文档库 最新最全的文档下载
当前位置:文档库 › 清洁度检测系统的介绍

清洁度检测系统的介绍

清洁度检测系统的介绍
清洁度检测系统的介绍

清洁度检测系统介绍

(一)清洗与称重

1.主题内容与适用范围:

微孔滤膜法测定清洁度的零部件及总成的清洗制样分析操作。

2.引用标准:

IS0 16232、VDA 19、ISO4406/4407、GB/T 3821-2005 《中小功率内燃机清洁度测定方法》

3.检测设备与器材:

10L不锈钢压力罐真空压力泵

喷枪砂芯抽滤瓶

电子天平(0.1mg)

电热鼓风干燥箱

通风柜

奥林巴斯清洁度分析系统

3.1 化学清洗剂:

NY120溶剂油、无水乙醇、95%乙醇、蒸馏水或脱矿物质水、AP760等;

3.2 过滤膜

依据所选用清洗溶剂不同,常用的滤膜材质有:尼龙膜(NYL )、聚四氟乙烯膜(PTFE )、混合纤维素脂膜(MCE )、聚碳酸酯膜(PC )等;

0.45μm ——用于初始溶剂过滤及喷枪管路溶剂过滤;

5、8、10、20

μm ——用于清洗后颗粒过滤;

4. 操作步骤:

先将浸泡过的空白滤膜放入培养皿中烘箱内,烘干后置于干燥皿中自然冷却称重,最

后记录空白滤膜及培养皿的重量。

清洁度检测工作包括抽样、解体、清洗、过滤、烘干、分析等内容,工作程序如下图

所示。

1)清洗:将工件置于清洗槽上方,将烧杯的接收器置于洗槽漏斗下方,收集所有的清洗液。打开通风装置及加压装置,手持喷枪开始对工件指定位置进行清洗(清洗过程应避免清洗液溅出槽外)。使用完毕后,继续开喷枪将罐内剩余清洗液全部压出

2)过滤:将专用滤膜放在滤杯与砂芯之间夹紧,将待过滤的溶剂倒入滤杯内。过滤应尽可能抽干清洗液,以减少烘干恒重时间,同时防止膜面残留挥发性清洗液过多而导致烘干时发生危险。

3)烘干:将滤膜连同滤出的杂质一起放入培养皿中,放入烘箱内烘干,结束后置于干

燥皿中自然冷却后称重两次。

4)称量:将经过烘干冷却的带有杂质滤膜的培养皿放在天平上称量,读数精确到

0.1mg;解体过程中的收集的异物也需进行称重。过滤后的滤膜与空白滤膜的重量差即为工件杂质重量。

5)清洁度分析:将待检滤膜使用滤膜夹具置于电动平台上,依据相关检测标准中

要求的颗粒大小,选用适合的放大倍率及检测标准。设定扫描区域后,系统自动进行滤膜

扫描拼图,并依据标准对颗粒进行自动分析统计,集成的报告工具自动生成基于标准或客

户模板的标准文档。

(二)显微颗粒计数法

上一期我们针对清洁度检测中的清洗与称重部分做了相关的介绍,是依据GB/T 3821-2005 《中小功率内燃机清洁度测定方法》、ISO16232、VDA 19中的相关规定整理

而来。

本期我们将就ISO 16232、VDA 19标准中关于显微颗粒计数法做相关的介绍说明。

首先先来一起了解相关显微计数法的基本原理:依据ISO 16232标准中所规定的

方法,对从测试部件上清洗颗粒所用的清洗液在滤膜过滤器上进行过滤,然后用显微技术

对分离的颗粒进行计数和粒度分析。

ISO 16232测量参数——最大卡规直径定义:颗粒两条平行外切直线间的最长距离。

由于光学显微镜每次观察的视野范围有限,所以需要匹配电动扫描平台及相应的软件来获得滤膜的整个表面计数。(参见ISO 16232-7 2007中 5.2.1.4)

对于汽车零部件供应商而言,零部件功能不同导致清洁度检测最小颗粒要求也不同,如何选择清洁度系统中的显微光学部分会存在一定的疑问,其实标准中对于这方面也有明确的规定。

简单而言,就是以最小的统计颗粒尺寸来确定显微光学部分:清洁度报告需要从25um 以上颗粒开始统计选择平行光路体式显微镜;清洁度报告需要从2um以上颗粒开始统计则选择金相显微镜。

由于金相显微镜一般都配有多颗物镜,如何正确的选择对应的物镜来进行颗粒扫描,标准中也给出了相应的答案:选择的物镜光学分辨率应该等于或者小于最小待测颗粒大小的1/10. 如果颗粒小于20 μm,那么最小颗粒大小的1/5也是在标准中允许的。

同样在VDA 19标准中对于目前大多数零部件厂商的清洁度颗粒要求也提出以25或50um的颗粒以上统计亦能够满足要求。

由于物镜倍率越高相应的视野范围越小,在对整个滤膜进行扫描、统计时花费的时间也就越长,所以依据执行的标准要求选择合适的倍率,可以显著的提高清洁度检测效率。

ISO 16232-2007、VDA 19.2-2010中对统计颗粒的等级划分也做了相应的说明。

由于生产加工中产生的金属颗粒在装配使用过程中极易对部件造成不可逆的损坏,现在很多厂商对于杂质中的金属颗粒非常敏感,所以清洁度分析过程中对于金属、非金属的正确区分也格外关注。目前主流的区分方式为偏光二次扫描,即在正交偏光与平行偏光状态分别扫描一次,针对同一颗粒在二次扫描中的灰度值变化进行自动判定。(如下图)

金属颗粒(明场)金属颗粒(偏光)

非金属颗粒(明场)非金属颗粒(偏光)

OLYMPUS依托优秀的光学系统,完善的软件功能为您带来Inspector系列产品,可满足您不同的清洁度检测标准,同时也可便捷的添加企业自定义标准以便满足对应多个客户及相关零部件清洁度检测要求。

清洁度检验操作规程

零件清洁度检验作业指导书 1 检验目的: 1.1 为了明确零件清洁度要求,便于总装车间及外协厂家对零件清洗效果的有效控制。 1.2 此操作指导书规定了零部件清洁度的检查、评定及操作方法。 2 检验范围: 2.1 适用于一般用途的汽车零部件清洁度的检查和评定。 3 检验环境: 3.1 检测室内要干燥、通风,室温保持20±5℃。 3.2 检测室要有良好的防尘设施,清洗间要有严格的防火措施。 4 检验方式:检查员抽检。 5 检验人员:清洁度检查员。 6 检验频次:1件/每周。 7 作业准备: 7.1 仪器设备:烘干炉、干燥瓶、滤膜过滤装置、电子天平、托盘; 7.2 检验工具:蒸馏水、喷壶、孔径为5um的微孔滤膜; 7.3 检验工具:无齿镊子、清洁放膜干燥皿。 8 检验方法: 8.1 将零件放置于器皿内,用喷壶冲刷零件清洗部位,将冲刷下来的物质全部倒入烧杯中,冲洗不掉的残留物,各种器具清洗时,应防止将带有杂质的清洗液飞溅到容器外; 8.2 用无齿镊子夹取滤膜一片,用电子天平称下滤膜质量,做记录。

8.3 将滤膜放于过滤装置上,将收集后的所有容器中的溶液轻轻倒入真空泵的漏斗进行过滤,真空抽滤烧杯中的溶液,过滤完成后用喷壶沿着漏斗壁清洗漏斗里的残余杂质,采集所有杂质; 8.4 待所有滤液过滤干净后,将含有所有杂质的滤膜拿下放入清洁放膜干燥皿中置于烘干炉中干燥; 8.5 将烘干炉中的烘干温度控制在105°±5℃之间。烘干15分钟后,将滤纸取出,放入干燥瓶内干燥15分钟后,将滤膜放入电子秤称重,做记录。 8.6 杂质质量即为:杂质重量=过滤后总量-过滤器重量 9 注意事项: 9.1 操作者衣着、双手应清洁; 9.2 所有取样工具和容器均应清洗干净,目测无异物; 10 采用标准: 摩丁铝铸件清洁度标准规范:CP0012 11评价标准及结果判断: 11.1评价标准:杂质最大重量:5.8mg, 最大长度:levei4:3.175mm 最大面积;2.58mm2 11.2结果判断:根据实验结果,填写清洁度记录,并通知相关总装车间。 编制:校对:审核:

汽车零部件清洁度

汽车零部件清洁度,颗粒度大小分析系统 ?产品编号: 清洁度检测分析 ?产品型号: BH-CIA300 ?所属类别: 汽车零部件检测解决方案- 清洁度分析检测 ?所属品牌: 德国徕卡 ?所属用途: 金相岩相分析 ?应用领域: 金属 产品特性: 清洁度标准ISO4406、ISO4407、ISO16232、NAS1638、VDA19、GB/T 2 汽车零部件清洁度,颗粒度大小分析系统

全自动清洁度分析系统BH-CIA300 Automatic Cleanliness Inspection System 制造商:BAHENS 1、全自动清洁度分析系统Automatic Analysis System 系统组成:BAHENS立体显微镜、德国原装进口电动台,自动拍照系统、全自动清洁度分析 软件,DELL 高性能计算机等。 显微镜:国产立体显微镜,适合25 微米以上杂质的检测。 自动扫描台:德国进口自动,行程76X52mm,最小步进0、02 微米、 检测范围: 整个滤膜 检测内容杂质尺寸 杂质数量 杂质形状分类:颗粒或纤维 杂质性质分类:反光(金属),亚光(非金属,金属氧化物) 清洁度标准ISO4406、ISO4407、ISO16232、NAS1638、VDA19、GB/T 20082、GB/T 14039,工厂自定义 清洁度自动评级自动,可编辑 清洁度专用报告自动,可编辑 最小检测尺寸25 微米 按照ISO16232 的基本原则,可对滤膜上大于25 微米的杂质进行精确检测。 自动扫描整个试样(通常就是滤纸)、自动拍照,颗粒自动识别、统计、分析,自动检查清洁度、自动生成专业分析报告; 检测流程与内容包括: 1) 对直径47 毫米(或更小)的滤纸进行自动与高精度扫描,全自动图像拼接,全自动拍照。

车削表面粗糙度的计算

车削表面粗糙度的计算 说说表面粗糙度的计算,以及"镜面效果"- 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,

表面粗糙度的测量方法

表面粗糙度的测量方法 众所周知,表面粗糙度表征了机械零件表面的微观几何形状误差。对粗糙度的评定,主要分为定性和定量两种评定方法,所谓定性评定就是将待测表面和已知的表面粗糙度比较样块相互比较,通过目测或者借助于显微镜来判别其等级;而定量评定则是通过某些测量方法和相应的仪器,测出被测表面的粗糙度的主要参数,这些参数是Ra,Rq,Rz,Ry ; 他们代表的意义是:Ra 是轮廓的算术平均偏差,即在取样长度内被测轮廓偏距绝对值之和的算术平均值。 Rq 是轮廓的均方根偏差:在取样长度内轮廓偏距的均方根值。 Rz 是微观不平度的10点高度:在取样长度内5个最大的轮廓峰高与5个最大的轮廓谷深的平均值之和。 Ry 是轮廓的最大高度:在取样长度内轮廓的峰顶线与轮廓谷底线中线的最大距离。 目前常用的表面粗糙度测量方法主要有样板比较法,光切法,干涉法,触针法等。 1. 比较法它是在工厂里常用的方法,用眼睛或放大镜,对被测表面与粗糙度样板比较,或用手摸靠感觉来判断表面粗糙度的情况;这种方法不够准确,凭经验因素较大,只能对粗糙度参数值较大情况,给个大概范围的判断。 2. 光切法它是利用光切原理来测量表面粗糙度的方法。在实验室中用光切显微镜或者双管显微镜就可实现测量,它的测量准确度较高,但它是与对Rz,Ry 以及较为规则的表面测量,不适用于对测量粗糙度较高的表面及不规则表面的测量。 3. 干涉法它是利用光学干涉原理测量表面粗糙度的一种方法。这种方法要找出干涉条纹,找出相邻干涉带距离和干涉带的弯曲高度,就可测出微观不平度的实际高度;这种方法调整仪器比较麻烦,不太方便,其准确度和光切显微镜差不多;

4. 触针法它是利用仪器的测针与被测表面相接触,并使测针沿其表面轻滑过测量表面粗糙度的测量方法。采用这种方法的仪器最广泛的就是电动轮廓仪,它的特点是:显示数值直观,可测量许多形状的被测表面,如轴类,孔类,锥体,球类,沟槽类工件,测量时间少,方便快捷。 它可分为便携式和台式电动轮廓仪,便携式仪器可在现场进行测量,携带方便;带记录仪的电动轮廓仪,可绘制出表面的轮廓曲线,带微机的轮廓仪可显示轮廓的形状情况,并有打印机打印出数据和表面的轮廓线,便于分析和比较。它的测量范围较大:Ra 值一般在0.02—50μm 。 这里我们对电动轮廓仪的原理和仪器常见的故障排除方法进行讨论; 电动轮廓仪的工作原理采用的是触针法。仪器利用驱动箱拖动电感传感器在工件表面上以一定的速度滑行,电感传感器触针随同被测表面轮廓的峰谷起伏,产生上下位移,这个线值位移量引起传感器内测量桥路两臂中电感量的变化,从而使得电桥输出与触针位移成比例的条幅信号,这个微弱的电信号经过电子装置放大整流后,成了代表工件截面轮廓的信号。 将它输入记录仪,就得到了截面轮廓的放大图;或者把信号通过适当的环节进行滤波和计算后,由电表直接读出Ra 参数评定的表面粗糙度的值。 电动轮廓仪由底座,驱动箱,传感器,控制器,放大器或电子装置,记录仪等附件组成。 使用电动轮廓仪测量前,要对仪器预热,对一般测量件,预热5分钟左右;对精密件,预热约20-30分钟。对于不同形状的工件表面,选用不同的测量附件,例如对平和外圆柱表面,采用基本传感器,控制器,V型块和合适的滑块,并选好合适的行程长度,截止转换开关位置等。对于阶梯表面的测量,选用凹坑传感器;滑块选用凹坑专用滑块;对于曲轴表面的测量,选用传感器和控制器是基本的;滑块用直角附件中的专用滑块;这里不一一列举了。 在掌握了它的测量方法的同时,对该仪器设备的维护也是非常重要的,对底座上的立柱位置,驱动箱,传感器,控制器,放大器电子装置的相关位置定期检查,对仪器出现的常见故障也能够排除;常见的故障如下:

清洁度检测方法

清洁度检测方法 1 适用范围 本标准规定了摇臂总成清洁度的检测方法。 2 工作环境 摇臂总成清洁度的检测应在明亮、通风、干燥并有良好的防尘及严格防火措施的检验室内进行。 3 测量器具及清洗液 3.1 不同规格的尼龙圆刷、扁刷、异形刷。 3.2 不同规格的洗瓶、注射器(不带针头)。 3.3 不同尺寸的盆、盘及带盖的桶等容器。 3.4 无齿镊子(端头扁平)。 3.5 磁铁。 3.6 真空泵(真空度不大于80kPa)及滤膜过滤装置。滤膜过滤装置示意图如下: 3.7 滤膜:5μm微孔滤膜(两次烘干称量不超过0.4mg)。 3.8 清洗液:溶剂汽油(NY--120#)。 3.9 感量为万分之一的分析天平。 3.10 烘箱、干燥器、称量瓶。 4 杂质收集 4.1 准备工作 4.1.1 操作人员应穿戴清洁的工作衣、工作帽及鞋,并洗净双手。 4.1.2 零件的非测定部位应清理干净。

4.1.3 所有取样的工具、支架和容器均应清洗干净。 4.1.4 使用的清洗液应经高于10倍左右的滤膜过滤。 4.1.5 用镊子将滤膜放入称量瓶中,半开盖放入已升温到90℃±5℃的烘箱中,保持60分钟,取出,置于干燥器中冷却30分钟,然后称重待用。根据需要可采用多张滤膜一起烘干称重,但每个称量瓶中不得超过3张,要求滤膜互相错开放置,同时要求滤膜每次称重差值不大于0.4 mg。 4.2 操作步骤 4.2.1 清洗表面时,用扁刷蘸满清洗液,并与注射器或洗瓶等容器配合使用,反复冲洗所有测定部位。 4.2.2 清洗各种孔道时,用大于孔径的圆柱刷和注射器等器具配合清洗;对不通的盲孔冲洗后,用磁铁吸出盲孔底部的铁屑,清理出盲孔底部的其他杂质,直至冲洗干净。 4.2.3 使用各种器具清洗时,应防止带有杂质的清洗液飞溅在容器之外,以利收集全部的带有杂质的清洗液。 5 杂质的收集与称重 5.1 将收集的带有杂质的清洗液用滤膜进行真空抽滤。 5.2 使带有杂质的滤膜所沾带的清洗液充分挥发。 5.3 将带有杂质而无清洗液的滤膜放入称量瓶中按4.1.5条款的规定进行称重。 6 杂质的计算 W=G1-G2 式中:W——杂质质量(mg) G1——过滤后带有杂质的滤膜的称重(mg)

车削粗糙度计算公式

车削粗糙度计算公式 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8(每转进给的平方/刀尖半径X125) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择 上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,通常如果进给

实验室洁净度自检验检测报告模板格式

精心整理 检验检测报告 INSPECTION TEST REPORT 安装工程有限公司 检验检测报告 产品名 称/检测名称实验室检测 样品数量2间 洁净度等 级 一间整体万级(7级)局部百 级(5级)、 一间十万级(8级) 施工单 位 ------ 检测类别委托检测 受检单 位 地址 委托人委托日期2017-06-03 检测地 点 实验室检测状态静态 检测日 期 2017-06-10 报告日期2017-06-18 检测依据GB50591-2010《洁净室施工及验收规范》、GB/T16292-2010《医药工业洁净室(区)悬浮粒子的测试方法》 判定依据GB50073-2013《洁净厂房设计规范》、GB50346-2011《生物安全实验室建筑技术规范》、受检方使用要求。

检测项 目 悬浮粒子计数、温度、相对湿度、静压差、噪音、照度所用仪 器仪器制造单位型号证书编号 设备检定单 位 激光尘埃粒 子计数器 Y09-301 温湿度计DT-321S 数字微压计DP1000-ⅢB 数字式照度计AR813A 声级计AWA5636 检测结论 依据GB/T16292-2010《医药工业洁净室(区)悬浮粒子的测试方法》对受检单位实验室悬浮粒子计数进行检测,其检测结果为局部百级实验室整体符合万级标准,局部符合百级标准,P2实验室符合十万级标准; 依据GB50591-2010《洁净室施工及验收规范》对受检单位实验室温度、相对湿度、静压差、噪音、照度进行检测,其检测结果符合相应标准。 检测数据详见后续页。 签发日期:2017年6月18日 备注 编制:审核:批准:检验项 目名称标准要求检验结果 单项结 论 悬浮粒 子数,pc/m3 局部百级实验室 (整体万级) 粒径≥0.5μm 7级(万级) <352000 A1=13192 A2=11896 合格 粒径≥5μm A1=942

铸件粗糙度及粗糙度计算

铸件表面粗糙度 铸件表面粗糙度是衡量干净、真实的铸件表面质量的重要指标。铸件铸造表面粗糙度是按不同铸造合金及其铸造方法、用其表面轮廓算术平均偏差Ra值(单位为μm)进行分级,分级应符合表1~1的规定。对照GB/——1997《表面粗糙度比较样块—铸造表面》的规定进行比较和评比;其评比方法按GB∕T15056——1994《铸造表面粗糙评定方法》进行。 对于重要铸件,当所有铸造表面的粗糙度要求相同时,可在铸件图样或铸造工艺图样的右上角同意标注粗糙度符号。如果大部分铸造表面度相同时,可将该级粗糙度符号统一标注在图样的右上角,并在符号前加注“其余”两字;余下的部分表面粗糙度,将其符号直接标注在其表面轮廓或尺寸或尺寸延长线上。 铸造表面粗糙度,也可按需方的要求或供需方的协商,将其公称值鉴订在订货合同中。 ※表示可以达到的铸件铸造表面粗糙度。

表1~2粗糙度与光洁度对照(单位:mm)

粗糙度的计算 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/(刀尖R乘8) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给 2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用以上的刀尖,而硬铝合金不要用以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给,R尖,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于*8*1000=粗糙度(单位微米)。 如果有要求光洁度要到的话,切削参数变化如下:刀具不变依旧上面的刀片,切削参数进给,切深要视乎刀具的断削槽而定,通常如果进给定了,那切深只会在一个很窄的范围(上面不是说过切深和进给很大关系嘛)——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论!:lol我大约会按照进给的10倍起定切深,也就是,此时*8*1000=微米,也就是粗糙度达到了。 至于粗糙度的表示方法:RY是测量出最大粗糙度,RA是算术计法将整个工件的表面粗糙度平均算,而RZ则是取10点再平均算,一般同一工件用RA计算粗糙度应该是最低的,而RY肯定是最大的,如果用RY的计算公式可以达到比RA要求更低的数字,基本上车出来就可以达到标注的RA要求了。另外理论上带修光

实验三表面粗糙度测量

实验三 表面粗糙度测量 实验3—1 用双管显微镜测量表面粗糙度 一、实验目的 1. 了解用双管显微镜测量表面粗糙度的原理和方法。 2. 加深对粗糙度评定参数轮廓最大高度Rz 的理解。 二、实验内容 用双管显微镜测量表面粗糙度的Rz 值。 三、测量原理及计量器具说明 参看图1,轮廓最大高度Rz 是指在取样长度lr 内,在一个取样长度范围内,最大轮廓峰高Rp 与最大轮廓谷深Rv 之和称之为轮廓最大高度 。 即 Rz = Rp + Rv 图1 图2 双管显微镜能测量80~1μm 的粗糙度,用参数Rz 来评定。 双管显微镜的外形如图2所示。它由底座1、工作台2、观察光管3、投射光管11、支臂7和立柱8等几部分组成。 双管显微镜是利用光切原理来测量表面粗糙度的,如图3所示。被测表面为P 1、P 2阶梯表面,当一平行光束从450方向投射到阶梯表面上时,就被折成S 1和S 2两段。从垂直于 光束的方向上就可在显微镜内看到S 1和S 2两段光带的放大象1 S '和2S '。同样,S 1和S 2之间距离h 也被放大为1S '和2S '之间的距离1h '。通过测量和计算,可求得被测表面的不平度高度 h 。 图4为双管显微镜的光学系统图。由光源1发出的光,经聚光镜2、狭缝3、物镜4以 450方向投射到被测工件表面上。调整仪器使反射光束进入与投射光管垂直的观察光管内,经物镜5成象在目镜分划板上,通过目镜可观察到凹凸不平的光带(图5 b )。光带边缘即工件表面上被照亮了的h 1的放大轮廓象为h 1′,测量亮带边缘的宽度h 1′,可求出被测表面的不平度高度h 1: Z p 2 lr Z v 6 Z v 5 Z p 6 Z p 5 Z p 4 Z p 3 Z v 4 Z v 3 Z p 1 R z 中线 Z v 1 Z v 2

液压油清洁度检测

液压油清洁度检测 1、液压油固体污染物的危害 固体颗粒污染比空气、水和化学污染物等造成的危害都大。固体颗粒与液压元件表面相互作用时会产生磨损和表面疲劳,使内漏增加,降低液压泵、马达及阀等元件的工作可靠性和系统效率,更为严重的可靠造成泵或阀卡死、节流口或过滤器堵塞,使系统不能正常运行。 2、液压油清洁度检测方法及评定标准 单位体积液压油中固体颗粒污染物含量称为清洁度,可分别用质量或颗粒数表示,质量分析法是通过测量单位体积油液中所含固体颗粒污染物的质量表示油液的污染等级,而颗粒分析法是通过测量单位体积油液中各种尺寸颗粒污染物的颗粒数表示油液的污染等级。质量分析法只能反映油液中颗粒污染物的总质量而不反映颗粒的大小和尺寸分布,无法满足油液检测的更高要求。颗粒分析法主要有显微镜法、显微镜比较法和自动颗粒计数法等。自动颗粒计数法具有计数快、精度高和操作简便等特点,近年来在国内被广泛采用。 目前,我国工程机械行业对液压系统清洁度得评定主要采用以下两种标准: (1)我国制定的国家标准GB/TI4039-93《液压系统工作介质固体颗粒污染等级代号》,该标准与国际标准ISO4406-1987等效。固体颗粒污染等级级代号由斜线隔开的两 个标号组成,第一个标号表示1ML液压油中大于5um的颗粒数,第一个标号表 示1ML液压油中大于15um的颗粒数。 (2)美国国家宇航标准NAS1638油液清洁度等级,按100ML液压油中在给定的颗粒尺内的最大允许颗粒数划分为14个等级,第00级含的颗粒数量少,清洁度量高, 第12级含的颗粒数最多,清洁度最低。参照国际标准ISO4406-1987和美国国家 宇航标准NAS1638,规定如下: ①产品出厂时液压油颗粒污染等级不得超过19/16(相当于NAS1638的第11级)。 ②产品使用过程中液压油颗粒污染等级不得超过20/16(相当于NAS1638的第12级)。 ③加入整机油箱的液压油颗粒污染等级不得超过18/15(相当于NAS1638的第10级)。 ISD4406标准为:

清洁度检测指导书

1.技术参数 1.1过滤膜规格为0.45μm 1.2检验分析用天平分度值0.1mg 1.3内干燥、通风;清洗间要有严格的防火措施,无暴露的电源接头、电源开关;压力罐接地线2.适用范围 适用于安瑞控股集团有限公司检测试验中心轴承清洁度的检测 3.操作步骤 3.1 检验准备 3.1.1工作人员应穿戴清洁的工作服、帽、口罩、手套和软底鞋(防静电),并洗净双手。 3.1.2 清洗所有取样工具、支架和容器,包括压力罐清洗干燥(检测各联接处是否有漏气), 全玻璃 过滤器(砂芯、三角锥形瓶、滤杯),加清洁液的玻璃漏斗,清洗槽、接收清洗液的玻璃 容器,平头镊子(取样用和滤膜专用两种)等。 3.1.3 将0.45μm 滤膜,放于喷枪换膜过滤器内,滤膜每日更新。 3.1.4用镊子将5μm 滤膜放入干燥皿中,半开盖放入已升温 90℃±5℃的烘箱内,烘干 60min 取出,置于干燥器中冷却 30分钟后称重, 5分钟后再称一次,烘干后两次称重的差值不大于 1%,如果大于 1%,重复以上操作。 3.2操作步骤 清洁度测定工作包括抽样、解体、清洗、过滤、烘干、分析等内容,工作程序如下图所示。 3.2.1 抽样:每周随机抽样按顾客要求。 3.2.2 解体:对于组装件进行分解(压配件和不宜拆卸连接件不解体), 不可划伤、磕碰零件,并随 时收集解体过程中得到的异物。将被检零件编号后,放置在玻璃器皿或专用器具上,以 备清洗。对不需解体零件直接放置在玻璃器皿或专用器具上。 3.2.3清洗 3.2.3.1 旋开换膜过滤器,放入专用0.45um过滤膜(蓝色小盒内),并旋紧。

3.2.3.2 压力罐上压力表指针显示压为为 0 时,打开压力罐阀门。 3.2.3.3 通过玻璃漏斗向压力罐内加入清洁度检测专用清洗剂,以免剂腐蚀密封圈。 3.2.3.4打开真空压力两用泵与压力罐连接球阀;打开真空压力两用泵电源;加压,直到压力罐压力 达到 0.3Mpa。 3.2.3.5 关闭球阀,同时关闭真空压力两用泵。

测量表面粗糙度的方法

OU1300 测量表面粗糙度的方法 使用说明书

一、概述 OU1300型表面粗糙度测量仪是适合于生产现场环境和移动测量需要的一种手持式仪器,可测量多种机加工零件的表面粗糙度,可根据选定的测量条件计算相应的参数,并在显示器上显示出全部测量参数和轮廓图形。该仪器它操作简便,功能全面,测量快捷,精度稳定,携带方便,能测量最新国际标准的主要参数,本仪器全面严格执行了国际标准。测量参数符合国际标准并兼容美国、德国、日本、英国等国家的标准。适用于车间检定站、实验室、计量室等环境的检测。 1.1 主要特点 ●机电一体化设计,体积小,重量轻,使用方便; ●采用 DSP 芯片进行控制和数据处理,速度快,功耗低; ●大量程,多参数 Ra,Rz,Rq,Rt。 ●高端机器增加 Rp,Rv,R3z,R3y,RzJIS,Rsk,Rku,Rsm,Rmr 等参数; ●128×64 OLED 点阵显示器,数字/图形显示;高亮无视角; ●显示信息丰富、直观、可显示全部参数及图形; ●兼容 ISO、DIN、ANSI、JIS 多个国家标准; ●内置锂离子充电电池及充电控制电路,容量高、无记忆效应; ●有剩余电量指示图标,提示用户及时充电; ●可显示充电过程指示,操作者可随时了解充电程度 ●连续工作时间大于 20 小时 ●超大容量数据存储,可存储 100 组原始数据及波形。 ●实时时钟设置及显示,方便数据记录及存储。 ●具有自动休眠、自动关机等节电功能 ●可靠防电机走死电路及软件设计 - 1 -

●显示测量信息、菜单提示信息、错误信息及开关机等各种提示说明信息; ●全金属壳体设计,坚固、小巧、便携、可靠性高。 ●中/英文语言选择; ●可连接电脑和打印机; ●可打印全部参数或打印用户设定的任意参数。 ●可选配曲面传感器、小孔传感器、测量平台、传感器护套、 接长杆等附件。 1.2 测量原理 本仪器在测量工件表面粗糙度时,先将传感器搭放在工件被测表面上,然后启动仪器进行测量,由仪器内部的精密驱动机构带动传感器沿被测表面做等速直线滑行,传感器通过内置的锐利触针感受被测表面的粗糙度,此时工件被测表面的粗糙度会引起触针产生位移,该位移使传感器电感线圈的电感量发生变化,从而在相敏检波器的输出端产生与被测表面粗糙度成比例的模拟信号,该信号经过放大及电平转换之后进入数据采集系统,DSP 芯片对采集的数据进行数字滤波和参数计算,测量结果在显示器上给出,也可在打印机上输出,还可以与PC 机进行通讯。 1.3 仪器各部分名称 传感器 - 2 -

清洁度检验作业指导书

变速箱分公司 零件清洁度检验 1 检验目的: 1.1 为了明确装配上线零件清洁度要求,便于加工车间及外协厂家对零件清洗效果的有效控制。 1.2 此操作指导书规定了用于确定变速器总成及其零部件清洁度的检查、评定及操作方法。 2 检验范围: 2.1 适用于一般用途的汽车机械式变速箱总成及零部件清洁度的检查和评定。 2.2 检测部位主要是指变速箱总成内部与齿轮油接触的零件表面、润滑油油路及过滤系统相关零件内外表面。 3 检验环境: 3.1 检测室内要干燥、通风,室温保持20±5℃。 3.2 检测室要有良好的防尘设施,清洗间要有严格的防火措施。 4 检验方式:检查员抽检。 5 检验人员:总成清洁度检查员。 6 检验频次:按长轴类、短轴类、大盘齿类、小盘齿类、壳体类、大轴承、小轴承、其他采购零件等八个种类进行抽检,每周每个种类抽检1次,采购分总成零件不属于检验范围。 7 作业准备: 7.1 仪器设备:烘干炉、干燥瓶、滤膜过滤装置、电子天平、托盘; 7.2 检验工具:AP760试剂、毛刷、孔径为5um的微孔滤膜;

变速箱分公司 7.3 检验工具:无齿镊子、清洁放膜干燥皿。 8 检验方法: 8.1 将零件放置于托盘上方或托盘内,用AP760冲刷零件清洗部位(见附表一),同时用毛刷轻刷冲洗部位,将冲刷下来的物质全部倒入烧杯中,冲洗不掉的残留物(如焊缝渣皮、油漆积瘤、铸造毛坯瘤等)不准敲打或硬性剔除,此部分残留物也不做考核使用,各种器具清洗时,应防止将带有杂质的清洗液飞溅到容器外; 8.2 用无齿镊子夹取滤膜一片,用电子天平称下滤膜质量,质量记为:G1,精确至0.1mg; 8.3 将滤膜放于过滤装置上,将收集后的所有容器中的溶液轻轻倒入真空泵的漏斗进行过滤,以6×10-2pa真空度真空抽滤烧杯中的溶液,过滤完成后用AP760沿着漏斗壁清洗漏斗里的残余杂质,采集所有杂质; 8.4 待所有滤液过滤干净后,将含有所有杂质的滤膜拿下放入清洁放膜干燥皿中置于烘干炉中干燥; 8.5 将烘干炉中的烘干温度控制在90°±5℃之间。烘干至少3小时后,将滤纸取出,放入干燥瓶内干燥30分装后,将滤膜放入电子秤称重,质量记为:G2精确至0.1mg; 8.6 杂质质量即为:G总=G2-G1; 9 注意事项: 9.1 操作者衣着、双手应清洁; 9.2 非测定部位即暴露在箱体外部的齿轴、轴端和端盖等外表面应清理干净;

表面粗糙度试验及其测量方法

表面粗糙度 表面粗糙度(surface roughness)是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。 高度特征参数 ?轮廓算术平均偏差R a:在取样长度(lr)内轮廓偏距绝对值的算 术平均值。在实际测量中,测量点的数目越多,Ra越准确。 ?轮廓最大高度R z:轮廓峰顶线和谷底线之间的距离。 在幅度参数常用范围内优先选用Ra 。在2006年以前国家标准中还有一个评定参数为“微观不平度十点高度”用Rz表示,轮廓最大高度用Ry表示,在2006年以后国家标准中取消了微观不平度十点高度,采用Rz表示轮廓最大高度。间距特征参数 用轮廓单元的平均宽度 Rsm 表示。在取样长度内,轮廓微观不平度间距的平均值。微观不平度间距是指轮廓峰和相邻的轮廓谷在中线上的一段长度。 形状特征参数 用轮廓支承长度率Rmr(c) 表示,是轮廓支撑长度与取样长度的比值。轮廓支承长度是取样长度内,平行于中线且与轮廓峰顶线相距为c的直线与轮廓相截所得到的各段截线长度之和。 表面粗糙度符号:

表面粗糙度

0.025~6.3微米的表面粗糙度。 光切法 双管显微镜测量表面粗糙度,可用作Ry与Rz参数评定,测量范围0.5~50。 干涉法 利用光波干涉原理(见平晶、激光测长技术)将被测表面的形状误差以干涉条纹图形显示出来,并利用放大倍数高(可达500倍)的显微镜将这些干涉条纹的微观部分放大后进行测量,以得出被测表面粗糙度。应用此法的表面粗糙度测量工具称为干涉显微镜。这种方法适用于测量Rz和Ry为0.025~0.8微米的表面粗糙度。

表面粗糙度测量方法

表面粗糙度测量方法 比较法将表面粗糙度比较样块,根据视觉和触觉与被测表面比较,判断被测表面粗糙度相当于那一数值,或测量其反射光强变化来评定表面粗糙度(见激光测长技术)。样块是一套具有平面或圆柱表面的金属块,表面经磨、车、镗、铣、刨等切削加工,电铸或其他铸造工艺等加工而具有不同的表面粗糙度。有 时可直接从工件中选出样品经过测量并评定合格后作为样块。利用样块根据视 觉和触觉评定表面粗糙度的方法虽然简便,但会受到主观因素影响,常不能得 出正确的表面粗糙度数值。触针法利用针尖曲率半径为 2 微米左右的金刚石触针沿被测表面缓慢滑行,金刚石触针的上下位移量由电学式长度传感器转换 为电信号,经放大、滤波、计算后由显示仪表指示出表面粗糙度数值,也可用 记录器记录被测截面轮廓曲线。一般将仅能显示表面粗糙度数值的测量工具称 为表面粗糙度测量仪,同时能记录表面轮廓曲线的称为表面粗糙度轮廓仪(简 称轮廓仪),这两种测量工具都有电子计算电路或电子计算机,它能自动计算 出轮廓算术平均偏差Rα,微观不平度十点高度RZ,轮廓最大高度Ry 和其他 多种评定参数,测量效率高,适用于测量Rα为0.025~6.3 微米的表面粗糙度。光切法光线通过狭缝后形成的光带投射到被测表面上,以它与被测表面的交线所形成的轮廓曲线来测量表面粗糙度。由光源射出的光经聚光镜、狭缝、物 镜1 后,以45°的倾斜角将狭缝投影到被测表面,形成被测表面的截面轮廓图形,然后通过物镜 2 将此图形放大后投射到分划板上。利用测微目镜和读数鼓轮,先读出h 值,计算后得到H 值。应用此法的表面粗糙度测量工具称为光切显微镜。它适用于测量RZ 和Ry 为0.8~100 微米的表面粗糙度,需要人工取点,测量效率低。干涉法利用光波干涉原理(见平晶、激光测长技术)将被测表面的形状误差以干涉条纹图形显示出来,并利用放大倍数高(可达500

数控车床粗糙度计算公式

数控车床粗糙度计算公式 今天讲一下关于车削的表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的表面粗糙度。下面跟yjbys 小编一起来学习车削表面粗糙度的计算方式吧! 车削表面粗糙度=每转进给的平方*1000/刀尖R 乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给--进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给2:刀尖R--刀尖R 越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150 以下的车床不要使用R0.8 以上的刀尖,而硬铝合金不要用R0.4 以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW 除2 比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是

表面粗糙度怎么测量 测量表面粗糙度的方法 详解

表面粗糙度怎么测量测量表面粗糙度的方法详 解 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

表面粗糙度怎么测量_ 测量表面粗糙度的方法 内容来源网络,由深圳机械展收集整理! 表面粗糙度的检测,我们常用的有以下几中方法 1.显微镜比较法,; 将被测表面与表面粗糙度比较样块靠近在一起,用比较显微镜观察两者被放大的表面,以样块工作面上的粗糙度为标准,观察比较被测表面是否达到相应样块的表面粗糙度;从而判定被测表面粗糙度是否符合规定。此方法不能测出粗糙度参数值 2.光切显微镜测量法,Rz:~100; 光切显微镜(双管显微镜)是利用光切原理测量表面粗糙度的方法。从目镜观察表面粗糙度轮廓图像,用测微装置测量Rz值和Ry值。也可通过测量描绘出轮廓图像,再计算Ra值,因其方法较繁而不常用。必要时可将粗糙度轮廓图像拍照下来评定。光切显微镜适用于计量室 3.样块比较法,直接目测:;用放大镜:~; 以表面粗糙度比较样块工作面上的粗糙度为标准,用视觉法或触觉法与被测表面进行比较,以判定被测表面是否符合规定 用样块进行比较检验时,样块和被测表面的材质、加工方法应尽可能一致; 样块比较法简单易行,适合在生产现场使用 4.电动轮廓仪比较法,Ra:~;Rz:~25; 电动轮廓仪系触针式仪器。测量时仪器触针尖端在被测表面上垂直于加工纹理方向的截面上,做水平移动测量,从指示仪表直接得出一个测量行程Ra值。这是Ra值测量常

用的方法。或者用仪器的记录装置,描绘粗糙度轮廓曲线的放大图,再计算Ra或Rz 值。此类仪器适用在计量室。但便携式电动轮廓仪可在生产现场使用 5干涉显微镜测量法,Rz:.032~; 涉显微镜是利用光波干涉原理,以光波波长为基准来测量表面粗糙度的。被测表面有一定的粗糙度就呈现出凸凹不平的峰谷状干涉条纹,通过目镜观察、利用测微装置测量这些干涉条纹的数目和峰谷的弯曲程度,即可计算出表面粗糙度的Ra值。必要时还可将干涉条纹的峰谷拍照下来评定。干涉法适用于精密加工的表面粗糙度测量。适合在计量室使用 而在现场工作中,我们用的多的是:样块比较法和电动轮廓检测法,样块比较法要求对粗糙度的敏感要求比较高,有些老师傅还是可以做到的,毕竟是凭经验和感觉去比较的,而电动轮廓检测法是靠仪器测量,这样测量出来的准确度就大大提高了,所以说,我们建议用电动轮廓检测法. 用什么方法去检测 1.比较法:将被测表面和表面粗糙度样板直接进行比较,多用于车间,评定表面粗糙度值较大的工件。 2.光切法:是应用光切原理来测量表面粗糙度的一种测量方法。常用仪器——光切显微镜,(双管显微镜)。该仪器适用于车.铣.刨等加工方法获得的金属平面。或外圆表面。主要测量Rz值,测量范围为~60μm。 3、干涉法:是利用光波干涉原理测量表面粗糙度的一种测量方法。常用仪器是干涉显微镜。主要用于测量Rz值。测量范围为~μm。一般用于测量表面粗糙度要求高的表面。

清洁度检验规范

重庆祥吉机械制造有限公司版次 A 页次1/2 文件名称清洁度检验规范文件编号Q/XJ.3J.JY-01-2015

1、目的: 为规范机油集滤器、机油盘隔板、机油盘总成及其他零部件清洁度的检测规范,以达到清洁度的检查和测定目的。 2、适用范围: 本标准适用于本公司生产的机油集滤器、机油盘隔板、机油盘总成及其他零部件清洁度的检查和测定。 3、设备器具及耗材: 3.1清洗设备、工具及耗材:Φ5、Φ10尼龙刷和Φ20的异形刷、喷壶、Φ500清洗盆、普通汽油或120#工业汽油。 3.2过滤烘干设备及器材:孔径为5um的微孔滤膜、漏斗、漏斗座。 3.3试验设备:恒温干燥箱、电子秤、干燥瓶 4、试验前准备: 4.1清洁度检测工作应在干燥、清洁、安全的工作室内进行,且工作室应有良好的防尘措施。 4.2各种设备仪器应定期检查,以保证测量精度。 4.3所有取样工具和容器等均应预先清洗干净,并用干净的白绸布擦拭,擦拭后白绸布上应出现脏痕。 5、抽样方法: 对于入库的总成,每个型号、每批抽查1件,杂质量按每台计算,如抽查不符合要求,则应加倍抽查,若仍不符合要求,则该批应全部返工清洁。 重庆祥吉机械制造有限公司版次 A 页次2/2 文件名称清洁度检验规范文件编号Q/XJ.3J.JY-01-2015

6、检测操作规程: 6.1在盛器内倒入适量的洁净汽油,将零件放置于器皿内,用刷子蘸取清洗液刷洗总成内腔、外表面,直至清洁干净,可根据总成清洁情况,可适当增加清洗次数,直至清洗干净无杂质。 6.2把滤膜放于过滤装置上,将收集后的所有溶液轻轻倒入漏斗进行过滤,过滤完所有溶液后用喷壶沿着漏斗壁冲洗残留杂质,采集所有杂质。 6.3待所有溶液过滤干净后,将含有所有杂质的滤膜取下,放入清洁器皿中,将放入滤膜的器皿置于恒温干燥箱内干燥。 6.4将恒温干燥箱的烘干温度控制在85°±5℃之间,烘干30分钟后,将滤膜取出,放入干燥瓶内干燥15分钟,再将滤膜放上电子秤称重量,做记录。 6.5杂质重量=烘干后滤膜总量-过滤前滤膜量 7、验收要求:见附件表一 8、数据报告格式:见附件表二 批准审核编制 表一:总成技术要求 序号产品型号及名称清洁度要求(mg) 备注

表面粗糙度的评定标准及方法

表面粗糙度的评定标准及方法 当钢材表面经喷射清理后,就会获得一定的表面粗糙度或表面轮廓。表面粗糙度可以用形状和大小来进 行定性。经过喷射清理,钢板表面积会明显增加很多,同时获得了很多的对于涂层系统有利的锚固点。 当然,并不是粗糙度越大越好,因为涂料必须能够覆盖住这些粗糙度的波峰。太大的粗糙度要求更多的 涂料消耗量。一般的涂料系统要求的粗糙度通常为 Rz40~75微米。 1.粗糙度的定义 对表面粗糙度的定义有以下几种: hy:在取样长度内,波峰到波谷的最大高度, ISO8503-3(显微镜调焦法) Ry:在取样长度内,波峰到波谷的最大高度,ISO8503-4(触针法) Ra:波峰和波谷到虚构的中心线的平均距离, ISO 3274 Ry5:在取样长度内,五个波峰到波谷最大高度的算术平均值,ISO8503-4(触针法)有关 Rz的表述 与 Ry5其实是相同的,Rz的表述来自于德国标准 DIN 4768-1。Ra和 Rz 之间的关系是 Rz相当于 Ra 的 4~6倍。 2. 表面粗糙度的评定标准 为了测定钢板表面粗糙度,不同的标准规定了相应的仪器可以使用,测量值以微米(μm) 为单位。 国际标准分 ISO 8503 成五个部分在来说明表面粗糙度: ISO8503-1:1995表面粗糙度比较样块的技术要求和定义 ISO8503-2:1995喷射清理后钢材表面粗糙度分级―样板比较法 ISO8503-3:1995 ISO基准样块的校验和表面粗糙度的测定方法―显微镜调焦法 ISO8503-4:1995 ISO基准样块的校验和表面粗糙度的测定方法,触针法 ISO8503-5:2004表面轮廓的复制胶带测定法 我国的国家标准 GB/T 13288-91《涂装前钢材表面粗糙度等级的评定(比较板块法)》,参 照 ISO8503所制订。 3. 比较样块法评定表面粗糙度 在涂装现场较为常用的粗糙度评定方法是比较样块法。常用的粗糙度比较块有英国易高elcometer125,荷兰TQC LD2040、LD2050以及英国PTE R2006、R2007等。 ISO 8503-1比较样块有四部分,分别用钢砂(样块 G)和钢丸(样块 S)喷射处理过,在比较样块的 背面分别帖有标签S和G来进行区分(表1)。 表 1 ISO表面粗糙度度比较样块的名义值和公差

相关文档