文档库 最新最全的文档下载
当前位置:文档库 › 常微分方程习题(4)

常微分方程习题(4)

常微分方程习题(4)
常微分方程习题(4)

常微

班级: 姓名: 学号: 一、填空题 1、( )称为变量分离方程,它有积分因子( )。

2、当( )时,方程0),(),(=+dy y x N dx y x M 称为恰当方程,或称全微分方程。

3、函数),(y x f 称为在矩形域R上关于y 满足利普希兹条件,如果( )。 4、对毕卡逼近序列,())()(1≤--x x k k ??。

5、解线性方程的常用方法有( )。 6、若),,2,1)((n i t X i =为齐线性方程的n 个线性无关解,则这一齐线性方程的所有解可表为( )。

7、方程组x t A x )(='( )。

8、若)(t φ和)(t ψ都是x t A x )(='的基解矩阵,则)(t φ和)(t ψ具有关系:( )。 9、当方程组的特征根为两个共轭虚根时,则当其实部( )时,零解是稳定的,对应的奇点称为( )。

10、当方程组的特征方程有两个相异的特征根时,则当( )时,零解是渐近稳定的,对应的奇点称为( )。当( )时,零解是不稳定的,对应的奇点称为( )。 11、若)(t φ是x t A x )(='的基解矩阵,则x t A x )(=')(t f =满足η=)(0t x 的解( )。

二、计算题

求下列方程的通解。 1、

1sin 4-=-x e dx

dy

y 。 2、1)(122

=??

?

???-dx dy y 。 3、求方程

2y x dx

dy

+=通过)0,0(的第三次近似解。 求解下列常系数线性方程。 4、0=+'+''x x x 。 5、t

e x x =-'''。

试求下列线性方程组的奇点,并通过变换将奇点变为原点,进一步判断奇点的类型及稳定性:

6、

5,!--=+--=y x dt

dy

y x dt dx 。 三、证明题。

1、设)(t φ为方程Ax x ='(A为n n ?常数矩阵)的标准基解矩阵(即))0(E =φ,证明

)(t φ)()(001t t t -=-φφ其中0t 为某一值。

答案:

一、填空题

1、形如

)()(x g x f dx dy = 的方程 )

(1y g u = 2、

x

N y M ??=?? 3、存在常数L>0,对于所有R y x y x ∈)(),,(2,211都有使得不等式

212,211)(),(y y L y x f y x f -≤-成立

4、

k

k h k ML !

1- 5、常数变异法、待定系数法、幂级数解法、拉普拉斯变换法 6、)()(1

t x c t x i

n

i i ∑==

,其中n c

c c ,,2

,1 是任意常数

7、n 个线性无关的解)(),(),(21t x t x t x n 称之为x t A x )(='的一个基本解组 8、)(t ψ=)(t φc

)(b t a ≤≤c 为非奇异常数矩阵

9、等于零 稳定中心

10、两根同号且均为负实数 稳定结点 两根异号或两根同号且均为正实数

不稳定鞍点或不稳定结点 11、ds s f s t t t t

t )()()()()(0

101?

--+=φφηφφ

二、计算题

1、解:方程可化为

1sin 4-+-=x e dx

de y

y 令y

e z =,得

x z dx

dz

sin 4+-=

由一阶线性方程的求解公式,得

[]x

x x dx

dx

ce x x c e x x e c dx xe e z -----+-=+-=+?

?

=?)cos (sin 2)cos (sin 2)sin 4()1()1(所以原方程为:y

e =x ce x x -+-)cos (sin 2

2、解

t p dx

dy

sin ==,则有

t

y sec =,从而

c t g t

t t d c t d t t g t t x +=+=+?=??

2

s e c s e s i n

1

,故方程的解为

221)(y c x =++,另外1±=y 也是方程的解

3、解:0)(0=x ? 2

012

1)(x xdx x x

=

=?? 520

4220

121)41()(x x dx x x x x

+=+

=?

?

dx x x x x dx x x x x x x

??

??

? ??+++=??????++=071040

2523201400141)20121()(? 81152160

14400120121x x x x +++=

4、解:对应的特征方程为:012

=++λλ,解得i i 2

3,23212211--=+

-=λλ 所以方程的通解为:)2

3

sin 23cos

(212

1

t c t c e x t +=-

5、解:齐线性方程0=-'''x x 的特征方程为013

=-λ,解得2

31,13,21i

±-=

=λλ,故齐线性方程的基本解组为:i e i e

e t

2

3sin ,23cos ,21

2

1--

,因为1=λ是特征根,

所以原方程有形如t tAe t x =)(,代入原方程得,t

t

t

t

e Ate Ate Ae =-+3,所以

31=A ,所以原方程的通解为2121-+=e c e c x t t te i e c i 3

1

23sin 23cos 21

3++-

6、解: ??

?=--=+--050!y x y x 解得???-==2

3

y x 所以奇点为()2,3- 经变换,???+=-=33y Y x X

方程组化为??

???-=--=Y X dt dy Y

X dt dx

因为

,01

11

1≠---又

01)1(1

11

1

2=++=+-+λλλ 所以i i --=+-=1,121λλ,故奇点为稳定焦点,所对应的零解为渐近稳定的。

三、证明题

1、证明:)(t φ为方程Ax x ='的基解矩阵)(01t -φ为一非奇异常数矩阵,所以

)(t φ)(01t -φ也是方程Ax x ='的基解矩阵,且)(0t t -φ也是方程Ax x =' 的基解矩阵,且都满足初始条件)(t φ)(01

t -φE =,E t t ==-)0()(0

0φφ

所以)(t φ)()(001t t t -=-φφ

常微分方程试题库

常微分方程试题库 二、计算题(每题6分) 1. 解方程:0cot tan =-xdy ydx ; 2. 解方程:x y x y e 2d d =+; 3. 解方程:; 4. 解方程: t e x dt dx 23=+; 5. 解方程:0)2(=+---dy xe y dx e y y ; 6. 解方程:0)ln (3=++dy x y dx x y ; 7. 解方程:0)2()32(3222=+++dy y x x dx y x xy ; 8. 解方程:0485=-'+''-'''x x x x ; 9. 解方程:02)3()5()7(=+-x x x ; 10. 解方程:02=-''+'''x x x ; 11. 解方程:1,0='-'='+'y x y x ; 12. 解方程: y y dx dy ln =; 13. 解方程:y x e dx dy -=; 14. 解方程:02)1(22=+'-xy y x ; 15. 解方程:x y dx dy cos 2=; 16. 解方程:dy yx x dx xy y )()(2222+=+; 17. 解方程:x xy dx dy 42=+; 18. 解方程:23=+ρθ ρ d d ; 19. 解方程:22x y xe dx dy +=; 20. 解方程:422x y y x =-'; 选题说明:每份试卷选2道题为宜。

二、计算题参考答案与评分标准:(每题6分) 1. 解方程:0cot tan =-xdy ydx 解: ,2,1,0,2 ,±±=+==k k x k y π ππ是原方程的常数解, (2分) 当2 ,π ππ+ ≠≠k x k y 时,原方程可化为: 0cos sin sin cos =-dx x x dy y y , (2分) 积分得原方程的通解为: C x y =cos sin . (2分) 2. 解方程: x y x y e 2d d =+ 解:由一阶线性方程的通解公式 ? ? +? =-),)(()()(dx e x f C e y dx x p dx x p (2分) x x x x dx x dx e Ce dx e C e dx e e C e 3 1 )() (23222+=+=?+?=---?? 分) (分) (22 3. 解方程: 解:由一阶线性方程的通解公式 ??+?=-))(()()(dx e x f C e y dx x p dx x p (2分) =??+?-)sec (tan tan dx xe C e xdx xdx (2分) ?+=)sec (cos 2xdx C x x x C sin cos +=. (2分) 4. 解方程: t e x dt dx 23=+ 解:由一阶线性方程的通解公式 ??+? =-))(()()(dt e t f C e x dt t p dt t p (2分) =??+?-)(323dt e e C e dt t dt (2分) ?+=-)(53dt e C e t t

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

常微分方程练习题及答案

常微分方程练习试卷 一、 填空题。 1、 方程23 2 10d x x dt +=就是 阶 (线性、非线性)微分方程、 2、 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 、 3、 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个、 4、 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= 、 5、 朗斯基行列式 ()0W t ≡就是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件、 6、 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 、 7、 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = 、 8、 方程组 20'05??=???? x x 的基解矩阵为 . 9、可用变换 将伯努利方程 化为线性方程、 10 、就是满足方程 251y y y y ''''''+++= 与初始条件 的唯一解、 11、方程 的待定特解可取 的形式: 12、 三阶常系数齐线性方程 20y y y '''''-+=的特征根就是 二、 计算题 1、求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点与点(1,0)的连线相互垂直、 2.求解方程 13 dy x y dx x y +-=-+、 3、 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程、 、 5.求方程 sin y y x '=+的通解、 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=就是恰当方程,并求出它的通解、

常微分方程试题(卷)

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程试题

常微分方程试题

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为的连续函数。 2、形如-的方程,称为伯努利方程, 这里的连续函数.n 3、如果存在常数-对于所有函数称为在R上 关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的任一解 - 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。 2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题2

一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一 10、线性微分方程组的解是的基本解组的充要条件是. 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计. (10分)

四、求解微分方程组 满足初始条件的解. (10%) 五、证明题:(10%) 设,是方程 的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题3 1.辨别题 指出下列方程的阶数,是否是线性方程:(12%) (1)(2)(3) (4)(5)(6) 2、填空题(8%) (1).方程的所有常数解是___________. (2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________. (3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是 ________________. (4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________. 3、单选题(14%) (1).方程是().

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

常微分方程第四章考试卷

常微分方程第四章测试试卷(3) 班级 姓名 学号 得分 一、 填空(20分) 1.——————称为n 阶齐线性微分方程。 2.1x )(t 非零为二阶齐线性方程''x 1a +)(t 2'a x +x t )(≡0的解,这里 ()t a 1 和()t a 2于区间[]b a ,上连续,则()t x 2 是方程解的冲要条件是― ——————。 3.常系数非齐线性方程中,若()()t m m m m e b t b t b t b t f λ++++=--1110 , 其中λ与i b 为实常数,那么方程有形如————的特解。 4.在n 阶常系数齐线性方程中,n a a a ,2,1 为常数,则它的特征方程为——————。 5.若方程()()022=++y x q dx dy x p dx y d 中满足————条件,则方程有形 如∑∞ ==0 n n n x a y 的特解。 6.微分方程03'2'''4=++y y xy 的阶数为——。 7.设()01≠t x 是二阶齐线性方程()()0'''21=++x t a x t a x 的一个解,则方程的通解可表为________ 8.解线性方程的常用方法有____、_____、_____、_____ 9.若())2,1,0(n i t x i =为齐线性方程的n 个线性无关解,则这一齐线性方程的通解可表为__________. 10.若()),,2,1(n i t x i =为齐线性方程的一个基本解组,()t x 为非齐线性方程的一个特解,则非齐线性方程的所有解可表___.

二. 计算(30分) 1. 求通解y y y 2'1''2 += 2. 求特解x x e xe y y y -=+-'2'',()()11'1==y y 3. 设二阶非齐线性方程的三个特解为 x x y x x y x y cos ,sin ,321+=+== 求其通解 4. 求解方程()()o y x y x xy =+++-2'12'' ()0≠x 5. 求方程2233'4'''''x xy y x y x =-+的通解 6. 求方程0'''=--y xy y 的解、 三.设可导函数()x φ满足()()1sin 2cos 0+=+?x tdt t x x x φφ,求()x φ 四.证明题(20分) 1.若函数()()()t x t x t x n ,,,21 为n 阶齐线性方程的n 个线性相关解,则它们的伏朗斯基行列式()0=t w 2.试证n 阶非齐线性方程存在且最多存在n+1个线性无关解。

常微分方程试题库.

常微分方程 一、填空题 1 .微分方程(立)n +业—VEX? = 0的阶数是 dx dx 答:1 2 .若M (x, V)和N (x, V)在矩形区域R内是(x, V)的连续函数,且有连续的一阶偏导数,则 方程M (x,y)dx + N(x, y)dy =0有只与V有关的积分因子的充要条件是 血 f N -1 答:(亏一寸M)= (V) 3. ^为齐次方程. 答:形如dV =g(V)的方程 dx x 4 .如果f (x, V) ___________________________________________ M ,业=f (x, V)存在 dx 唯一的解y = %x),定义丁区问x-x o

8. 若X i (t)(i =1,2,.....n)为齐次线性方程的一个基本解组,x(t)为非齐次线性方程的一个 特解,则非齐次线性方程的所有解可表为 答:X =' c i x i - X i 4 9. 若中(X)为毕卡逼近序列虬(X)}的极限,则有|%x)M n(x)W 答:MLh n1 (n 1)! 10. 为黎卡提方程,若它有一个特解y(x),则经过变换 ____________________ ,可化为伯努利方程. 答:形如—=p(x)y2+q(x)y + r (x)的方程y = z + y dx 11. 一个不可延展解的存在区间一定是区间. 答:开 12. ______________________________________________________________ 方程业=后〔满足解的存在唯一性定理条件的区域是_______________________________ . dx ' 答:D ={(x,y)在R2y >0},(或不含x轴的上半平■面) 13 .方程华=x2sin y的所有常数解是. dx 答:y =k二,k =0, —1, —2, 14. 函数组明(x)*2(x),…,气(x)在区间I上线性无关的条件是它们的朗 斯基行列式在区间I上不包等丁零. 答:充分 15. 二阶线性齐次微分方程的两个解y〔(x), y2(x)为方程的基本解组充分必要条件 是. 答:线性无关(或:它们的朗斯基行列式不等丁零) 16. 方程广-2y'+y=0的基本解组是 答:e x, xe X 17. 若y =%x)在(s,十8)上连续,则方程d^=

《常微分方程》答案_习题

习题4.2 1. 解下列方程 (1) 045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根 故通解为x=t t t t e c e c e c e c --+++4 32221 (2) 0333 2=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ 有三重根a =λ 故通解为x=at at at e t c te c e c 2321++ (3)04) 5(=''-x x 解:特征方程0435=-λλ 有三重根0=λ,=4λ2,=5λ-2 故通解为 542 32221c t c t c e c e c x t t ++++=- (4)0102=+'+''x x x 解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i 故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x 解:特征方程012=++λλ有复数根= 1λ,231i +-=2λ,2 31i -- 故通解为t e c t e c x t t 2 3sin 2 3 cos 2 122 1 1--+=

(6) 12+=-''t s a s 解:特征方程02 2=-a λ有根=1λa,=2λ-a 当0≠a 时,齐线性方程的通解为s=at at e c e c -+21 Bt A s +=~代入原方程解得21a B A -== 故通解为s=at at e c e c -+21-)1(1 2-t a 当a=0时,)(~ 212γγ+=t t s 代入原方程解得2 1 ,6121==γγ 故通解为s=t c c 21+-)3(6 1 2+t t (7) 32254+=-'+''-'''t x x x x 解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++ 又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1 故通解为x=t t t te c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x 解:特征方程121201224-===+-λλλλ重根, 重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321 取特解行如c Bt At x ++=2~ 代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-''' 解:特征方程013=-λ有复数根=1λ,231i +-=2λ,2 31i --13=λ 故齐线性方程的通解为t t t e c t e c t e c x 321 22 1 12 3 sin 23cos ++=--

常微分方程习题

第一章习题 1-1求下列两个微分方程的公共解。 (1)422x x y y -+=' (2)2422y y x x x y --++=' 解 两方程的公共解满足条件 4224222x x y y y x x x -+=--++, 即 022224=-+-y x y x , 0))(122(22=-++y x y x , 所以2 x y =或2212 x y +-=。 代入检验可知2 212 x y +-=不符合,所以两方程的公共解为2x y =。 评注:此题是求解方程满足一定条件的解,即求两个微分方程的公共解。在求解时由于令其导数相等,很容易产生增解,因而要对所求结果回代原方程进行检验,舍去增解。 1-2 求微分方程02 =-'+'y y x y 的直线积分曲线。 解 设直线积分曲线为b ax y +=,则a y =',代入原方程得 02≡--+b ax xa a , 即0)()(2 ≡-+-b a a a x , 所以 ???=-=-0 02b a a a , 可得0==b a 或1==b a 。 因而所求直线积分曲线为0=y 或1+=x y 。 评注:此题是求解方程的部分解,采用的是待定系数法。待定系数法是求解常微分方程常用的方法之一,有待定常数法和待定函数法。本题首先设出满足题设条件的含有待定常数

的解,然后代入原方程来确定待定常数,解决此类问题的关键在于正确地设出解的形式。 1-3 微分方程32224xy y y x =-',证明其积分曲线是关于坐标原点成中心对称的曲线。 证 设)(x y ?=满足微分方程,只须证明)(x y --=?也满足方程即可。 作变换x t -=,则证明)(t y ?-=满足方程即可,代入方程两端,并利用)(x y ?=满足此方程,得 左=)())((42222t dx dt t t ??-', )()1)((42222t t t ??--'= )()(4222t t t ??-'=)(3t t ?==右 故)(t y ?-=也满足方程32224xy y y x =-'。 评注:为了验证)(x y --=?也满足方程,利用积分曲线的性质,进行变量代换x t -=,将)(x y --=?变换成)(t y ?-=后,问题就很容易解决了。 1-4 物体在空气中的冷却速度与物体和空气的温差成正比,如果物体在20分钟内由100℃冷却至60℃,那么,在多长时间内,这个物体由100℃冷却至30℃?假设空气的温度为20℃ 解 设物体在空气中时刻t 的温度为)(t T T =,则依牛顿冷却定理得 )20(--=T k dt dT , 其中k 是比例常数。 两边积分,得通解为kt Ce T -+=20。 由于初始条件为:,100)0(=T 故得80=C ,所以kt e T -+=8020。 将60,20==T t 代入上式后即得:202ln = k , 即 20202ln )2 1(80208020t t e T ?+=+=-。 故当30=T 时,有20)2 1(802030t ?+=,从中解出60=t (分钟),因此,在一小时内,可使物体由100℃冷却至30℃。

常微分方程第4章习题答案

习 题 4—1 1.求解下列微分方程 1) 22242x px p y ++= )(dx dy p = 解 利用微分法得 0)1)( 2(=++dx dp p x 当 10dp dx +=时,得p x c =-+ 从而可得原方程的以P 为参数的参数形式通解 22 242y p px x p x c ?=++?=-+? 或消参数P ,得通解 )2(2 122x cx c y -+= 当 20x p +=时,则消去P ,得特解 2x y -= 2)2()y pxlnx xp =+; ??? ? ?=dx dy p 解 利用微分法得 (2)0dp lnx xp x p dx ??++= ??? 当0=+p dx dp x 时,得 c px = 从而可得原方程以p 为参数的参数形式通解: 2 ()y pxln xp px c ?=+?=? 或消p 得通解 2y Clnx C =+ 当20lnx xp +=时,消去p 得特解 21()4 y lnx =- 3)() 21p p x y ++= ??? ??=cx dy p 解 利用微分法,得 x dx p p p - =+++22 11 两边积分得 () c x P P P =+++2211

由此得原方程以P 为参数形式的通解: 21(p p x y ++= ,() .11222c x p p p =+++ 或消去P 得通解 222)(C C X y =-+ 1. 用参数法求解下列微分方程 1)45222=?? ? ??+dx dy y 解 将方程化为 2215 42=??? ??+dx dy y 令2sin y t = 2cos 5 dy t dx = 由此可推出 1 515(2sin )22cos 2 cos 5dx dy d t dt t t ===从而得 c t x +=25 因此方程的通解为 52x t c = + ,2sin y t = 消去参数t ,得通解 22sin ()5 y x C =- 对于方程除了上述通解,还有2±=y , 0=dx dy ,显然 2=y 和2-=y 是方程的两个解。 2)223()1dy x dx -= 解:令u x csc =, u dx dy cot 31-= 又令tan 2 u t = 则t t u x 21sin 12+==

最新常微分方程试题库试卷库

常微分方程试题库试 卷库

常微分方程期终考试试卷(1) 一、 填空题(30%) 1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。有只含y 的积分因子的充要条件是______________。 2、_____________称为黎卡提方程,它有积分因子______________。 3、__________________称为伯努利方程,它有积分因子_________。 4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。 5、形如___________________的方程称为欧拉方程。 6、若()t φ和()t ψ都是' ()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是 _____________________________。 7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。 二、计算题(60%) 1、 3 ()0ydx x y dy -+= 2、sin cos2x x t t ''+=- 3、若 2114A ?? =?? -??试求方程组x Ax '=的解12(),(0)t η??ηη??==????并求expAt 4、32( )480 dy dy xy y dx dx -+= 5、求方程2 dy x y dx =+经过(0,0)的第三次近似解 6.求1,5 dx dy x y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性. 三、证明题(10%) 1、n 阶齐线性方程一定存在n 个线性无关解。 试卷答案 一填空题 1、()M N y x x N ???-??= ()M N y x y M ???-??=-

常微分方程自学练习题

常微分方程自学习题及答案 一 填空题: 1 一阶微分方程的通解的图像是 维空间上的一族曲线. 2 二阶线性齐次微分方程的两个解 y 1(x);y 2(x)为方程的基本解组充分必要条件是________. 3 方程0'2''=+-y y y 的基本解组是_________. 4 一个不可延展解的存在区间一定是___________区间. 5 方程 21y dx dy -=的常数解是________. 6 方程0')('')(==+-x q x t p x t 一个非零解为 x 1(t) ,经过变换_______ 7 若4(t)是线性方程组X t A X )('=的基解矩阵, 则此方程组的任一解4(t)=___________. 8 一曲线上每一占切线的斜率为该点横坐标的2倍,则此曲线方程为________. 9 满足_____________条件的解,称为微分方程的特解. 10 如果在微分方程中,自变量的个数只有一个我们称这种微分方程为_________. 11 一阶线性方程)()('x q y x p y =+有积分因子(=μ ). 12 求解方程 y x dx dy /-=的解是( ). 13已知(0)()32 2 2 =+++dy x y x dx y x axy 为恰当方程,则a =____________. 14 ?????=+=0 )0(22y y x dx dy ,1:≤x R ,1≤y 由存在唯一性定理其解的存在区间是( ). 15方程0652 =+-? ?? ??y dx dy dx dy 的通解是( ). 16方程5 34 y x y dx dy =++?? ? ??的阶数为_______________. 17若向量函数)()();();(321x x x x n Y Y Y Y Λ在区间D 上线性相关,则它们的伏朗斯基行列式w (x)=____________. 18若P(X)是方程组Y =)(x A dx dy 的基本解方阵则该方程组的通解可表示为_________. 二 单项选择: 1 方程y x dx dy +=-31 满足初值问题解存在且唯一定理条件的区域是( ). (A)上半平面 (B)xoy 平面 (C)下半平面 (D)除y 轴外的全平面 2 方程 1+=y dx dy ( ) 奇解.

常微分方程试题模拟试题(一)

常微分方程试题模拟试题(一) 一、填空题(每小题3分,本题共15分) 1 .方程d d y x =满足初值解的存在且惟一性的区域是 . 2.方程0d )1(d )1(=+++y x x y 所有常数解是 . 3.线性方程0y y ''+=的基本解组是 . 4.(,)y f x y '有界是保证方程d (,)d y f x y x =初值解惟一的 条件. 5.向量函数组在区间I 上的朗斯基行列式()0W x =是它们线性相关的 条件. 二、单项选择题(每小题3分,本题共15分) 6.积分方程11()1()d x y x y s s s =+?的解是( ) . (A )1y = (B )e x y = (C )0y = (D )y x = 7. 一阶线性微分方程d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 8.方程 ?????≠==0 ,ln 00d d y y y y x y 当当, 在xoy 平面上任一点的解( ). (A )都不是惟一的 (B )都是惟一的 (C )都与x 轴相交 (D )都与x 轴相切 9.平面系统???????+=+=y x t y y x t x 43d d 2d d 的奇点类型是( ). (A )不稳定结点 (B )稳定焦点 (C )不稳定焦点 (D )鞍点 10.方程0y y ''+=的任一非零解在(,)x y 平面的x 轴上任意有限区间内( )零点. (A )无 (B )只有一个 (C )至多只有有限个 (D )有无限个 三、计算题(每小题8分,共40分) 求下列方程的通解或通积分: 11. 2211d d x y x y --= 12. ()d ()d 0x y x x y y +--= 13. 2y xy y ''=+ 14.012)(2=+'-'y x y 15.032 22=-'-''y x y y y 四、计算题(本题15分)

常微分方程习题及评分标准答案

常微分方程分项习题 一、选择题(每题3分) 第一章: 1.微分方程''20y xy y +-=的直线积分曲线为( ) (A )1y =和1y x =- (B )0y =和1y x =- (C )0y =和1y x =+ (D )1y =和1y x =+ 第二章: 2.下列是一阶线性方程的是( ) (A )2 dy x y dx =- (B )232()0d y dy xy dx dx -+= (C )22( )0dy dy x xy dx dx +-= (D )cos dy y dx = 3.下列是二阶线性方程的是( ) (A )222d y dy x x y dx dx +=- (B )32()()0dy dy xy dx dx -+= (C )2 (1)0dy x xy dx +-= (D )22cos cos d y y x dx = 4.下列方程是3阶方程的为( ) (A )'23y x y =+ (B )3 ( )0dy xy dx += (C )3223()0dy d y x y dx dx +-= (D )3cos dy y dx = 5.微分方程43( )()0dy dy dy x dx dx dx +-=的阶数为( ) (A )1 (B )2 (C )3 (D )4 6.方程2342()20dy d y x y dx dx +-=的阶数为( ) (A )1 (B )2 (C )3 (D )4 7.针对方程 dy x y dx x y -=+,下列说法错误的是( ). (A )方程为齐次方程

(B )通过变量变换y u x = 可化为变量分离方程 (C )方程有特解0y = (D )可以找到方程形如y kx =的特解(1y x =-± 8.针对方程2sin (1)y x y '=-+,下列说法错误的是( ). (A )为一阶线性方程 (B )通过变量变换1u x y =-+化为变量分离方程 (C )方程有特解12 y x π =++ (D )方程的通解为tan(1)x y x C -+=+ 9.伯努利方程 n y x Q y x P dx dy )()(+=,它有积分因子为( ) (A )(1)()n P x dx e -? (B )()nP x dx e ? (C )(1)()n P x dx xe -? (D )()nP x dx xe ? 10.针对方程 2(cos sin )dy y y x x dx +=-,下列说法错误的是( ) . (A )方程为伯努利方程 (B )通过变量变换2z y =可化为线性方程 (C )方程有特解0y = (D )方程的通解为1 sin x y Ce x =- 11.方程 2()dy y xf dx x =经过变量变换( )可化为变量分离方程。 (A )u xy = (B )y u x = (C )2y u x = (D )2u x y = 12.方程2()dy x f xy dx =经过变量变换( )可化为变量分离方程。 (A )u xy = (B )y u x = (C )2y u x = (D )2u x y = 13.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )伯努利方程 14.针对方程2''2(1)(2)y y y -=-下面说法错误的是( ) (A )不显含x 的形如'(,)0F y y =的隐式方程 (B )设'2y yt -=,原方程消去'y 后可求解

相关文档