文档库 最新最全的文档下载
当前位置:文档库 › 西番莲果皮总黄酮提取工艺及抑制亚硝化反应_冯纪南

西番莲果皮总黄酮提取工艺及抑制亚硝化反应_冯纪南

西番莲果皮总黄酮提取工艺及抑制亚硝化反应_冯纪南
西番莲果皮总黄酮提取工艺及抑制亚硝化反应_冯纪南

第30卷,第3期光 谱 实 验 室Vol.30,No.3 2013年5月Chinese Journal of Spectroscopy Laboratory May,2013

西番莲果皮总黄酮提取工艺及

抑制亚硝化反应①

冯纪南 黄海英a 赵丽萍 章爱华b 邓斌②

(湘南学院化学与生命科学系 湖南省郴州市苏仙北路8号 423000)

a(湘南学院教务处 湖南省郴州市苏仙北路8号 423000)

b(吉首大学化学化工学院 湖南吉首市人民南路120号 416000)

摘 要 运用正交试验设计探讨了西番莲果皮总黄酮的微波辅助提取工艺条件,并采用分光光度法研究了提取液对合成亚硝胺的抑制能力和清除亚硝酸盐的能力。结果表明,西番莲果皮总黄酮提取的最佳工艺参数:乙醇体积分数60%、料液比1∶40(g/m L)、微波辐射时间15min、微波炉功率400W,在此条件下总黄酮的提取率为57.03mg/g。对西番莲果皮总黄酮提取液的抑制亚硝化反应研究表明,提取液对亚硝胺合成的最大阻断率为80.8%,对亚硝酸钠的最大清除率为73%。

关键词 西番莲果皮;总黄酮;微波辅助提取;亚硝酸盐;阻断;清除

中图分类号:O623.54;O657.32 文献标识码:A 文章编号:1004-8138(2013)03-1179-06

1 引言

西番莲(Passiflora edulis)俗称鸡蛋果、百香果,属西番莲科,西番莲属植物,热带多年生草质至半木质藤本攀附果树,原产澳大利亚和巴西,现广泛分布于热带和亚热带地区,我国的台湾、广东、福建、海南等地种植西番莲已有很长的历史[1]。前期研究表明,西番莲果皮中含有果胶、黄酮、生物碱、多糖、多酚类物质等药用成分,其中,鞣质与黄酮类成分含量较高[2]。国内外学者对西番莲果皮的研究多为对其果胶的提取[3],对西番莲果皮中黄酮类化合物的研究极少报道。现代药理研究表明黄酮类化合物具有多种生物活性,具有抗肿瘤、抗衰老、增强免疫力等药理作用[4]。目前癌症已成为威胁人类生命的最大杀手,其中亚硝胺化合物是当前最令人关注的化学致癌物之一。从防癌角度出发,采用阻断亚硝胺合成或清除合成的亚硝胺前体是防治癌症的有效途径之一[5,6]。而流行病学及大量动物实验证实,植物中的黄酮类物质能起到阻断亚硝胺合成或清除亚硝酸根的作用,从而达到预防癌症发生的效果[7]。本研究以此为出发点,探讨西番莲果皮中总黄酮微波辅助提取法的优化条件,同时在模拟人体胃液的条件下,研究西番莲果皮提取物阻断亚硝胺合成以及消除亚硝酸盐的效

①湖南省自然科学基金项目(12JJ3019);湖南省科技厅计划项目(2010GK3123;2011FJ3167);湖南省教育厅重点科研基金项目

(10A113);郴州市科技计划项目(郴财教指[2011]53号)

②联系人,电话:(0735)2865916;传真:(0735)2653353;E-mail:dbhy88@https://www.wendangku.net/doc/e711524966.html,

作者简介:冯纪南(1958—),女,湖南省郴州市人,副教授,主要从事天然产物有效成分分离研究工作。

收稿日期:2012-08-07;接受日期:2012-08-28

1180光谱实验室第30卷果,以期为西番莲果皮保健食品的进一步开发利用提供科学依据。

2 实验部分

2.1 试剂与仪器

西番莲果皮,购于广西柳州明朝饮料有限公司,用蒸馏水清洗干净、自然阴干、粉碎过筛后备用。

亚硝酸钠、对氨基苯磺酸、氢氧化钠、柠檬酸钠、盐酸、硝酸铝、盐酸萘乙二胺、无水乙醇、二甲胺、T-萘胺(以上试剂均为分析纯);芦丁标准品,中国医药(集团)上海化学试剂公司(生化试剂)。实验用水均为自制蒸馏水。

UV3010型紫外-可见分光光度计(日本岛津公司);W D800B型格兰仕微波炉(佛山市顺德区格兰仕微波炉电器有限公司);FZ102微型植物粉碎机(天津市泰斯特仪器有限公司);S HZ-D型循环水式真空泵(巩义市荧峪予华仪器厂);ZF-2型三用紫外仪(上海安亭电子仪器厂);722S型可见分光光度计(上海精密科学仪器有限公司);PL203型电子分析天平(上海梅特勒-托利多仪器有限公司)等。

2.2 实验方法

2.2.1 总黄酮测定方法原理

以芦丁为标准对照品,配制不同浓度梯度,采用硝酸铝显色法运用分光光度计在510nm处测吸光度,得线性回归方程[8]。

2.2.2 西番莲果皮总黄酮的提取工艺流程设计及主要影响因子确定

提取工艺流程设计为:干燥西番莲果皮粉末(0.5000g)→浸泡(70%乙醇溶液,12h)→微波提取(15min)→离心(5000r/min,10min)→定容(100m L容量瓶)→吸取(1.0m L)→定容(10m L容量瓶)→测定吸光度。

通过预实验与单因素实验确定考察的影响因子与取值范围,见表1所示,采用正交试验设计方法对影响因素进行L16(44)研究。

2.2.3 西番莲果皮总黄酮提取液抑制亚硝化反应[9,10]

2.2.

3.1 西番莲果皮总黄酮对亚硝胺合成阻断率的测定

在紫外灯照射下,二甲基亚硝胺可分解成二甲基仲胺和亚硝酸根,其化学反应方程式如下:

(C H3)2N—N O+H2O(C H3)2N H+2+NO-2

分解出的亚硝酸根与对氨基苯磺酸重氮化后,再与T-萘胺偶合生成红色化合物,然后采用分光光度计测出该化合物的吸光度,就可知道上述反应液中亚硝胺含量多少。

实验时,分别吸取最佳条件下获得的西番莲果皮总黄酮提取液0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0m L于25m L的容量瓶中。加入10m L pH= 3.0的柠檬酸钠-盐酸缓冲液、1.0m L NaNO2溶液(1mmol/L)、1.0m L二甲胺溶液(1m mol/L),用蒸馏水稀释至刻度,在37℃

条件下恒温1h 。用移液管准确吸取1.0m L 上述含N DM A (对亚硝胺)的反应液至7cm 2培养皿中,加入质量分数0.5%Na 2CO 3溶液0.5m L 后,于黑布遮盖的紫外分析仪下照射15min ,紫外灯离液面约15cm 。取出后加入 1.5m L 质量分数为1%对氨基苯磺酸,再加入 1.5m L 质量分数为0.1%T

-萘胺及0.5m L 蒸馏水,摇匀静置15min 后。用分光光度计在525nm 处测吸光度值(A )。同时用提取剂做空白实验,计算出阻断率:

阻断率%=

A 0-A

A

×100%式中:A 0——未加样品溶液时NaNO 2的吸光度(以试剂空白溶液为参比溶液);A ——加入样品溶液后NaNO 2的吸光度(以样品溶液为参比溶液)。2.2.3.2 西番莲果皮总黄酮对亚硝酸钠清除率的测定

亚硝酸钠在弱酸性条件下,与对氨基苯磺酸重氮化,再与盐酸萘乙二胺偶合生成红色化合物,然后用分光光度计测出该化合物的吸光度,就可知道反应液中亚硝酸钠含量多少。据此可以通过测定相同条件下亚硝酸钠含量的变化反映西番莲果皮总黄酮清除能力的强弱,亚硝酸钠含量少,西番莲果皮总黄酮清除能力就强,反之则弱。

分别取最佳条件下提取的西番莲果皮总黄酮提取液0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0m L 于25m L 容量瓶中,加入pH = 3.0的柠檬酸钠-盐酸缓冲液10m L ,再加入50mg /L 的NaNO 2标准液1.0m L,用蒸馏水定容至刻度,37℃条件下恒温反应1h 。然后各吸取1m L 反应液至7cm 2

培养皿中,加入 2.0m L 质量分数0.4%对氨基苯磺酸溶液,再加入 1.0m L 质量分数0.2%盐酸萘乙二胺,摇匀静置15min 。用分光光度计在540nm 处测吸光度值,分别用相应浓度相同用量的提取剂做空白实验,最后计算出清除率:

清除率%=

A 0-A

A ×100

%式中:A 0——未加样品溶液时NaNO 2的吸光度(以试剂空白溶液为参比溶液);A ——加入样品溶液后NaNO 2的吸光度(以样品溶液为参比溶液)。

3 结果与讨论

3.1 芦丁校准曲线绘制

按照芦丁对照品浓度梯度与对应的吸光度绘制校准曲线,得到校准曲线的线性回归方程为:y =0.1135A +0.00308(r =0.9995),芦丁质量浓度y 在0.0053—0.0424g /L 范围内与吸光度A 之间有较好的线性关系。3.2 正交试验设计与结果

以提取液中的总黄酮提取率为指标,4个影响因子为研究对象,进行L 16(44)正交试验,实验数据输入正交设计助手(3.1版本),结果见表1。实验结果表明,4种考察因素对西番莲果皮总黄酮提取效果影响的主次顺序依次:乙醇体积分数>微波功率>料液比>微波提取时间。由表知最佳组合

1181

第3期冯纪南等:西番莲果皮总黄酮提取工艺及抑制亚硝化反应

为A2B3C2D2,即乙醇体积分数60%、料液比1∶40(g/m L)、微波提取时间15min、微波炉功率400W。在此最佳提取工艺条件下进行6次平行实验,结果得到西番莲果皮总黄酮的平均提取率为57.03mg/g。

表1 正交试验设计及结果L16(44)

试验号

A乙醇体积分数

(%)B料液比

(g/m L)

C微波时间

(min)

D微波功率

(W)

总黄酮提取率

(mg/g)

11(70)1(1∶60)1(20)1(500) 6.05

21(70)2(1∶50)2(15)2(400) 6.53

31(70)3(1∶40)3(10)3(300) 6.91

41(70)4(1∶30)4(5)4(250)8.05

52(60)1(1∶60)2(15)3(300)48.80

62(60)2(1∶50)1(20)4(250)54.09

72(60)3(1∶40)4(5)1(500)50.33

82(60)4(1∶30)3(10)2(400)55.17

93(50)1(1∶60)3(10)4(250)40.05

103(50)2(1∶50)4(5)3(300)42.56

113(50)3(1∶40)1(20)2(400)47.73

123(50)4(1∶30)2(15)1(500)44.27

134(40)1(1∶60)4(5)2(400)19.65

144(40)(1∶50)3(10)1(500)16.48

154(40)3(1∶40)2(15)4(250)21.89

164(40)4(1∶30)1(20)3(300)13.40

k127.54114.55121.27117.13

k2208.39119.66121.49129.35

k3174.61126.86118.61111.67

k471.42116.71120.59124.08

R180.8512.31 2.8817.68

3.3 西番莲果皮总黄酮提取液对亚硝胺合成的阻断作用

按 2.2.3.1节方法,研究最佳提取工艺条件下得到的西番莲果皮总黄酮提取液加入量对亚硝胺合成的阻断作用,结果如图1所示。

由图1可见,随着西番莲果皮提取液用量的逐渐增加,西番莲果皮黄酮类化合物对亚硝胺合成的阻断效果随之上升,当用量超过一定值后,阻断率又开始缓慢下降。当提取液加入量为1.0—3.0m L提取液时,阻断率上升极快,由15%左右跃迁到70%以上;而当用量达到3m L以后,继续增大用量,阻断率提高缓慢,曲线趋于平缓。实验中最大阻断率出现在西番莲果皮提取液用量1182光谱实验室第30卷

为4.0m L 处,结果可达80.8%,说明西番莲果皮在防癌领域具有良好的应用前景。3.4 西番莲果皮总黄酮提取液对亚硝酸钠的清除率

按 2.2.3.2节方法,研究最佳条件下得到的西番莲果皮提取液加入量对亚硝酸钠的清除率,实验结果如图2所示。

由图2可知,西番莲果皮总黄酮提取液对NaNO 2的清除率最大可达73.0%,说明西番莲果皮总黄酮提取液可有效地清除亚硝酸钠。图中实验结果还表明,西番莲果皮总黄酮提取液对亚硝酸钠的清除率随着加入量的增加而增大,但当提取液加入量达到 4.5m L 后,进一步增加提取液的量,清除率趋于平缓,甚至弱有下降。

4 结论

(1)微波辅助提取西番莲果皮中总黄酮的最佳提取工艺条件为:乙醇体积分数为60%、料液比为1∶40、微波辐射提取时间为15min 、微波炉功率控制为400W,在此条件下总黄酮的提取率可达57.03mg /g 。

(2)在模拟人体胃液的条件下,西番莲果皮黄酮类化合物能有效地阻断亚硝胺的合成和清除亚硝酸盐,最大阻断率可达80.8%,最大清除率可达73%。

(3)西番莲果皮原料易得,作为食品保健品和防癌剂开发利用前景可观,因此有可能成为一种经济的、有效的、具有防癌作用的天然生物新资源

图1 西番莲果皮总黄酮对亚硝酸胺的阻断率结果

图2 西番莲果皮总黄酮对亚硝酸钠的清除率结果

参考文献

[1]郑文武,郑颂,刘永华.我国西番莲生产现状及发展探讨[J ].中国热带农业,2006,6:8—9.

[2]文良娟,毛慧君,张元春等.西番莲果皮成分分析及其抗氧化活性的研究[J ].食品科学,2008,29(11):54—58.[3]黄永春,杨锋,何仁等.草酸铵逆流萃取法提取西番莲果皮中果胶的研究[J ].食品科学,2008,29(9):226—229.[4]孟志芬,祝勇,李聪等.毛泡桐花中总黄酮含量的测定[J ].光谱实验室,2012,29(1):221—225.[5]许钢,张虹,庞洁.竹叶提取物对亚硝化反应的抑制[J ].无锡轻工大学学报,2000,19(6):583—586.[6]张虹,许钢,袁建耀.刘寄奴提取液对亚硝化反应的抑制作用[J].郑州粮食学院学报,2000,21(1):50—53.[7]郭艳华,张玉敏.洋葱提取物清除亚硝酸盐的研究[J ].化学研究与应用,2008,20(8):1084—1086.

1183

第3期冯纪南等:西番莲果皮总黄酮提取工艺及抑制亚硝化反应

1184光谱实验室第30卷

[8]张岩,曹国杰,张燕等.黄酮类化合物的提取以及检测方法的研究进展[J].食品研究与开发,2008,29(1):154—157.

[9]傅茂润,陈庆敏,茅林春.黄花菜提取物对亚硝化反应的抑制能力研究[J].食品科学,2009,30(15):114—119.

[10]赵二劳,王晓妮,张海容等.山楂清除亚硝酸盐及阻断亚硝胺合成的研究[J].食品与发酵工业,2006,32(10):29—31.

Microwave-assisted Extraction and Nitrosation Inhibition Activity of Total Fl avonoids from Passiflora edulis Rind

F EN

G Ji-Nan a

H U ANG H ai-Ying b Z HAO Li-Ping a Z HANG Ai-Hua c D EN G Bin a

a(Department of Chemi str y and Life Scienc e,X iangnan Uni versity,Chenzhou,Hunan423000,P.R.Chi na)

b(Education A f fair Of f i ce,X i angnan Univers ity,Chenz hou,Hunan423000,P.R.China)

c(College o f Chemistr y and Chemical Eng i neering,J is hou University,J i shou,Hunan416000,P.R.China)

Abstract The optimal the ex tract technology of to tal flav onoids from Passiflora edulis Rind with microw av e-assisted method w ere studied by orthogonal test and their abilities to inhibit nitrosamines and scav eng e nitrite w ere tested spectrophotom etrically.The best ex traction condition was alcohol concentratio n60%,material-liquid rate1∶40(g/m L),microw ave irradiation time15min,microwave output pow er400W.Under this co ndition,the ex tracting rate of flavonoids was57.03mg/g.The maxim um capabilities of inhibiting the production of nitrosodinethy lamine and scav enging sodium nitrite w ere80.8%and73%,respectively.

Key words Passiflora Edulis Rind;Total Flav onoids;Microw av e-Assisted Ex traction;Nitrite;

Blocking;Scav enging

封四:“高效、保质、宽容——《光谱实验室》主要特色”的附件3

不当挂名院士

1922年2月23日,苏联社会主义社会科学研究院主席团给列宁发来了一个通知书,说1922年

列宁被选为研究院院士。列宁看了这个通知书,并在下面写了复函,还注明:“誊在公文纸上,列宁复函写道:“非常感谢,遗憾的是,我因病根本无法履行社会主义研究院院士的哪怕最微

挂名的院士,我不想当。因此,请把我从院士名单中勾掉或不要列入名单。”

列宁的复函,言简意赅,发人深思。列宁具有渊博的知识,授予院士头衔是当之无愧的,可是,

看。他考虑到自己无法履行院士的职责,便毅然拒绝当挂名院士。

不当挂名院士,只是一件小事,但是,列宁这种革命责任心和谦虚谨慎的科学态度,

(原载1981年1月17日《北京晚报》,作者:郭熙)

本刊主编点评:我也曾请卢嘉锡先生任《光谱实验室》主编,但卢先生谢绝了。他说,请我任主编

表示感谢。但是我年老多病,体弱事多,又不是学光谱专业的,别人当面不说什么,但背后是有

不利。

中草药叶下花总黄酮提取方法

中草药叶下花总黄酮提取方法 作者:杨发忠,杨斌,杨德强,陈厚琴,代红娟,张丽,李东海 【摘要】目的对叶下花总黄酮的种类与提取方法进行初步研究。方法采用定性检测、光谱分析、单因素测定、正交实验等,研究黄酮种类,考察乙醇体积分数、温度、固液比、时间对提取率的影响。结果叶下花含黄酮、黄酮醇、二氢黄酮、二氢黄酮醇等多种黄酮类化合物;所考察的影响因素中,对总黄酮提取率影响程度大小顺序为乙醇体积分数>温度>时间>固液比。结论最佳提取条件为A1B2C3D3 (乙醇体积分数30%、温度65℃,提取时间180 min,固液比1∶80),在此提取条件下,提取量高达5.233%。 【关键词】叶下花总黄酮提取方法正交实验 Abstract:ObjectiveTo optimize the extraction conditions for the total flavonoids from Ainsliaea pertyoides Franch and to study the categories of the total flavonoids. MethodsThe methods of the chemical qualitative detection, the spectral analysis, single factor determination, orthogonal test were adopted to study the categories of the total flavonoids, and the effect of four factors, i.e. the volume fraction of ethanol, the temperature, the ratio of solid to liquid, the

果胶提取工艺讲解学习

果胶提取工艺

果皮中提取果胶方法探讨综述 摘要:由于时间不允许,没做到实验,不过先从理论探讨一下各方法从果皮中提取果胶, 对酸解法工艺进行初步探讨。 关键词:果胶、提取方法、工艺 Abstract: due to the time did not permit, didn't do the experiment, but first discuss the method from the theory from the extraction of the peel pectin, the acid solution process for a preliminary discussion. Keywords: pectin and extraction method, process 果胶广泛存在于植物组织之中, 主要形成细胞壁的中层, 起组织硬化和保持水分的作用。由于酸和果胶酶的存在, 它的含量随果实的成熟度的增加而降低, 果胶是以α一1,4糖苷键键合的D一半乳糖醛酸为基本结构的多糖类物质, 分子量为10000到400000。一般地, 一个果胶分子由几百到1000 多个半乳糖醛酸残基组成, 平均分子量在50000到220000之间[1]。 作为膳食纤维的主要成分之一, 果胶具有抗腹泻、抗癌、治疗糖尿病等功效, 在医药工业中用于制造轻泻剂、止血剂、毒性金属解毒剂、血浆代用品等, 另外, 果胶具有良好的胶凝性和乳化稳定作用, 被广泛地用于果冻、果酱、婴儿食品、冰淇淋及果汁的生产中。FAO/WHO 规定, 果胶作为食品添加剂, 其添加量不受限制。 果胶提取方法: 酸萃取法传统的无机酸提取法是将洗净、除杂预处理后的果皮用无机酸(如盐酸、硫酸、亚硫酸、硝酸、磷酸等)调节一定pH值,加热90~ 95℃并不断搅拌, 恒温50~ 60min,然后将果胶提取液离心、分离、过滤除杂(提取用水最

黄酮的提取实施方案

黄酮提取实验方案 1材料与仪器 1.1材料 1.2试剂 芦丁,无水乙醇,氢氧化钠,石油醚,硝酸铝,三氯化铁,三氯化铝,浓氨水,浓盐酸,镁粉,亚硝酸钠(以上均为国产分析纯),实验所用水均为蒸馏水。 1.3实验仪器 电热恒温水浴锅 电子天平(感量0.0001g) 722型光栅分光光度计 索氏提取器 量筒(100ml,10ml)25ml比色管移液管小试管白瓷板圆底烧瓶100m 容量瓶 锥形瓶 2实验原理 2.1提取原理 溶剂提取原理游离黄酮黄酮昔备注 乙辱溶解范围广+ + (甲醇)著■甘元均可溶(90-95%) (6M)甲醇毒性大 沸水多糖昔易于水+ 成本低、安全, 水溶性杂质多 臓性水或稀氢氧化钠溶出能力强 碱性乙醇酚强基的酸性 + +石灰水除杂质效果好

分离依据 之间的极性(分配系数K )差异 分离工艺 回收 回收 单糖瞽 多糖昔 誓元 爸游离黄酮的乙瞇液 2 黄酮与杂质 昔与昔元 昔元与昔元 )溶剂萃取法 2.2分离方法及原理 (二)pH 梯度萃取法 分离依据: 游离黄酮类化合物的酸性差异(见黄酮酸性规律) 分离工艺: 依次以 5%NiiH0h . 5%Na2C0 0. 2%N SL OH. 4%NaOH^取 5%NaHCO3< 5%Na2CO3液 0. 2KNaOH 液 4%NaOH 液 母液 (脂溶性杂石油駆液 乙豔液 乙酸乙酯 (脂溶性杂质)| | 丄酸化 水饱和正丁醇 母液 (水溶性杂质) 减压回收 原料的提取苹缩液(水溶液) 依次以石油耿、乙馳、 乙酸乙酯、水饱和正丁醇萃取

3 实验部分 3.1 原料的预处理 金星科厥类叶T除杂T水洗T晾干T粉碎 3.2 芦丁—标准溶液的配制 将芦丁在干燥箱里用120C条件下恒重1.5h,然后精确称取芦丁标准品O.OIg用85%勺乙醇溶液配制成100.00mL 的溶液,备用。 3.3 测定波长勺选择 精确移取芦丁标准溶液0.50mL, 置于25.00mL 勺比色管中,用质量分数为85%勺乙醇稀释到10.00mL 处,加人5%勺亚硝酸钠溶液0.80mL, 混匀,放置10min; 加入10%硝酸铝溶液0.80mL , 混匀,放置10min, 再加入4%勺氢氧化钠溶液10.00mL, 混匀,放置10min, 加入85%勺乙醇溶液至刻度,摇匀,10min后在460?560nm处测定吸光度,⑷(以试剂样品做空白)选择最大吸收波长。 3.4 芦丁标准曲线勺绘制 精确吸取芦丁标准溶液0.00、0.50、1.00、2.00、3.00、4.00 mL于6支25.00mL的比色管中,用质量分数为85%勺乙醇稀释到10.00mL 处,加人5%勺亚硝酸钠溶液0.80mL, 混匀,放置10min; 加入1 0%硝酸铝溶液0.80mL , 混匀,放置10min, 再加入4%的氢氧化钠溶液10.00mL, 混匀,放置10min,加入85%的乙醇溶液至刻度,摇匀,10min后于波长500nm处测定吸光度,(以第一瓶为空白溶液)然后以吸光度和芦丁溶液浓度做图,绘制标准曲线。 3.5 黄酮类化合物的特征性实验[5]-[6] 在一定条件下对提取的黄酮类化合物进行特征性实验,具体内容如 下: (1)盐酸一镁粉反应:取 1.00mL提取液于试管中加适量镁粉摇匀,再加入浓盐酸数滴(1次加入),观察其泡沫颜色。(2)三氯化铝反应:取提取液点在滤纸上,滴加1%三氯化铝乙醇溶液, 吹干,观察颜色变化。(3)三氯化铁反应:取几滴提取液于白瓷板上,滴加1%三氯化铁乙醇溶液, 观察其颜色。(4)浓氨水反应:取乙醇提取液点在滤纸上,将滤纸在浓氨水上方熏0.5min ,观察 其颜色变化。 3.6 单因素实验 2.6.1 较佳提取剂质量分数的确定 准确称取3g 处理好的金星厥科叶样品置于圆底烧瓶中,分别用无水乙醇、95%、85% 80%、 75%的乙醇60mL对3g金星厥科叶样品在水浴温度为80C下回流提取3h.提取完毕,用与提取剂的 质量分数相同的乙醇反复洗涤圆底烧瓶、滤纸包,将其定容于100:00mL 容量瓶中,然后精确吸取 0.50mL提取液置于25.00mL的比色管中,用与提取剂质量分数相同的乙醇稀释到10.00mL处,加人5%的亚硝酸钠溶液0.80mL,混匀,放置10min;加入10%硝酸铝溶液0.80mL ,混匀,放置10min,再加入4%的氢氧化钠溶液10.00mL, 混匀,放置10min, 加入85%的乙醇溶液至刻度,摇匀,10min 后 于波长500nm处测定其吸光度,同时做三组平行实验。

总黄酮的提取方法

总黄酮的提取方法 1、熔剂法热水提取法、碱性水或碱性稀醇提取法、有机溶剂提取法 2、微波提取法微波提取是利用不同结构的物质在微波场中吸收微波能力的差异,使基体物质中的某些区域或提取体系中的某些组分被选择性加热,从而使被提取物质从基体或体系中分离,进入介电常数较小,微波吸收能力相对差的提取剂[1]。这种方法的优点是对提取物具有较高的选择性、提取率高、提取速度快、溶剂用量少、安全、节能、设备简单 3、超声波提取法用超声波提取法提取黄酮类物质,是目前比较新的方法。原理是利用超声波在液体中的空化作用加速植物有效成分的浸出提取,另外,还利用其次效应,如机械振动、扩散、击碎等,使其加速被提取成分的扩散、释放。超声波提取法具有设备简单,操作方便,提取时间短,产率高,无需加热,同时有利于保护热不稳定成分,省时,节能,提取率高的优点。 4、超临界流体萃取法超临界流体萃取技术是利用超临界流体处于临界温度和临界压力以上,兼有气体和液体的双重特点,对物质具有良好的溶解能力,从而作溶剂进行萃取分离。可做超临界流体的物质很多,一般为低分子量的化合物,如CO2、C2H6、NH3、N2O 等。目前多采用CO2 做萃取剂,因为它具有密度大、溶解能力强、临界压力适中、临界温度接近常温、不影响萃取物的生理活性、无毒无味、化学性质稳定、生产过程中容易回收、无环境污染、价格便宜等一系列优点。但单一的CO2作萃取剂只对低极性、亲脂性化合物有较强的溶解能力,对大多数极性较强的组分则不起作用,因此,在其中加入夹带剂,通过影响溶剂的密度和溶质与夹带剂分子间的作用力来影响溶质在二氧化碳流体中的溶解度和选择性[15]。超临界流体萃取技术有许多传统分离技术不可比拟的优点:过程容易控制、达到平衡的时间短、萃取效率高、无有机溶剂残留、对热敏性物质不易破坏等[16]。但它所需要的设备规模较大,技术要求高,投资大,安全操作要求高,难以用于较大规模的生产。 5、酶法提取酶解法适用于被细胞壁包围的黄酮类物质,利用酶反应的高度专一性,破坏细胞壁,使其中的黄酮类化合物释放出来。黄剑波等[22]采用纤维素酶辅助法从甜茶中提取黄酮类化合物,黄酮类物质的提取率为91%,提取纯度为54%。王悦等[23]对桔皮细胞进行游离酶、固定化酶和常规法提取,黄酮得率分别是%,% 和%,和传统的方法相比,游离酶法的总黄酮得率提高了81%。

黄酮提取工艺

黄酮提取工艺 2-1 微波辅助提取金银花总黄酮工艺流程图 3.实验方法 3.1 标准曲线的制备 3.1.1最大吸收波长的选择方法 以亚硝酸钠、硝酸铝和氢氧化钠为显色剂,分别作各样品提取液以及芦丁标准品的吸收曲线,在510nm处均有1个强吸收峰,因此选择510nm为测定波长。 3.1.2对照品溶液的制备方法 精密称取芦丁对照品10.2mg置50mL容量瓶中,加适量甲醇溶解,并稀释至刻度,摇匀备用。 3.1.3 标准曲线的制备 精密量取对照品溶液0,1,2,3,4,5mL,分别置10mL容量瓶中,加入5%亚硝酸钠溶液0.3mL,振荡摇匀,放置6min;再加入10%硝酸铝0.3mL,振荡摇匀,放置6min;最后加入4%氢氧化钠试液4mL,加甲醇定容至刻度,摇匀,放置15min。采用分光光度法,在510nm处测定吸光度,以对照品量(mg/mL)为横坐标,吸光度为纵坐标,绘制标准曲线。

3.2 微波提取单因素实验方法 分别考察不同的微波辐射功率,辐射时间,乙醇浓度,固液比对提取效果的影响 3.3 提取工艺正交试验设计方法 系统考察微波提取法的工艺参数,根据已有的资料及实际情况,选用微波辐射功率(A),辐射时间(B),乙醇浓度(C),固液比(D)作为考察因素,以测得的浸提取样品中总黄酮含量为考察指标,选用L9(34)正交表设计,得到供试液。 3.4微波辅助提取法与乙醇回流法比较 比较两种提取方法的处理时间和液固比对总黄酮提取量的影响。传统乙醇回流法提取总黄酮的所需时间比微波辅助提取法提取长得多,且金银花总黄酮提取量比较低;而微波辅助提取的总黄酮较乙醇回流法高。比较此两种方法在最佳条件下的总黄酮含量。 3.5总黄酮含量测定方法 取0.5mL液,加入5%亚硝酸溶液0.3mL荡摇匀,放置6min加入10%硝酸铝0.3mL荡摇匀,放置6min入4%氢氧化钠试液4mL,30%(V/V)乙醇定容至刻度,摇匀,放置15min分光光度法,在510nm定吸光度值由标准曲线计算得总黄酮含量。 4. 结果 4.1 标准曲线绘制 表4-1 标准曲线表 编号 0 1 2 3 4 5 芦丁浓度 0 0.02 0.03 0.05 0.07 0.09 (mg/mL) 吸光度 0 0.206 0.381 0.548 0.738 0.911 (OD)

举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法 组长:崔宁 组员:翟雪王璐璐冯子涵赵子惠罗春雨刘红成 1.提取方法 1.1热水提取法 热水提取法一般仅限于提取苷类. 在提取过程中要考虑加水量、浸泡时间、煎煮时间及煎煮次数等因素. 此工艺成本低、安全,适合于工业化大生产。以水做溶剂,同时提高浸提温度、延长浸提时间和增加液料比(60倍) ,可以明显提高芦丁的产率。 实例 桑叶:采用热水提取法测定桑叶中各有效成分含量,发现黄酮类化合物含量为1%以上,其中霜后桑叶黄酮类化合物含量最高为1.54% ,其次是晚秋桑叶,春季桑芽和后期桑叶含量最低。 甘草:过去甘草黄酮的提取主要为水提法,其主要原理通过甘草粉与水按一定配比,加热混合至80~95 ℃浸提甘草粉,利用甘草黄酮的水溶性进而提取甘草黄酮。此法虽然要求设备简单,但因提取杂质多、提取时间长、提取液存放易腐败变质、后续过滤操作困难、收率较低等缺点,现已不常使用。 1.2有机溶剂萃取法 其原理是利用黄酮类化合物与混入的杂质极性不同,选用不同的溶剂萃取。常用的有机溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,一般采取乙醇为提取溶剂。高浓度的乙醇(如90 %~95 %) 适于提取苷元,浓度60 %左右的乙醇适于提取苷类。提取次数一般为2~4 次,提取方法有热 回流提取和冷浸提取两种方式。 实例 桑叶:使用乙醇提取桑叶中总黄酮的最佳工艺条件为:乙醇的浓度为70%,料液比为1:15,在80℃的条件下浸泡3h。使用多种有机溶剂提取发现桑叶中黄酮类化合物的最佳提取溶剂是60%丙酮。 西芹:使用无水乙醇为提取剂,按西芹鲜重与提取剂的比例(W/ V) 1∶2 ,在80 ℃下回流提取2~4h ,制备西芹总黄酮。 银杏叶:从银杏叶中提取总黄酮时, 随乙醇浓度的增加总黄酮提取率逐渐上升, 当乙醇浓度增至70% 时提取率最高, 之后反而下降, 故选用70% 的乙醇作浸提剂最佳。 生姜:生姜黄酮提取用40倍原料的90%甲醇溶液, 在60 ~ 65℃条件下提取4 h 为其优化组合, 而其试验组合中以用40倍原料的75%甲醇溶液,在60~ 65 ℃条件下提取2 h的提取效果最好。 1.3碱性水或碱性稀醇提取法 黄酮类化合物大多具有酚羟基, 易溶于碱水, 酸化后又可沉淀析出。其原因一是由于黄酮酚羟基的酸性, 二是由于黄酮母核在碱性条件下开环, 形成2′-羟基查耳酮, 极性增大而溶解。因此可用碱性水( 碳酸钠、氢氧化钠、氢氧化钙水溶液) 或碱性稀醇( 50 %乙醇) 浸出, 浸出液经酸化后析出黄酮类化合物。 实例 菊花:各取5g干菊花4份, ,在80℃恒温水浴分别以pH为8,9,10,11的NaOH溶液分两次温浸1h和0.5h。pH降低时.由于提取不完全.含量较低;pH为11时,虽然黄酮

植物挥发油的提取技术研究进展

专题论述 植物挥发性化学成分又称挥发油、精油,是植物体内的次生代谢物,由相对分子质量较小的简单化合物组成,具有芳香气味,在常温下可挥发。植物精油多具有祛痰、止咳、平喘、驱风、健胃、解热、镇痛、抗菌消炎等作用。精油还是天然香精、香料的重要组成部分,由于天然香料有着合成香料无法代替的、独特的香韵以及大多不存在毒副作用等原因,其生产和销售经久不衰。在天然香料和食品添加剂的研制和生产中,提取和保留挥发油成分是保障其效用的重要步骤之一。现将植物挥发油提取技术方法的研究进展作一综述,希望为植物挥发油的研究、开发、应用提供参考。1 传统的提取方法 传统提取方法有:水蒸气蒸馏法[1-2]、溶剂提取法、压榨法、吸附法等方法。 水蒸气蒸馏(hydro distillation ,HD )是根据每种挥发性成分都有固定沸点且不同温度下具有相应蒸汽压 的原理。水蒸气蒸馏提取的方式有:水中蒸馏、水上蒸馏、直接蒸汽蒸馏、水扩散蒸汽蒸馏等。其中,水扩散蒸气蒸馏是近年国外应用的一种新颖的蒸馏技术;水蒸气由锅顶进入,蒸气自上而下逐渐向料层渗透,同时将料层内的空气推出,其水散和传质出的精油无须全部气化即可进入锅底冷凝器。 蒸气为渗滤型,蒸馏均匀、一致、完全,而且水油冷凝液较快进入冷凝器,因此所得精油质量较好、 得率较高、能耗较低、蒸馏时间短、设备简单。水蒸气蒸馏适合于水中溶解度不大的挥发性成分的萃取。此方法具有设备简单、易操作、成本低、产量大的优点,但若加热温度较高时,可能会使精油中热敏性成分发生热分解,易水解成分发生水解及原料焦化等。HD 是目前应用较多的方法之一。 溶剂提取法是利用低沸点的弱极性有机溶剂如石油醚、乙醚等连续回流提取或冷浸提取,提取液经过蒸馏除去溶剂,即可得到粗挥发油。此法得到的挥发油含有树脂、油脂、蜡、叶绿素等较多杂质,必须进一步精制提纯。其方法是将挥发油粗品加适量的乙醇浸渍,放置冷冻(-20℃左右),过滤,滤液蒸馏除去乙醇;也可将挥发油粗品再进行水蒸气蒸馏。 压榨法是将含挥发油较丰富的原料(如鲜橘、柑、 植物挥发油的提取技术研究进展 陈丛瑾,黎跃,李欣 (广西大学化学化工学院,广西南宁530004 )摘 要:综述植物的挥发性油的提取技术的研究进展,包括传统的提取方法和现代提取技术如同时蒸馏萃取、超声提 取、微波提取、超临界CO 2提取、亚临界水萃取、酶法提取、联合提取法等,旨在为植物挥发油的研究、开发、应用提供参考。关键词:挥发油;提取技术方法;进展 Research Progress on Technology Methods for Extracting Plant Volatile Oil CHEN Cong -jin ,LI Yue ,LI Xin (School of Chemistry and Chemical Engineering of guangxi University ,Nanning 530004,Guangxi ,China )Abstract :The extracting methods of plant volatile oil including traditional extracting methods and morden methods such as simultaneous-distillation and solvent-extraction ,ultrasound-assisted extraction ,microwave-assisted extraction ,supercritical CO 2extraction ,subcritical water extraction ,enzyme hydrolysis -assisted extraction ,and joint extraction were reviewed in this paper in order to offer reference to the research ,development and application of plant volatile oil . Key words :volatile oil;extraction technology method ;progress 基金项目:广西自然科学基金项目(桂科自09236002);广西教育厅科研项目(200911LX03) 作者简介:陈丛瑾(1970—),女(汉),副教授,博士,主要从事天然产物化学与利用的教学、科研工作。 食品研究与开发 F ood Research And Development 2011年11月第32卷第11期 151

银杏叶中黄酮的提取原理及方法

银杏叶中黄酮提取及含量测定 一、实验目的 提取银杏叶中的总黄酮并测定其含量。 二、实验原理 银杏系银杏科银杏属落叶乔木,银杏叶中含有多种生理活性成分,其中黄酮类化合物是重要的生理活性物质,具有保肝护肝、预防治疗心血管疾病、抗氧化、抗衰老等作用。因此,将银杏叶作为高营养、保健功能价值的资源加以开发利用,这对于提高银杏叶综合利用率有重要意义。银杏叶黄酮类化合物的提取方法目前研究的有水浸取法,成本低但浸取率低;有机溶剂浸取法中,乙醇浸取的效率高且无毒,是目前采用较多的方法;韩玉谦等采用超临界流体萃取法,在70%乙醇溶液中加热回流法和CO2 超临界流体萃取法提取银杏叶中的活性成分,银杏黄酮回收率为84 . 4 % ,是常规萃取法回收率的2倍多;乙醇超声波浸取法, 黄酮提取率可达到8 6 . 7 %。银杏黄酮含量的测定常用分光光度法和高效液相色谱法。分光光度法自20世纪9 0年代以来一直是用来测定银杏黄酮的一种重要方法, 由于其成本低、便于操作等特点, 是一种快捷有效的方法[1]。本实验采用乙醇作溶剂进行索氏提取,建立了用Al(NO3)3显色法对芦丁标准品和银杏叶提取液进行光谱扫描测定银杏叶总黄酮含量的方法[2]。 三、实验仪器和试剂 材料:银杏叶粉末50g 试剂:标准芦丁样品,无水乙醇(600ml),50mlAl(NO3)3(0.1mol/L),乙醚,5%NaNO2溶液,10%AL(NO3)3,4%NaOH溶液。

仪器:紫外分光光度计、电子分析天平、水浴锅、烘箱、烧杯、容量瓶(100ml1个、50ml1个、10ml6个)、索氏提取器、减压蒸馏装置、锥形瓶、沸石等。 四、实验步骤 1.1提取银杏叶中总黄酮 (1)将银杏叶洗净, 在103℃下烘干至恒重,用研钵捣碎制得银杏叶粉(2)准确称取10.0g,置于索氏提取器中,按下列条件加热回流提取:乙醇浓度80%,料液比1:20(g/ml),回流温度85℃,回流时间2 h,平行进行1~3次实验。 (3)将圆底烧瓶中提取液倒入烧杯,加入一倍蒸馏水,再加入相同量的乙醚,混合均匀,倒入分液漏斗中,静置20min,分层后,收集下层液体。 (4)减压蒸馏,回收乙醇,得到淡黄色黏液,干燥得到银杏叶中总黄酮提取物。 1.2银杏叶中总黄酮含量测定 (1)芦丁标准溶液的配置:称取0.0100g芦丁标准品,放入烧杯中,加入80%的乙醇溶液使其溶解,置于100ml的容量瓶中,制成0.1g/L的芦丁标准溶液。定容,摇匀备用。 (2)绘制芦丁标准曲线:分别移取0,0.4 ,0.8,1.2,1.6,2.0 ml 芦丁对照品溶液,于6个10ml 容量瓶中,标记1~6,分别加入2.0、1.6、1.2、0.8、0.4、0ml的80%乙醇溶液,加入5%NaNO2溶液0.5ml,摇匀,放置6min,加入0.5ml10%AL(NO3)3,摇匀,放置6min,加入4%NaOH 溶液4.0ml,加入80%乙醇定容,摇匀,放置20min。在波长510nm处分

黄酮类化合物的提取纯化方法

黄酮类化合物的提取、药用价值和产品开发应用前景 任红丽2009090141 摘要:对黄酮类化合物的药用价值、提取工艺、分离方法等方面进行综述。在 药用价值方面,讨论了其抗抑郁作用、抗氧化与自由基消除活性作用、对化学性肝损伤的保护作用、抗肿瘤作用、抗骨质疏松作用、抗心肌缺血作用;在提取工艺方面,讨论了溶剂提取法、超声提取法、酶法、微波法等;及其开发应用,为今后黄酮类化合物的深入研究提供理论基础。 关键词:黄酮类化合物提取工艺药用价值 黄酮类物质是一类低分子天然植物成分,是自然界中存在的酚类物质[14],又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物的各个部位,尤其是花、叶,主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科中。迄今,已有数百种不同类型的黄酮类化合物在植物中被发现,人工合成的黄酮类化合物也不断问世。最初这类物质仅用于染料方面,自20世纪20年代,槲皮素、芦丁等黄酮类物质用于临床后,才开始引起人们的关注,研究发现其中相当一部分具有显著的生理及药理活性,例如抗氧化、抗病毒、抗炎、调节血管渗透性,改善记忆,抗抑郁、抗焦虑、中枢抑制、神经保护等功能[2,12]诸多生理和药理特性使其广泛应用于食品、医药等领域。 1.提取纯化方法 1.1 传统提取方法 1.1.1 热水提取法 水是最廉价的提取溶剂,是地球最丰富的物质,无色无味无毒,对人体和环境无害,挥发性不大,具有真正的绿色环保意义。但用水作为提取溶剂时,从中药材中提取的黄酮类化合物中杂质含量较多,往往因泡沫或粘液很多,给进一步分离带来许多麻烦,而且浓缩也会很困难。此外,水提取物容易发霉发酵[22]。1.1.2 碱性水、碱性稀醇浸提法 中草药中黄酮类成分多为多酚类化合物,因其结构中具有酚羟基[7],故可用碱性水或碱性稀醇液来提取中草药中的黄酮类化合物。黄酮母核的多样性主要是由黄酮本身骨架、环系的变化、氧化程度和数量而定,当碱的浓度过高,加热时便破坏黄酮类化合物的母核。 1.1.3 有机溶剂热回流及冷浸提取法 根据杂质极性不同,可选用不同的有机溶剂(如石油醚、乙酸乙酯、氯仿、乙醇、甲醇、丙酮等),一般采取乙醇为提取溶剂[15]。

黄酮提取工艺设计思路

黄酮提取工艺设计思路 1、黄酮类化合物含量测定的原理 在中性或弱碱性及亚硝酸钠存在条件下,黄酮类化合物与铝盐生成螯合物,加入氢氧化钠溶液后显红橙色。黄酮类化合物能与金属离子络合产生有色反应,于波长510nm附近有吸收,可用分光光度法进行测定。实验采用在碱性条件下,亚硝酸盐存在时,硝酸铝与黄酮形成红色络合物,在波长510nm附近有吸收可进行比色分析。 在中性或弱碱性及硝酸钠存在条件下,黄酮类化合物与铝盐生成鳌合物,加入氢氧化钠溶液后显红橙色,硝酸钠还原黄酮,加硝酸铝络合,加氢氧化钠使黄酮类化合物开环,生成2’-OH查耳酮而显色。 利用黄酮类化合物中的3-羟基、4-羟基、5-羟基、4-羰基或邻二位酚羟基,与Al3+进行络合反应,在碱性条件下生成红色络合物的原理测定其含量 2、测定波长的确定 取样品溶液和标准溶液2mL,加70 %的乙醇至5 mL, 然后加入5 %的NaNO2 溶液1 mL, 室温放置6min, 再加入10 %的Al(NO3)3 1mL, 混匀, 室温放置6 min, 加入4%的NaOH 10mL, 用水稀释至25 mL,混匀, 放置15 min, 在分光光度计上扫描波长从400 nm~600 nm 之间的吸收度, 结果在510nm 波长处有最大吸收值。 配合物在Kmax1= 354nm 及Kmax2= 510nm有两个吸收峰, 经实验后得出Kmax1= 354nm波长处得到的工作曲线线性关系及精密度数据均不佳, 故本实验选取Kmax2= 510 nm为测定波长。 3、标准溶液的配制 精确称取105℃干燥恒重芦丁对照品50mg, 加乙醇适量, 使之充分溶解, 用乙醇定容到100mL, 摇匀, 制得芦丁溶液。精确量取芦丁溶液20mL, 置于50mL容量瓶中, 用水稀释至刻度, 摇匀, 即得对照品溶液。每1mL溶液含芦丁对照品0.2mg。或精密称取干燥至恒重的芦丁标准品10mg, 置50mL容量瓶中, 加无水乙醇20mL, 轻摇使充分溶解,定容, 摇匀, 得0. 2mg /mL芦丁标准液。 精确称取芦丁标准品5mg,用70%乙醇溶解,于50 mL容量瓶中定容,即得每1mL溶液含芦丁对照品0.1mg芦丁标准品溶液。 称取约20mg芦丁标准品于称量瓶中置105℃烘箱下烘干至恒重,干燥器中冷却,精确称

植物挥发油的提取技术研究进展

兰州交通大学化学与生物工程学院 综合能力训练Ⅰ——文献综述 题目:植物挥发油的提取技术研究进展 姓名:赵珍 学号:201107124 指导教师:刘老师 完成日期:2011-7-24

植物挥发油的提取技术研究进展 【摘要】本文对植物挥发性油的提取技术的研究进展作了简要的介绍,包括传统的提取方法和现代提取技术如同时蒸馏萃取、超声提取、微波提取、超临界CO2提取、亚临界水萃取、酶法提取、联合提取法等,旨在为植物挥发油的研究、开发、应用提供参考。 【关键词】植物;挥发油;提取技术;研究进展 前言 在自然界,由植物合成和释放的低分子质量次生代谢物超过 10 万种,其中挥发性物质占很大比例[1]。植物挥发性化学成分又称挥发油、精油,由相对分子质量较小的简单化合物组成,具有芳香气味,在常温下可挥发,具有杀菌、刺激、放松等效应,能使人适度兴奋、减缓疲劳及产生松弛感等,日益受到药物化学、药物学和分析化学等领域专家学者的关注[2]。提取植物挥发油不仅对香料、食品工业、日用化妆品工业的生产具有实用价值,而且对人类保健也有十分重要的意义。植物精油多具有祛痰、止咳、平喘、驱风、健胃、解热、镇痛、抗菌消炎等作用。精油还是天然香精、香料的重要组成部分,由于天然香料有着合成香料无法代替的、独特的香韵以及大多不存在毒副作用等原因,其生产和销售经久不衰。在天然香料和食品添加剂的研制和生产中,提取和保留挥发油成分是保障其效用的重要步骤之一。现现代仪器分析技术及相关学科技术的迅猛发展,为研究植物挥发油提取提供了日益坚实的基础。 正文 1.植物挥发油性质及类型 1.1植物挥发油的性质 植物挥发油,又称植物精油,是一类具有挥发性且可随水蒸气蒸馏出来的油状液体,多呈无色或淡黄色,具有特殊气味( 多为香气) 或辛辣味,一般在室温下可挥发,难溶于水,完全溶解于无水乙醇、乙醚、氯仿、脂肪油。 1.2植物挥发油的类型 在化学结构上主要分为萜类、烷烃、烯烃、醇类、酯类、含羰基和羧基类物质[4]。由植物花、果实合成释放的挥发性物质,主要包括芳香化合物、萜类化合物、酯类物质以及一些含氮、硫化合物,一般具有一定的香气; 由营养组织如叶片等释放的挥发性物质,包括萜类、脂肪酸衍生物,如醛类和醇类化合物等; 此外还有一些特殊物质如含氮化合物吲哚等。 2.植物挥发油的提取方法

银杏叶中黄酮提取方法

银杏叶黄酮的提取 一、溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机溶剂易残留。溶剂系统主要有乙醇,水溶液、丙酮-水溶液、NaOH-水溶液、NaOH-乙醇等。精提物常在粗提物制备基础上精制,常用液-液提取法、沉淀法和吸附.洗脱法。 以60%丙酮为起始溶剂粗提取,再脱脂、去银杏酚酸等15道工艺制成提取物。NaOH-水溶液提取效果最好,NaOH-乙醇溶液次之,正丁醇萃取水溶液中银杏黄酮苷,获得最佳萃取条件为萃取5 min温度60℃4次,萃取物中黄酮苷含量为57%。V水:V正丙醇=1:25最佳。银杏叶精提物树脂吸附纯化法以石油醚回流提取,再以80%乙醇回流提取,减压浓缩,新型澄清剂沉降,树脂分级吸附,pH值为3—4酸水和酸性25%乙醇洗涤,75%乙醇洗脱,喷雾干燥 将银杏叶洗净,于60℃烘干至恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中加入60%乙醇至250.0 ml,80℃下回流提取3.0 h,蒸馏回收乙醇,并用活性炭脱色,得银杏叶黄酮提取物。乙醇浓度为50%一70%时,提取率随浓度增加提高,当浓度70%时提取率达最大。随水浴温度升高总黄酮提取率快速增加。当温度80℃时提取率达最大。提取时间为三小时为佳。 二、超临界流体萃取法(SFE法):利用临界或超临界状态的流体及被萃取的物质在不同蒸汽压力下所具有的不同化学亲和力和溶解能力进行分离纯化的操作。最佳萃取实验工艺条件为萃取压力15 MPa、乙醇浓度90%、萃取温度55℃,此时,黄酮类化合物萃取得率较理想. 三、高速逆流色谱技术提取法:是一种不用任何固定载体的液一液分配色谱技术W=70%的乙醇连续循环喷淋逆流6级萃取,m乙醇:m银杏叶=5:1,总萃取时间240min,萃取温度50~55度,萃取率99%以上。 四、微波提取法:微波提取法能对萃取体系中的不同组分进行选择性加热,受溶剂亲和力的限制较小,可供选择的溶剂较多及热效率较高,升温快速均匀,大大缩短了提取时间,提高了萃取效率。以水为介质的条件下,对银杏叶进行微波处理。 工艺流程银杏叶一干燥一粉碎一加入适量氢氧化钙溶液一微波预处理一加入适量碱水一调节pH和硼砂含量→恒温水浴浸提—过滤一定容 通过对提取温度、提取时间、液料比、微波功率、微波时间、解析剂比6个因素进行正交实验,优选得到最佳的萃取工艺条件为:提取温度80℃,提取时间60min,液料比.50:1,微波功率700W,微波时问180s,解析剂比7:l。 五、超声提取法:超声技术应用于天然活性产物的提取,具有速度快、提取率高、节省溶剂、节约能耗、不破坏有效成分的特点。最佳操作条件为超声波频率40kHz处理时间10min、静置时间12 h。以水为介质,在较低温度下 六、酶提取法: 加入淀粉部分水解产物及对葡糖基有转移作用的葡糖苷酶或转糖苷酶,使油溶性或难溶于水或不溶于水的有效成分转移到水溶性苷糖中,既提高了有效成分的提取率,又促进难溶于水或不溶于水的有效成分在体内的吸收. 在常规的醇一水浸提之前用纤维素酶对原料进行酶预处理(酶解时间为2h) 七、分子烙印技术:在极性溶剂中,以丙烯酞胺作功能单体,以强极性化合物槲皮素为模板,

黄酮类化合物的提取分离方法

一.黄酮类化合物的提取分离方法 按所用溶剂不同分类 (1)热水提取法(以水作溶剂)---------- 灵芝多糖热水提取 (2)有机溶剂萃取法-----------生产茶多酚工业试验、乳酸 (3)碱提取酸沉淀法.---------- 橙皮苷、黄芩苷、芦丁等都可用此法提取. 2.按提取条件不同分类 (1)回流提取法----------从苦楝树皮中提取苦楝素 (2)索式提取法----------柑橘属类黄酮 (3)微波辅助提取法----------采用微波辅助法从黎蒿中提取黄酮类化合物 (4)超声提取法----------提取山楂中黄酮类物质 (5)超滤法----------黄岑甙 (6)酶提取法----------采用纤维素酶对红景天进行酶解处理,可提高黄酮类物质的浸出率 (7)超临界流体提取法----------竹叶黄酮、从干姜片中提取挥发油 PH 梯度萃取法:石榴果皮褐变产物、葛花总异黄酮 高效液相色谱分析法:五味子、葛根 高速逆流色谱分离法:甘草、分离蜜环菌发酵液乙醇提取部位 柱色谱法 (1)硅胶柱色谱:姜黄素 (2)聚酰胺柱色谱:紫锥菊 (3)葡聚糖凝胶柱色谱:回心草、茵陈蒿 (4)大孔吸附树脂分离法:川草乌、三七总皂甙 二. 槐米中芸香苷(芦丁)的提取方法有哪些(设计) 方法:渗漉法、煎煮法、回流提取法 (1) 槐米粗粉20g 加约120ml 的%硼砂水溶液, 搅拌下加入石灰乳至pH8-9, 并保持该pH 值煮沸20分钟,四层纱布 趁热滤过,反复2次 提取液 药渣 浓盐酸调pH2~3 搅拌,静置放冷,滤过。 滤液 沉淀 热水或乙醇重结晶 芸香苷结晶 碱溶酸沉法提取分离槐米中芸香苷的流程图 (2)取30g 槐花米,置于250mL 烧杯中,加入%硼砂沸水200ml ,在搅拌下缓缓加入石灰乳调节pH=8~9,在此pH 下保持微沸20~30min ,趁热用棉花滤过,残渣再加水,同上法再煎一次,趁热抽滤。合并滤液,在60~70℃下用浓盐酸调至pH=4—5,静置。 提 碱 取 溶 分 酸 离 沉

果胶提取工艺

果皮中提取果胶方法探讨综述 摘要:由于时间不允许,没做到实验,不过先从理论探讨一下各方法从果皮中提取果胶, 对酸解法工艺进行初步探讨。 关键词:果胶、提取方法、工艺 Abstract: due to the time did not permit, didn't do the experiment, but first discuss the method from the theory from the extraction of the peel pectin, the acid solution process for a preliminary discussion. Keywords: pectin and extraction method, process 果胶广泛存在于植物组织之中, 主要形成细胞壁的中层, 起组织硬化和保持水分的作用。由于酸和果胶酶的存在, 它的含量随果实的成熟度的增加而降低, 果胶是以α一1,4 糖苷键键合的D一半乳糖醛酸为基本结构的多糖类物质, 分子量为10000到400000。一般地, 一个果胶分子由几百到1000 多个半乳糖醛酸残基组成, 平均分子量在50000到220000之间[1]。 作为膳食纤维的主要成分之一, 果胶具有抗腹泻、抗癌、治疗糖尿病等功效, 在医药工业中用于制造轻泻剂、止血剂、毒性金属解毒剂、血浆代用品等, 另外, 果胶具有良好的胶凝性和乳化稳定作用, 被广泛地用于果冻、果酱、婴儿食品、冰淇淋及果汁的生产中。FAO/WHO 规定, 果胶作为食品添加剂, 其添加量不受限制。 果胶提取方法: 酸萃取法传统的无机酸提取法是将洗净、除杂预处理后的果皮用无机酸(如盐酸、硫酸、亚硫酸、硝酸、磷酸等)调节一定pH值,加热90~ 95℃并不断搅拌, 恒温50~ 60min,然后将果胶提取液离心、分离、过滤除杂(提取用水最好经过软化处理),得到果胶澄清液。该法的缺点是果胶分子在提取过程中会发生局部水解,反应条件也较复杂,过滤时速度较慢,生产周期较长,效率较低。徐伟玥等通过正交试验优化了酸解法提取胡萝卜果胶的工艺条件, 结果表明, 其最优工艺条件为: 料液比1B30, 提取时间90m in, 提取温度95e , 所得胡萝卜果胶提取率为15. 64% [2]。夏红等以0.2mol/L的盐酸溶液萃取香蕉皮中的果胶, 通过正交试验研究了萃取液用量、萃取温度和萃取时间对果胶提取率的影响。结果表明,萃取液用量是原料的2倍、萃取时间为1.5h、萃取温度为85℃时,果胶的提取率相对较高[3]。 碱萃取法生产中常用的碱法脱酯速度很快,但果胶在碱法脱酯过程中,除了分子中的甲氧基含量减少外,还发产生果胶分子解聚,即β-消去反应。β-消去反应可导致果胶分子量、粘度和胶凝能力下降。果胶的脱酯反应和β-消去反应往往同时发生,但反应条件不同时,两者的反应速度不同;这2种化学反应属于竞争性反应: 前者使果胶中甲氧基含量降低,而后者必须在甲氧基存在的条件下才能进行,两者相互竞争甲氧基,脱酯反应进行一定阶段后,由于甲氧基含量的减少,2种化学反应速度均降低。雷激等以商品柑橘高酯果胶为原料,重点探讨了低温碱法脱酯对果胶质量的影响(以果胶的半乳糖醛酸含量、酯化度(DE值)、特性粘度等为考察指标),结果表明,低温下(5℃)碱法脱酯可将影响果胶品质的β-消去反应控制在较小程度,所得产品能最大程度的保持其特性粘度。柑橘高酯果胶碱法脱酯的最佳工艺条件为:

黄酮提取方法 (2)

总黄酮的提取方法 1、熔剂法 热水提取法、碱性水或碱性稀醇提取法、有机溶剂提取法 2、 2、1 微波提取法 微波提取就是利用不同结构的物质在微波场中吸收微波能力的差异,使基体物质中的某些区域或提取体系中的某些组分被选择性加热,从而使被提取物质从基体或体系中分离,进入介电常数较小,微波吸收能力相对差的提取剂[1]。这种方法的优点就是对提取物具有较高的选择性、提取率高、提取速度快、溶剂用量少、安全、节能、设备简单[2]。 2、2 超声波提取法 用超声波提取法提取黄酮类物质,就是目前比较新的方法。原理就是利用超声波在液体中的空化作用加速植物有效成分的浸出提取,另外,还利用其次效应,如机械振动、扩散、击碎等,使其加速被提取成分的扩散、释放。超声波提取法具有设备简单,操作方便,提取时间短,产率高,无需加热,同时有利于保护热不稳定成分,省时,节能,提取率高的优点。 2、3 超临界流体萃取法 超临界流体萃取技术就是利用超临界流体处于临界温度与临界压力以上,兼有气体与液体的双重特点,对物质具有良好的溶解能力,从而作溶剂进行萃取分离。可做超临界流体的物质很多,一般为低分子量的化合物,如CO2、C2H6、NH3、N2O 等。目前多采用CO2 做萃取剂,因为它具有密度大、溶解能力强、临界压力适中、临界温度接近常温、不影响萃取物的生理活性、无毒无味、化学性质稳定、生产过程中容易回收、无环境污染、价格便宜等一系列优点。但单一的CO2作萃取剂只对低极性、亲脂性化合物有较强的溶解能力,对大多数极性较强的组分则不起作用,因此,在其中加入夹带剂,通过影响溶剂的密度与溶质与夹带剂分子间的作 用力来影响溶质在二氧化碳流体中的溶解度与选择性[15]。超临界流体萃取技术有许多传统分离技术不可比拟的优点:过程容易控制、达到平衡的时间短、萃取效率高、无有机溶剂残留、对热敏性物质不易破坏等[16]。但它所需要的设备规模较大,技术要求高,投资大,安全操作要求高,难以用于较大 规模的生产。 2、4 酶法提取 酶解法适用于被细胞壁包围的黄酮类物质,利用酶反应的高度专一性,破坏细胞壁,使其中的黄酮类化合物 释放出来。黄剑波等[22]采用纤维素酶辅助法从甜茶中提取黄酮类化合物,黄酮类物质的提取率为91%,提取纯度为54%。王悦等[23]对桔皮细胞进行游离酶、固定化酶与常规法提取,黄酮得率分别就是1、43%,0、94% 与0、79%,与传统的方法相比,游离酶法的总黄酮得率提高了81%。 2、5 双水相提取法 双水相提取技术就是瑞典Per Albersson首先发现并研究 的一种技术,双水相萃取法属于液- 液萃取,当物质进入双 水相体系后,由于表面性质、电荷作用与各种力的作用,溶 液环境的影响,其在上、下相中的浓度不同,即各成分在两 相间选择性分配,从而达到萃取的目的。由于双水相体系分 相快、使用温度低、容易操作、无污染、提取率高,因此成 为黄酮化合物富集分离的一种有效方法。张春秀等[24]取一 定量的银杏叶浸提液,加到PEG1500/ 磷酸盐体系双水相 系统中,则黄酮类化合物进入上相PEG,从而将黄酮类化合 物分离,提取率可达98、2%。 2、6 半仿生提取法 半仿生提取法就是将整体药物研究法与分子药物研究法相结合,模拟口服给药后药物经胃肠道转运的环境,为经消化道给药的中药制剂设计的一种新的提取工艺。这种提取方法的特点就是可以提取与保留更多的有

大豆异黄酮提取工艺

大豆异黄酮提取工艺 和药理功效 一、提取工艺 每100克大豆样品中含有异黄酮128毫克,可分离约102毫克。 大豆异黄酮的提取可以采用甲醇、乙醇、乙酸乙酯等溶剂进行浸提。 不同的溶剂其提取工艺也不同。现以乙醇为例,介绍其浸提工艺。 (1)原料制备将脱脂豆粕进行粉碎。如果采用大豆为原料,需要先进行脱脂,使豆粕残油率<1%,干燥后粉碎备用。 (2)提取采用乙醇为浸提液,先在豆粕粉中加入含0.1~1.0摩尔/升(mol/l)的盐酸,再在95%的乙醇溶液中进行回流提取,过滤收集滤液。 (3)回收提取溶剂将滤液进行减压蒸发,回收乙醇,得到大豆异黄酮的粗水溶液。 (4)纯化将粗水溶液中加入0.1摩尔/升的氢氧化钠溶液,调节pH值至中性。这时,中性溶液中将出现沉淀,然后过滤,得到的沉淀物即为含大豆异黄酮的产物。 (5)精制将上述产物溶解于饱和的正丁醇溶液中,加于氯化铝吸附柱上进行吸附,然后用饱和的正丁醇溶液淋洗,洗出大豆异黄酮的不同组分 各种大豆制品中异黄酮含量和种类分布不同,不仅与大豆品种和栽培环境有关,还与大豆制品的加工工艺密切相关。水处理、热处理、凝固、发酵等加工环节和方法显著地影响了大豆制品中异黄酮的含量和种类分布,特别是大豆浓缩蛋白和大豆分离蛋白的不同提取方法其中异黄酮含量影响极大。 1)水处理:浸泡使10%的异黄酮流失于浸泡水中,且水处理后的大豆中游离型异黄酮增加,这是因为豆类自身存在的β-glucosidases酶水解葡萄糖苷的结果。

2)加热:水煮加热增加了异黄酮向外渗透速率,使大量异黄酮因渗入加热水中而丢失,同时热处理还显著改变了豆制品中异黄酮种类的分布,因为热处理时β-glucosidases酶活性增强,使异黄酮葡萄糖苷水解为游离型异黄酮,因而制品中游离型异黄酮较原料大豆或大豆粉中的有所增加。 3)凝固:在豆腐生产中,凝固使一部分异黄酮丢失于乳清中,丢失率为44%。 4)发酵:发酵不影响异黄酮的含量,但改变了异黄酮种类的分布,发酵后的产品以游离型异黄酮为主要存在形式,这是因为在发酵过程中,真菌产生的大量β-glucosidases水解酶使异黄酮葡萄糖苷大量水解,从而导致游离型的异黄酮显著增加。 5)加工提取方法:提取方法对大豆浓缩蛋白和大豆分离蛋白中异黄酮含量的影响非常大。如用湿热水洗法去除可溶性碳水化合物所得浓缩蛋白的异黄酮含量与原料豆中的相近,而用60\%-65\%的酒精水溶液洗涤浓缩法提取的大豆浓缩蛋白的异黄酮仅为原料中的1/10。二、药理作用 延缓女性衰老、改善更年期症状、骨质疏松、血脂升高、乳腺癌、前列腺癌、心脏病、疏松症、心血管疾病等。 大豆提取物作为营养补充食品使用,此外,大豆异黄酮显著的降低了乳腺癌的发病率,产生这种结果被认为是与它的产物植物雌激素有关。研究还指出在平时多食用富含大豆异黄酮的食物有助于抑制前列腺癌细胞的生长,那些多吃低脂肪,富含大豆蛋白食品的人患(前列腺癌)的概率会更低。 抗氧化作用 金雀异黄素(genistein)含5.7.4三个酚羟基,大豆甙元含7.4二个酚羟基。酚羟基作为供氧体能与自由基反应使之生成相应的离子或分子,熄灭自由基,终止了自由基的连锁反应。大豆异黄酮对整体动物也有比较明确的抗氧化作用,大豆异黄酮提取物对阿霉素引起的小鼠过氧化水平提高和抗氧化酶活性的降低也有明显的抑制作用。 雌激素样作用

相关文档