文档库 最新最全的文档下载
当前位置:文档库 › 数值计算论文

数值计算论文

数值计算论文
数值计算论文

高斯消去法在电路分析中的应用

—利用计算机求解一些复杂电路的参数

雷嘉豪

电子信息工程学院自动化一班100401102

摘要

求解线性代数方程组的数值方法有很多,但归纳起来,可分为两类:一种是直接法,另一种为迭代法。直接法在不计运算过程的舍入误差时,经过有限次运算,可得到方程组的精确解。而本文将介绍这种方法之一的高斯消去法在求解一些电路分析问题时的应用,以及利用计算机更为方便的解出其参数。

关键词:高斯消去法;电路分析;计算机

Gaussian elimination circuit analysis

- Using the computer to solve some complicated circuit

Abstract

Many numerical methods for solving linear algebraic equations, but summed up, can be divided into two categories: one is the direct method, another iterative method. Directly rounding error in excluding Operation op, after a finite number of times, the exact solution of the equations can be obtained. This article will introduce this method is one of the Gaussian elimination in solving the problem of circuit analysis, as well as using the computer more convenient to solve its parameters

Keywords: Gaussian elimination, circuit analysis, computer programming

目录

摘要 (1)

Abstract (2)

引言 (4)

1 高斯消去法 (5)

1.1 高斯消去法背景及定义 (5)

1.2 高斯消去法简单应用 (7)

2 利用计算机编程求解高斯消去法 (8)

2.1 计算步骤 (8)

2.2 编程步骤 (8)

3 高斯列主元消去法子程序 (9)

3 电路分析中的运用 (10)

结论 (12)

参考文献 (12)

引言

在传统的电路分析方法中,一些回路网孔比较简单的电路,使用一般方法可以较方便的解得结果,但在一些复杂的电路中,要求解其参数,将耗费很大的计算量,在这时就可用高斯消去法来简化运算,必要时也可借助计算机来完成本文介绍系统分析法。系统分析法是以基尔霍夫电流定律 ( Kirchhoff' s current law简称KCL)、基尔霍夫电压定律( Kirchhoff' s voltage law简称KVL)以及支路元件电压、电流约束关系( voltage-current relation简称 VCR)为理论基础 ,以所选的电路分析变量为方程变量 ,列写电路方程的一种电路分析方法 ;根据所选的电路变量的不同 ,系统分析法包括 :支路分析法 (分支路电流分析法与支路电压分析法 ) ,回路电流分析法 (当所选的独立回路为网孔时 ,也称网孔分析法 ) ,节点电压分析法。

1 高斯消去法

1.1 高斯消去法背景及定义

高斯消去法是一个古老的求解线性方程组的直接法,由它改进变形又得到了一些其他的方法,如

选主元消去法,三角分解法等。仍然是目前计算机上解低阶稠密矩阵方程组的常用有效方法。 高斯消去法是建立在逐次消去未知元的基础上,它的基本做法是把方程组 (1)用逐次消去未知元的方法化为其等价的三角形方程组

?

?????????????=+++=+++=+++n n nm n n n n n n b x a x a x a b x a x a x a b x a x a x a 221

22222212111212111 (1)

?

??

????

???????==++=+++n n nm n n n n b x u b x u x u b x u x u x u 2222211212111 (2)

这个过程 面的回代,这个过程称为回代过程,这就是高斯消去法。

由线性代数知识知道,无论是消元过程还是回代过程都不需要对未知元或方程做真正的运算,只要对他们的系数和右端项做运算就足够了,换句话说,只要把方程组的系数和右端项从方程周分离出来,那么,消去法完全可通过增广矩阵的行的初等变换来实现,其消去过程的基本步骤示意如下:

????

???

?

??

?

????

?????

???→??→?

??

?

????

?

?

?

?????

????????????

??????????→??

?

?

?

?

?

?

??

?

??????

??????

??→???

??????????????????????-

第第二步

第一步10000000n

然后自下而上进行回代,按上述的步骤做,即便与编程又节约计算工作量。具体的计算方法常分为顺序高斯消去法、列主元素高斯消去法和全主元素高斯消去法。

1.2 高斯消去法简单应用

例题:

求解方程组???

??-=--=+-=++4

438

5522321

321321x x x x x x x x x 的根。

解:

?????=-==???→???

????????------?→?????

??????----?→??????

?????----?→???????????----11215.0006.52.48.2081156.52.48.208.16.14.1081154431521281154431811552121

23x x x 回代可得:

2 利用计算机编程求解高斯消去法

2.1 计算步骤

对于n 元线性方程组:

?????

??=++++=++++=++++n n nm n n n n n n n b

x a x a x a x a b x a x a x a x a b x a x a x a x a 33221

12232322212111313212111

第一步:对方程组确定il,使

n

i a a a il

il il

≤≤=1max

,为第一主元,交换第一个

和i 个方程,利用第一个方程将后n-1个方程中的1x 消去。

第二步:在第二列中寻找,重复以上过程,消去2x 。n-1步后原方程组变为上三角形方程组,利用回代可求得结果。

2.2 编程步骤

对于增广矩阵:[]b A , (1)对k=1,2,3,4, ,n-1

[1]选主元,确定r,使n

i a a il il

≤≤=1max

[2]交换[])

()

(,k k b

A

中的r,k 两行

[3]对i=k+1,k+2, ,n,计算kk

ik

ik a a m =

[4]k ik i i kj ik ij ij b m b b a m a a -??←-??←

,

2.3 高斯列主元消去法子程序

subroutine gauss(N,A,B) dimension A(N,N),B(N)

do 60K=1,N-1

P=0

do 30 I=K,N

If(abs(A(I,K)).LE.abs(P))goto 30 30 continue

do 40 J=K,N

T=A(K,J)

A(K,J)=A(I0,J)

40 A(I0,J)=T

T=B(K)

B(K)=B(I0)

B(I0)=T

B(K)=B(K)/A(K,K)

do 60 J=K+1,N

A(K,J)=A(K,J)/A(K,K)

do 50 I=K+1,N

50 A(I,J)=A(I,J)-A(I,K)*A(K,J) 60 B(J)=B(J)-A(J,K)*B(K)

B(N)=B(N)/A(N,N)

do 80 K=1,N-1

I=N-K

S=0

do 70 J=I+1,N

70 S=S+A(I,J)*B(J)

80 B(I)=B(I)-S

end

3 电路分析中的运用

在如图所示电路中,求电流强度54321,,,,i i i i i

.

解:由基尔霍夫定律和一些电路基本知识可以得出以下方程组

????

?????=+-=+-=-+-=--+-=-0

305045150152510051038310

3285243432532121i i i i i i i i i i i i i

即为????

?

?

?

?

???

??

?

?

?I -I -I --I ---I -030005004515000

0015251000

5010383100

00328

由此题可以看出,方程组的规模将随电路规模的增大而增大,从而计算量也会越来越大,我们可以借助计算机去完成这样的工作。

高斯消去法求解此电路方程的主程序为

dimension A(5,5),B(5) open (1,file ’dianlu.dat ’) data

A/28.0,-3.0,0.0,0.0,0.0,-3.0,38.0,-10.0,0.0,-5.0,0.0,-10.0,25.0,-15.0,

0.0,0.0,0.0,-15.0,45.0,0.0,0.0,-5.0,0.0,0.0,30.0/ data B/10.0,0.0,0.0,0.0,0.0/ call gauss(5,A,B) Write(*,*)(B(i),i=1,5) Write(1,*)(B(i),i=1.5) end

通过计算便可以求得

?????????-=-=-=-==03

6074765.5036074769.5026822431.1023644862.33607477.05

4321

E i E i E i E i i

结论

通过以上计算可以看出,高斯消去法在求解方程组时可以省去很多步骤,使计算更加简单,在计算更复杂的一些方程组时,我们还可以借助电脑编程来完成计算可以省去很多麻烦。而且在分析一些参数较多的电路时,只要列出方程组,利用电脑就可以很快的求出各个参数,省去了很多计算上的麻烦。

参考文献

[]1张新燕,吴晓颖用高斯消去法解正弦稳态电路.新疆师范大学学报(自然科学版), 2001年第03期 .

[]2FORTRAN数值方法及其在物理学中应用(5)

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

数值分析_数值计算小论文

Runge-Kutta 法的历史发展与应用 摘要Runge-Kutta 法是极其重要的常微分方程数值解法,本文仅就其起源及发展脉络加以简要研究。对Runge 、Heun 以及Kutta 等人的贡献做出适当评述,指出Runge-Kutta 方法起源于Euler 折线法。同时对Runge-Kutta 法的应用做简要研究。 关键词 Euler 折线法 标准四阶Runge-Kutta 法 应用 一、发展历史[1] 1.1 Euler 折线法 在微分方程研究之初,瑞士数学家L.Euler(1707.4—1783.9)做出了开创性的工作。他和其他一些数学家在解决力学、物理学问题的过程中创立了微分方程这门学科。在常微分方程方面,Euler 在1743年发表的论文中,用代换kx y e =给出了任意阶常系数线性微分方程的古典解法,最早引入了“通解”和“特解”的概念。 1768年,Euler 在其有关月球运行理论的著作中,创立了广泛用于求初值问题 00 (,), (1.1)() (1.2)y f x y x x X y x a '=<≤??=? 的数值解的方法,次年又把它推广到二阶方程。欧拉的想法如下:我们选择0h >,然后在00x x x h ≤≤+情况下用解函数的切线 0000()()(,)l x y x x f x y =+- 代替解函数。这样对于点 10x x h =+ 就得到 1000(,)y y hf x y =+。 在11(,)x y 重复如上的程序再次计算新的方向就会得到所谓的递推公式: 11, (,),m m m m m m x x h y y hf x y ++=+=+

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析小论文

“数值分析”课程 第一次小论文 郑维珍2015210459 制研15班(精密仪器系)内容:数值分析在你所在研究领域的应用。 要求:1)字数2500以上;2)要有摘要和参考文献;3)截至10.17,网络学堂提交,过期不能提交! 数值分析在微流控芯片研究领域的应用 摘要: 作者在硕士期间即将参与的课题是微流控芯片的研制。当前,微流控芯片发展十分迅猛,而其中涉及到诸多材料学、电子学、光学、流体力学等领域的问题,加上微纳尺度上的尺寸效应,理论研究和数值计算都显得困难重重。发展该领域的数值计算,成为重中之重。本文从微流体力学、微传热学、微电磁学、微结构力学等分支入手,简要分析一下数值分析方法在该领域的应用。 微流控芯片(Microfluidic Chip)通常又称芯片实验室(Lab-On-a-Chip ),它是20世纪90年代初由瑞士的Manz和Widmer提出的[1-2],它通过微细加工技术,将微管道、微泵、微阀、微电极、微检测元件等功能元件集成在芯片材料(基片)上,完成整个生化实验室的分析功能,具有减少样品的消耗量、节省反应和分析的时间、高通量和便携性等优点。 通常一个微流控芯片系统都会执行一个到多个微流体功能,如泵、混合、热循环、扩散和分离等,精确地操纵这些流体过程是微流控芯片的关键。因此它的研究不仅需要生命科学、MEMS、材料学、电子学、光学、流体力学等多学科领域的基础理论的支持,还需要很多数学计算。

1)微流体力学计算[3]: 对微管里的流体动力的研究主要包含了以下几个方面:(1)微管内流体的粘滞力的研究;(2)微管内气流液流的传热活动;(3)在绝热或传热的微管内两相流的流动和能量转换。这三方面的研究涵盖了在绝热、传热和多相转换条件下,可压缩和不可压缩流体在规则或不规则的微管内的流动特性研究。 由此,再结合不同的初值条件和边界条件,我们可以得到各种常微分方程或偏微分方程,而求解这些方程,就是需要很多数值分析的知识。例如,文献[4]里就针对特定的初值和边界条件,由软件求解了Navier-Stodes方程: 文献[4]专门有一章节讨论了该方程的离散化和数值求解。 微流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及微尺寸效应下的湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将宏观流体力学的基本模型,结合微纳效应,直接用于模拟各种实际流动,解决微纳芯片生产制造中提出来的各种问题。 2)微传热方程计算: 常微分、偏微分方程的数值求解应用较为广泛的另一问题就是微流体传热问题。由传热学的相关知识,我们可以达到如下的传热学基本方程: 该方程在二维情况下经过简化和离散,可以得到如教材第三章所讲的“五点差分格式”的方程组,从而采取数值方法求解[5]。 除此之外,微结构芯片在加工和制造过程中也会有很多热学方面的问题,例如文献[6]所反映的注塑成型工艺中,就有大量的类似问题的解决。 3)微电磁学计算: 由于外加电场的作用,电渗流道中会产生焦耳热效应。许多研究者对电渗流道中的焦耳热效应进行了数值模拟研究。新加坡南洋理工大学的G. Y. Tang等在电渗流模型的基础上,考虑了与温度有关的物理系数,在固一液祸合区域内利用

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

中北大学数值分析小论文

中北大学 《数值分析》 常微分方程初值问题的数值解法 专业: 班级: 学号: 姓名: 日期: 2012.12.26

常微分方程初值问题的数值解法 摘 要 微分方程的数值解法在科学技术及生产实践等多方面应用广泛. 文章分析了构造常微分方程初值问题数值解法的三种常用基本方法,差商代替导数法,数值积分法及待定系数法,推导出了Euler 系列公式及三阶龙格-库塔公式,指出了各公式的优劣性及适用条件,并对Euler 公式的收敛性、稳定性进行了分析。 Abstract The numerical solution of differential equations is widely used in science, technology, production practices and many other fields. This paper analyzed three kinds of basic methods for constructing numerical solutions for initial value problem of ordinary differential equations :difference quotient instead of derivative method, numerical integral method and undetermined coefficients method. At the same time, the paper deduces the Euler series formula and the classical third order Runge-Kutta formula. In addition, the paper pointed out the advantages and disadvantages of each formula and application condition, it also analyzed the convergence and stability of the Euler formula. 1.引言 科学技术及实际生产实践中的许多问题都可归结为微分方程的求解问题,使用较多的是常微分方程初值问题的求解。对于一阶常微分方程的初值问题 000dy /dx f (x,y),y(x )y ,x x b ==<<,其中f 为已知函数,0y 是初始值。如 果函数f 关于变量y 满足Lipschitz 条件,则初值问题有唯一解。只有当f 是一些特殊类型的函数时,才能求出问题的解析解,但一般情况下都满足不了生产实践与科学技术发展的需要,因此通常求其数值解法。 2.主要算法 数值解法是一种离散化的方法,可以求出函数的精确解在自变量一系列离散点处的近似值。基本思想是离散化,首先要将连续区间离散化,对连续区域[]0x ,b 进行剖分01n 1n x x x x b -<<Λ<<=,n n 1n h x x +=-为步长;其次将其函离散

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

数值分析论文

插值方法总结 摘 要:本文是对学过的插值方法进行了总结使我们更清楚的知道那一种方法适合那一种型。 关键词:插值;函数;多项式;余项 (一)Lagrange 插值 1.Lagrange 插值基函数 n+1个n 次多项式 ∏≠=--= n k j j j k j k x x x x x l 0)( n k ,,1,0 = 称为Lagrange 插值基函数 2.Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0 = 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商

i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 2.Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为 0f ,1f ,…,n f ,导数值为'0f ,' 1f ,…,' n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(' '1212 ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα 称为Hermite 插值基函数,)(x l j 是Lagrange 插值基函数,若],[22b a C f n +∈,插值误差为 220) 22(12)()()! 22() ()()(n x n n x x x x n f x H x f --+= -++ ξ,),()(b a x x ∈=ξξ (四)分段插值 设在区间],[b a 上给定n+1个插值节点 b x x x a n =<<<= 10 和相应的函数值0y ,1y ,…,n y ,求作一个插值函数)(x ?,具有性质

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值分析论文

题目:论数值分析在数学建模中的应用 学院: 机械自动化学院 专业: 机械设计及理论 学号: 学生姓名: 日期: 2011年12月5日

论数值分析在数学建模中的应用 摘要 为了满足科技发展对科学研究和工程技术人员用数学理论解决实际的能力的要求,讨论了数值分析在数学建模中的应用。数值分析不仅应用模型求解的过程中,它对模型的建立也具有较强的指导性。研究数值分析中插值拟合,解线性方程组,数值积分等方法在模型建立、求解以及误差分析中的应用,使数值分析作为一种工具更好的解决实际问题。 关键词 数值分析;数学建模;线性方程组;微分方程 the Application of Numerical Analysis in Methmetical Modeling Han Y u-tao 1 Bai Y ang 2 Tian Lu 2 Liu De-zheng 2 (1 College of Science ,Tianjin University of Commerce ,Tianjin ,300134 2 College of Science ,Tianjin University of Commerce ,Tianjin ,300134) Abstract In order to meet the technological scientific researchers who use mathematical theory to solve practical problems, the use of numerical analysis in mathematical modeling is discussed.Numerical analysis not only solve the model,but also relatively guide the model.Research on some numerical methods in numerical analysis which usually used in mathmetical modeling and error analysis will be a better way to solve practical problems. Key Words Numerical Analysis ;Mathematical Modeling; Linear Equations ;differential equation 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2. 数值分析在模型建立中的应用 在实际中,许多问题所研究的变量都是离散的形式,所建立的模型也是离散的。例如,对经济进行动态的分析时,一般总是根据一些计划的周期期末的指标值判断某经济计划执行的如何。有些实际问题即可建立连续模型,也可建立离散模型,但在研究中,并不能时时刻刻统计它,而是在某些特定时刻获得统计数据。例如,人口普查统计是一个时段的人口增长量,通过这个时段人口数量变化规律建立离散模型来预测未来人口。另一方面,对常见的微分方程、积分方程为了求解,往往需要将连续模型转化成离散模型。将连续模型转化成离散模型,最常用的方法就是建立差分方程。 以非负整数k 表示时间,记k x 为变量x 在时刻k 的取值,则称k k k x x x -=?+1为k x 的一阶差分,称k k k k k x x x x x +-=??=?++1222)(为k x 的二阶差分。类似课求出k x 的n 阶差分k n x ?。由k ,k x ,及k x 的差分给出的方程称为差分方程[2]。例如在研究节食与运动模型时,发现人们往往采取节食与运动方式消耗体内存储的脂肪,引起体重下降,达到减肥目的。通常制定减肥计划以周为时间单位比较方便,所以采用差分方程模型进行讨论。记第k 周末体重为)(k w ,第k 周吸收热量为)(k c ,热量转换系数α,代谢消耗系数β,在不考虑运动情况下体重变化的模型

数值计算方法设计论文

课程设计(论文) 题目: 三次样条插值问题 学院: ___ 理学院 _ 专业: __ _ 数学与应用数学 班级:数学08-2班 学生姓名: 魏建波 学生学号: 080524010219 指导教师:李文宇 2010年12月17日

课程设计任务书

目录 摘要……………………………………………………………………… 一、前言………………………………………………………………… (一)Lagrange插值的起源和发展过程……………………………………… (二)本文所要达到的目的……………………………………………………… 二、插值函数…………………………………………………………… (一)函数插值的基本思想…………………………………………………… (二)Lagrange插值的构造方法……………………………………………… 三、MATLAB程序………………………………………………………… (一)Lagrange程序…………………………………………………………… (二)龙格程序………………………………………………………………… 四、理论证明…………………………………………………………… 五、综述……………………………………………………………………谢辞………………………………………………………………………参考文献…………………………………………………………………

摘要

前言 要求:500字以上,宋体小四,行距20磅,主要内容写该算法的产生及发展、应用领域等。 题目 整体要求:报告页数,正文在8页以上 字体:宋体小四(行距20磅) 内容:1、理论依据 2、问题描述 3、问题分析 4、求解计算(程序) 5、结论 注:(1)页码编号从正文页开始 (2)标题可根据情况自己适当改动 示例见下: 2判别…………………… 2.1 判……………… 2.1.1 判别……………… 所谓的判别分析,………………………………………………方法[3]。 2.1.2 判………………………… 常用的有四种判别方法:…………………………………………………步判别法[6]。 1. 马氏………………

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值分析小论文

基于MATLAB曲线拟合对离散数据的处理和研究 摘要:曲线拟合是数值分析中的一种普遍且重要的方法,求解拟合曲线的方法也有很多,这里主要介绍利用MATLAB曲线拟合工具箱对离散数据点做你和处理,并与利用最小二乘法求相应的拟合曲线的方法做对比,突出MATLAB曲线拟合工具箱的优点,并阐述了其适用的范围,最后通过利用MATLAB曲线拟合工具箱对实例中离散数据点的拟合来具体说明它的使用方法和优点。 关键字:数值分析;MATLAB;曲线拟合;最小二乘法 一问题探究 在很多的实际情况中,两个变量之间的关系往往很难用具体的表达式把它表示出来,通常只能通过实际测量得到一些互不相同的离散数据点,需需要利用这些已知的数据点估计出两个变量的关系或工件的具体轮廓,并要得到任意未知数据点的具体数据,这个过程就需要用到拟合或差值方法来实现,这里主要讨论拟合的方法。 曲线拟合可以通过MATLAB编程来完成,通常为了达到更好的讷河效果需要做多次重复修改,对于非线性曲线拟合还需要编写复杂的M-文件,运用MATLAB曲线拟合工具箱来实现离散数据点的曲线拟合是一种直观并且简洁的方法。 二曲线拟合的最小二乘法理论 假设给定了一些数据点(Xi,Yi),人们总希望找到这样的近似的函数,它既能反映所给数据的一般趋势,又不会出现较大的偏差,并且要使构造的函数与被逼近函数在一个给定区间上的偏差满足某种要求。这种思想就是所谓的“曲线拟合”的思想。 曲线拟合和差值不同,若要求通过所有给定的数据点是差值问题,若不要求曲线通过所有给定的数据点,而只要求反映对象整体的变化趋势,拟合问题,曲线拟合问题最常用的解决方法是线性最小二乘法[1],步骤如下: 第一步:先选定一组函数r1(x),r2(x),…,rm(x),m

数值分析学习方法

第一章 1霍纳(horner)方法: 输入=c + bn*c bn?1*c b3*c b2*c b1*c an an?1 an?2 ……a2 a1 a0 bn bn?1 bn?2 b2 b1 b0 answer p(x)=b0 该方法用于解决多项式求值问题=anxn+an?1xn?1+an?2xn?2+……+a2x2+a1x+a0 ? 2 注:p为近似值 p(x) 绝对误差: ?|ep?|p?p ?||p?p rp? |p| 相对误差: ?|101?d|p?p rp?? |p|2 有效数字: (d为有效数字,为满足条件的最大整数) 3 big oh(精度的计算): o(h?)+o(h?)=o(h?); o(hm)+o(hn)=o(hr) [r=min{p,q}]; o(hp)o(hq)=o(hs) [s=q+p]; 第二章 2.1 求解x=g(x)的迭代法用迭代规则 ,可得到序 列值{}。设函数g 满足 y 定义在得 。如果对于所有 x ,则函数g 在 ,映射y=g(x)的范围 内有一个不动点; 此外,设 ,存在正常数k<1,使 内,且对于所有x,则函数g 在 内有唯一的不动点p。 ,(ii)k是一个正常数, 。如果对于所有 定理2.3 设有(i)g,g ’(iii ) 如果对于所有x在

这种情况下,p成为排斥不动点,而且迭代显示出局部发散 性。波理 尔 查 . 诺 二 分 法 ( 二 分 法 定) <收敛速度较慢> 试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线l与 x轴的交点(c,0)> 应注意 越来越 小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法 . f(pk?1) 其中k=1,2,……证明:用 f(pk?1) 牛顿—拉夫森迭代函数:pk?g(pk?1)?pk?1? 泰勒多项式证明 第三章线性方程组的解法对于给定的解线性方程组ax=b a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2 ? an1x1 ? an2x2 ? ? ? annxn ? bn 一gauss elimination (高斯消元法第一步forward elimination 第二步 substitution 二lu factorization 第一步 a = lu 原方程变为lux=y ; 第二步令ux=y,则ly = b由下三角解出y;第三步 ux=y,又上三角解出x ; 三iterative methods(迭代法) a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2? ) back 初始值 0,x0,?,x0x1n2 四 jacobi method 1.选择初始值 2.迭代方程为 0,x0,?,x0x1n2 k?1? x1k?1 ? x2

数值分析小论文论文

对于牛顿型方法的改进 对于函数f(x),假定已给出极小点* x 的一个较好的近似点0x ,则在0x 处将f(x)泰勒展开到二次项,得二次函数()x φ。按极值条件'()0x φ=得()x φ的极小点,用它作为*x 的第一个近似点。然后再在1x 处进行泰勒展开,并求得第二个近似点2x 。如此迭代下去,得到一维情况下的牛顿迭代公式'k 1''k ()() k k f x x x f x +=- (k=0,1,2,…) 对于多元函数f(x),设k x 为f(x)极小点*x 的一个近似值,在k x 处将f(x)进行泰勒展开,保留到二次项得21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ?≈=+?-+ -?-, 式中 2()k f x ?—f(x)在k x 处的海赛矩阵。 设1k x +为()x ?的极小点,它作为f(x)极小点*x 的下一个近似点,根据极值必要条件 1()0k x ?+?=即21()()()k k k k f x f x x x +?+?-得1 21()()k k k k x x f x f x -+??=-???? (k=0,1,2,…) 上式为多元函数求极值的牛顿法迭代公式。 对于二次函数,f(x)的上述泰勒展开式不是近似的,而是精确地。海赛矩阵是一个常矩阵,其中各元素均为常数。因此,无论从任何点出发,只需一步就可以找到极小点。因为若某一迭代法能使二次型函数在有限次迭代内达到极小点,则称此迭代方法是二次收敛的,因此牛顿方法是二次收敛的。 从牛顿法迭代公式的推演中可以看到,迭代点的位置是按照极值条件确定的,其中并未含有沿下降方向搜寻的概念。因此对于非二次函数,如果采用上述牛顿法公式,有时会使函数值上升,即出现1>k k f f +(x )(x ) 现象。为此对上述牛顿方法进行改进,引入数学规划法的概念。 如果把1 2()()k k k d f x f x -??=-????看作是一个搜索方向,则采取如下的迭代公式 121()()k k k k k k k k x x a d x a f x f x -+??=-=-???? (k=0,1,2,…) 式中 k a —沿牛顿方向进行以为搜索的最佳步长k a 可通过如下极小化过程求得1()()()min k k k k k k k a f x f x a d f x a d +=+=+。由于此种方法每次迭代都在牛顿方向上进 行一维搜索,这就避免了迭代后函数值上升的现象,从而保持了牛顿法二次收敛的特性,而对初始点的选取并没有苛刻的要求。其计算步骤如下:

数值计算方法试题集及答案要点

《数值计算方法》复习试题 一、填空题: 1、 ?? ??? ?????----=410141014A ,则A 的LU 分解为 A ? ???????? ???=????????? ?? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(, 0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求 得?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(, 1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对 1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公

相关文档