了高性能、高密度封装的研发思路。在MCM技术面临裸芯片难以储运、测试、老化筛选等问题时,CSP技术使这种高密度封装设计柳暗花明。 2 CSP 技术的特点及分类 2.1 CSP之特点 根据J-STD-012标准的定义,CSP是指封装尺寸不超过裸芯片1.2倍的一种先进的封装形式[1] 。CSP实际上是在原有芯片封装技术尤其是BGA小型化过程中形成的,有人称之为μBGA (微型球栅阵列,现在仅将它划为CSP的一种形式),因此它自然地具有BGA封装技术的许多优点。 1)封装尺寸小,可满足高密封装 CSP是目前体积最小的VLSI封装之一,引脚数(I/O数)相同的CSP封装与QFP、BGA尺寸比较情况见表1[2]。由表1可见,封装引脚数越多的CSP尺寸远比传统封装形式小,易于实现高密度封装,在IC规模不断扩大的情况下,竞争优势十分明显,因而已经引起了IC制造业界的关注。 一般地,CSP封装面积不到0.5mm节距QFP的 1/10,只有BGA的1/3~1/10[3]。在各种相同尺寸的芯片封装中,CSP可容纳的引脚数最多,适宜进行多引脚数封装,甚至可以应用在I/O数超过2000 的高性能芯片上。例如,引脚节距为0.5mm,封装尺寸为40×40的QFP,引脚数最多为304根,若要增加引脚数,只能减小引脚节距,但在传统工艺条件下,QFP 难以突破0.3mm的技术极限;与 CSP相提并论的是BGA封装,它的引脚数可达600~1000根,但值得重视的是,在引脚数相同的情况下,CSP的组装远比BGA容易。(2)电学性能优良 CSP的内部布线长度(仅为0.8~1.0mm)比QFP或BGA的布线长度短得多 [4],寄生引线电容(<0.001mΩ)、引线电阻(<0.001nH)及引线电感(<0.001pF)均很小,从而使信号传输延迟大为缩短。CSP的存取时间比QFP或BGA短1/ 5~1/6左右,同时CSP的抗噪能力强,开关噪声只有DIP(双列直插式封装)的1/2。这些主要电学性能指标已经接近裸芯片的水平,在时钟频率已超过双G的高速通信领域,LSI芯片的CSP将是十分理想的选择。 (3)测试、筛选、老化容易MCM技术是当今最高效、最先进的高密度封装之一,其技术核心是采用裸芯片安装,优点是无内部芯片封装延迟及大幅度提高了组件封装密度,因此未来市场令人乐观。但它的裸芯片测试、筛选、老化问题至今尚未解决,合格裸芯片的获得比较困难,导致成品率相当低,制造成本很高[4];而CSP则可进行全面老化、筛选、测试,并且操作、修整方便,能获得真正的KGD芯片,在目前情况下用CSP替代裸芯片安装势在必

集成电路芯片封装技术复习题

¥ 一、填空题 1、将芯片及其他要素在框架或基板上布置,粘贴固定以及连接,引出接线端子并且通过可塑性绝缘介质灌封固定的过程为狭义封装 ;在次基础之上,将封装体与装配成完整的系统或者设备,这个过程称之为广义封装。 2、芯片封装所实现的功能有传递电能;传递电路信号;提供散热途径;结构保护与支持。 3、芯片封装工艺的流程为硅片减薄与切割、芯片贴装、芯片互连、成型技术、去飞边毛刺、切筋成形、上焊锡、打码。 4、芯片贴装的主要方法有共晶粘贴法、焊接粘贴法、导电胶粘贴发、玻璃胶粘贴法。 5、金属凸点制作工艺中,多金属分层为黏着层、扩散阻挡层、表层金保护层。 6、成型技术有多种,包括了转移成型技术、喷射成型技术、预成型技术、其中最主要的是转移成型技术。 ' 7、在焊接材料中,形成焊点完成电路电气连接的物质叫做焊料;用于去除焊盘表面氧化物,提高可焊性的物质叫做助焊剂;在SMT中常用的可印刷焊接材料叫做锡膏。 8、气密性封装主要包括了金属气密性封装、陶瓷气密性封装、玻璃气密性封装。 9、薄膜工艺主要有溅射工艺、蒸发工艺、电镀工艺、

光刻工艺。 10、集成电路封装的层次分为四级分别为模块元件(Module)、电路卡工艺(Card)、主电路板(Board)、完整电子产品。 11、在芯片的减薄过程中,主要方法有磨削、研磨、干式抛光、化学机械平坦工艺、电化学腐蚀、湿法腐蚀、等离子增强化学腐蚀等。 12、芯片的互连技术可以分为打线键合技术、载带自动键合技术、倒装芯片键合技术。 ^ 13、DBG切割方法进行芯片处理时,首先进行在硅片正面切割一定深度切口再进行背面磨削。 14、膜技术包括了薄膜技术和厚膜技术,制作较厚薄膜时常采用丝网印刷和浆料干燥烧结的方法。 15、芯片的表面组装过程中,焊料的涂覆方法有点涂、 丝网印刷、钢模板印刷三种。 16、涂封技术一般包括了顺形涂封和封胶涂封。 二、名词解释 1、芯片的引线键合技术(3种) ] 是将细金属线或金属带按顺序打在芯片与引脚架或封装基板的焊垫上而形成电路互连,包括超声波键合、热压键合、热超声波键合。 2、陶瓷封装

芯片封装种类

1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚BGA 仅为 31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。10、DIC(dual in-line ceramic package) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line)

先进封装技术发展趋势

先进封装技术发展趋势 2009-09-27 | 编辑: | 【大中小】【打印】【关闭】 作者:Mahadevan Iyer, Texas Instruments, Dallas 随着电子产品在个人、医疗、家庭、汽车、环境和安防系统等领域得到应用,同时在日常生活中更加普及,对新型封装技术和封装材料的需求变得愈加迫切。 电子产品继续在个人、医疗、家庭、汽车、环境和安防系统等领域得到新的应用。为获得推动产业向前发展的创新型封装解决方案(图1),在封装协同设计、低成本材料和高可靠性互连技术方面的进步至关重要。 图1. 封装技术的发展趋势也折射出应用和终端设备的变化。 在众多必需解决的封装挑战中,需要强大的协同设计工具的持续进步,这样可以缩短开发周期并增强性能和可靠性。节距的不断缩短,在单芯片和多芯片组件中三维封装互连的使用,以及将集成电路与传感器、能量收集和生物医学器件集成的需求,要求封装材料具有低成本并

易于加工。为支持晶圆级凸点加工,并可使用节距低于60μm凸点的低成本晶圆级芯片尺寸封装(WCSP),还需要突破一些技术挑战。最后,面对汽车、便携式手持设备、消费和医疗电子等领域中快速发展的MEMS器件带来的特殊封装挑战,我们也要有所准备。 封装设计和建模 建模设计工具已经在电子系统开发中得到长期的使用,这包括用于预测基本性能,以保证性能的电学和热学模型。借助热机械建模,可以验证是否满足制造可行性和可靠性的要求。分析的目标是获得第一次试制时就达到预期性能的设计。随着电子系统复杂性的增加以及设计周期的缩短,更多的注意力聚焦于如何将建模分析转换到设计工程开始时使用的协同设计工具之中,优化芯片的版图和架构并进行必要的拆分,以最低成本的付出获得最高的性能。 为实现全面的协同设计,需要突破现今商业化建模工具中存在的一些限制。目前的工具从CAD数据库获得输入,通常需要进行繁杂的操作来构建用于物理特性计算的网格。不同的工具使用不同IP的特定方法来划分网格,因而对于每种工具需要独立进行网格的重新划分。重复的网格划分会浪费宝贵的设计时间,也会增加建模成本。网格重新划分也限制了在这三种约束下进行多个参数折中分析的可行性。

2020年芯片封装大全(图文对照)

芯片封装大全(图文对照)

封装有两大类;一类是通孔插入式封装(through-holepackage);另—类为表面安装式封装(surfacemountedPackage)。每一类中又有多种形式。表l和表2是它们的图例,英文缩写、英文全称和中文译名。图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。 DIP是20世纪70年代出现的封装形式。它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。 但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节 距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到 很大限制。 为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引 出方式,因而引脚数可高达500条~600条。 随着表面安装技术(surfacemounted technology,SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。它的引脚节距也从DIP的2.54mm减小到1.77mm。后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。 QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。引脚节距进一步降低到1.00mm,以至0.65mm和0.5mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。但在管脚数要求不高的情况下,SOP 以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。 方形扁平封装-QFP(QuadFlatPackage) [特点]引脚间距较小及细,常用于大规模或超大规模集成电路封装。必须采用SMT(表面安装技术)进行焊接。操作方便,可靠性 高。芯片面积与封装面积的比值较大。 小型外框封装-SOP(SmallOutlinePackage) [特点]适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。引脚离芯片较远,成品率增加且成本较低。芯片面积与封装面积比值约为1:8 小尺寸J型引脚封装-SOJ(SmalOutlineJ-lead) 有引线芯片载体-LCC(LeadedChipCarrier) 据1998年统计,DIP在封装总量中所占份额为15%,SOP在封装总量中所占57%,QFP则占12%。预计今后DIP的份额会进一步下降,SOP也会有所下降,而QFP会维持原有份额,三者的总和仍占总封装量的80%。 以上三种封装形式又有塑料包封和陶瓷包封之分。塑料包封是在引线键合后用环氧树脂铸塑而成,环氧树脂的耐湿性好,成本也低,所以在上述封装中占有主导地位。陶瓷封装具有气密性高的特点,但成本较高,在对散热性能、电特性有较高要求时,或者用于国防军事需求时,常采用陶瓷包封。 PLCC是一种塑料有引脚(实际为J形引脚)的片式载体封装(也称四边扁平J形引脚封装QFJ(quadflatJ-leadpackage)),所以

相关文档