文档库 最新最全的文档下载
当前位置:文档库 › 配电网中理论线损计算方法及降损措施的研究(初稿)

配电网中理论线损计算方法及降损措施的研究(初稿)

配电网中理论线损计算方法及降损措施的研究(初稿)
配电网中理论线损计算方法及降损措施的研究(初稿)

毕业论文﹙设计﹚报告

题目配电网中理论线损计算方法及降损措施

学生姓名吴涛学号 0717052010 所在院(系) 电气工程系

专业班级电气专升本071 班

指导教师杨章勇

2008 年 6月 8日

配电网中理论线损计算方法及降损措施的研究

吴涛

(陕西理工电气工程系电气工程及其自动化专业071班陕西汉中 723003)

指导教师:杨章勇

[摘要]线损率是综合反映电力网规划设计、生产运行和经营管理水平的主要经济技术指标。降低线损率,可以减少电能传输能耗,提高电力供应能力,增加供电企业经济效益。研究配电网理论线损计算方法有很重要的理论与实际意义。本文阐述了进行配电网线损计算的意义和线损的基本概念,在理论研究方面,本文通过对几种常用配电网线损计算方法的分析比较,主要采用改进等值电阻法进行配电网线损计算,目的是为了降低配电网电能损耗、加强电网的经济运行。

[关键词]配电网;理论线损计算;改进等值电阻法;电能损耗

Research on Calculation Methods of Theoretical Line Losses and Reducing Energy Loss Methods in Distribution Network

Wu Tao

(Grade07,Class1,Electrical Engineering and Automation ,Department of Electrical Engineering ,ShaanXi University of Technology, Han Zhong 723003,ShaanXi)

Tutor: Yang Zhangyong

[Abstract] The distribution lines loss rate is an important norm which comprehensively reflectes the degree of programing ,designing ,producing working and managing in distribution network. Lowing the distribution lines loss rate can not only reduce the energy loss in transporting, improve the electricity supply ability, but also increase the economic performance of Power Company. It was very important in theory and actual to study on the method of theoretical energy loss calculation for distribution network. The calculation significance of distribution network and the basic concepts were introduced in this paper. In theory,through analysis and comparison of some commonly-used calculation of line losses of distribution network methods, the equivalent resistance method to improve the distribution network calculation of line losses was adopted in order to reduce energy loss and operating economicly.

[Key Words] distribution network;theoretical energy loss calculation;improving of the equivalentelectric resistance method;energy loss

目录

引言 (7)

1 配电网理论线损计算简介 (8)

1.1国内外研究动态和趋势 (8)

1.2传统的配电网理论线损计算方法 (8)

1.3配电网理论线损计算方法新进展 (8)

1.3.1潮流改进算法 (8)

1.3.2遗传算法(GA)与人工神经网络(ANN)结合算法 (9)

1.3.3模糊识别算法 (10)

1.4主要研究内容 (10)

2 配电网理论线损计算的研究 (11)

2.1配电网理论线损计算特点 (11)

2.1.1不准确性 (11)

2.1.2条件性 (11)

2.1.3多方案性 (11)

2.2配电网理论线损计算步骤 (11)

2.2.1明确内容和要求 (11)

2.2.2资料的搜集和整理 (11)

2.2.3对资料进行分析 (11)

2.2.4选择计算模型 (11)

2.2.5理论线损计算 (11)

2.2.6分析计算结果 (12)

2.3配电网元件电能损耗数学模型 (12)

2.3.1配电线路导线损耗等值数学模型 (12)

2.3.2配电变压器绕组损耗等值数学模型 (13)

2.3.3配电变压器铁芯损耗等值数学模型 (13)

2.3.4并联电容器损耗等值数学模型 (13)

2.3.5电缆线路损耗等值数学模型 (14)

2.3.6配电网线损计算的基本假设 (14)

2.4配电网理论线损计算的含义 (15)

2.5配电网理论线损计算方法分析 (15)

2.5.1均方根电流法 (15)

2.5.2平均电流法 (17)

2.5.3最大电流法 (17)

2.5.4最大负荷损耗小时法 (19)

2.5.5等值电阻法 (19)

2.5.6 潮流法 (20)

2.5.7电压损失法 (20)

2.5.8竹节法 (21)

2.5.9遗传算法与人工神经网络算法 (21)

2.5.10基于区间算法 (22)

2.5.11模糊识别算法 (22)

2.6影响配电网理论线损计算准确度的主要因素 (22)

3 配电网理论线损计算方法的改进 (23)

3.110K V配电线路 (23)

3.1.1等值电阻法的损耗计算方法 (23)

3.1.2等值电阻法分析 (26)

3.1.3改进等值电阻法的损耗计算方法 (26)

3.1.4改进等值电阻法评价 (28)

3.20.4K V配电线路 (29)

3.2.1等值电阻法的损耗计算方法 (29)

3.2.2等值电阻法分析 (29)

3.2.3改进等值电阻法 (30)

3.2.4改进等值电阻法评价 (32)

4 配电网降损措施 (33)

4.1电力网线损管理措施 (33)

4.2电力网降损的技术措施 (33)

4.2.1电网升压改造 (33)

4.2.2合理调整运行电压 (34)

4.3更换导线截面 (35)

4.4线路经济运行 (36)

4.4.1按经济电流密度运行的降损节电效果 (36)

4.4.2增加并列线路运行 (36)

4.5变压器经济运行 (36)

4.5.1双绕组单台变压器经济运行 (37)

4.5.2双绕组多台变压器经济运行 (37)

4.5.3多台同容量变压器经济运行 (37)

4.5.4多台不同容量变压器经济运行 (38)

4.5.5两台三绕组变压器经济运行 (38)

4.6降低配电变压器电能损耗 (38)

4.7平衡配电变压器三相负荷 (38)

4.8增加无功补偿 (39)

4.8.1根据无功经济当量进行无功补偿 (39)

4.8.2根据功率因素进行补偿 (40)

4.8.3根据等网损微增率进行无功补偿 (41)

5结论 (42)

致谢 (43)

参考文献 (44)

外文文献 (45)

中文译文 (50)

引言

配电网线损率是国家考核电力部门的一项重要的经济技术指标,是电力企业完成国家计划的主要内容,是供电企业管理水平的综合反映,是创建一流供电企业一项重要指标。配电网理论线损计算是配电网线损计算、分析、管理的一项重要内容,是优化配电网结构、最佳运行方式和经济调度重要依据。配电网理论线损计算作为配电自动化系统的高级分析功能之一,在配电网络规划和提高配电系统经济运行等方面起着重要作用。通过研究配电网理论线损计算方法,研究出能够准确计算配电网理论线损的新方法,有利于配电网线损分析,指定降损措施,有利于降低电能损耗,提高供电企业经济效益;有利于优化配电网结构,确定最佳运行方式和经济调度;有利于配电网建设与改造设计方案的制定;有利于科学合理地制定配电网线损指标;有利于降低发电能耗,节约能源;有利于提高供电能力,缓解目前供电紧缺、供电能力不足局面,意义重大。

近几年来,国家十分重视电力建设,相继实施了农村和城市电网的建设与改造工程,我国电力事业迅速发展,进入了一个崭新的发展时期,为保证经济发展和各项事业进步提供了强大的电力保障。随着经济快速发展,电力需求日益增大,已经出现电力供应不足的局面,近年来许多省份出现限电情况。在各级电力网电能损耗所占比例来看,地方10kV及以下线损电量一般占到总损耗电能的45%~60%,10kV及以下电网的降损工作一直是地区电力局降损工作的重点。目前的情况是,一方面是电力供应不足,另一方面是配电网存在较高的电能损耗。通过配电网理论线损计算,优化配电网结构,确定配电网最佳运行方式和经济调度,降低配电网电能损耗,节约资源,提高供电能力。

长期以来,国家十分重视降低电网电能损耗,制定并发布了《电力网电能损耗计算导则》和《电力网电能损耗管理规定》。《电力网电能损耗计算导则》中对35kV以下配电网及低压电网的电能损耗计算给出指导,并给出配电网线损理论计算方法《电力网电能损耗管理规定》要求各电网经营企业要定期组织负荷实测,进行线损理论计算,10kV及以下配电网每两年一次,为电网建设、技术改造和经济运行提供依据。

配电网线损是供电企业的一项重要经济指标,各级供电企业在生产营销工作中,都必须进行配电网线损计算、统计、分析、考核工作,目的是降低电能损耗,节约能源,提高经济效益。要做好配电网线损工作中,前提是首先必须做好配电网理论线损计算工作,通过进行配电网理论线损计算,较为准确地计算出配电网理论线损值,才能做好配电网线损的各项工作。目前,在县市级供电企业,都开展了配电网线损工作,然而所开展的配电网线损工作都基于抄表电量,采用简单的线损率计算公式计算,得出单个配电线路、单个低压配电台区综合的线损率,基本没有开展配电网理论线损计算,不能分别计算出技术线损(理论线损)和管理线损值,无法开展真正意义上的线损分析;配电网线损率计算方法简单,手段落后,简单粗放;由于没有开展配电网理论线损计算,根本不清楚单个配电线路、单个低压配电台区的理论线损率,在线损考核指标制定上没有科学的依据,只能凭经验制定。本研究的目的就是要确定一种配电网理论线损计算新方法,通过这一计算方法的应用,促进黑龙江省县市级供电企业全面真正地开展配电网理论线损计算工作,为配电网线损计算、分析、考核工作提供理论依据,在配电网线损工作方面有所创新。

总之,了解配电网理论线损计算方法的发展趋势,掌握配电网理论线损计算新方法、新技术,将有助于提高配电网理论线损计算的精度,优化配电网结构,确定配电网最佳运行方式,经济调度,降损节能,加强企业管理水平,提高供电企业的经济效益。准确地计算配电网理论线损,不但是配电网线损工作的需要,也是配电网自身不断发展的需要。研究配电网理论线损计算方法,不仅具有重要的理论意义,而且还具有十分显著的工程实用价值,这也是推动配电网理论计算方法不断深入研究和发展的主要原因。

1 配电网理论线损计算简介

配电网理论线损计算是对电能在输送和分配过程中各元件产生的电能损耗进行计算及各类损耗所占比例,确定配电网线损的变化规律。配电网线损是电力部门一项综合性的经济、技术指标,是国家考核电力部门的一项重要指标。多年来,随着配电网理论线损计算理论、方法和技术的不断丰富,人们研究出各种不同的计算方法,计算精度达到较高水平。但由于配电网结构的复杂性、参数多样性和资料不完善以及缺乏实时监控设备等因素,准确计算配电网理论线损比较困难,一直是个难题。为解决这一难题,众多科研工作者从理论到实践不断深入研究配电网理论线损计算方法,希望研究出更加适合配电网理论线损计算的新方法,更加快速、准确地计算配电网理论线损,满足电力部门配电网线损的分析和管理需要。

1.1国内外研究动态和趋势

配电网理论线损计算方法从二十世纪三十年代就有国外学者开始研究,研究电能在配电网络传输的过程中产生的损耗量,分析各元件产生电能损耗的原理,建立数学模型。随着计算机技术的快速发展,以计算机为辅助工具,加速各种计算方法的研究和发展,计算精度逐步提高,逐步应用于工程实际。到二十世纪后期,各种配电网理论线损计算方法已经成熟,开始广泛应用于各级配电网理论线损计算实际工作中,取得了很好的效果。近几年来,随着配电网系统的迅速发展,配电网络结构更加趋于复杂化,为配电网理论线损计算增加了难度;配电网自动化系统逐步应用,加强配电网的监控,各种数据采集变得容易,为配电网理论线损计算提供丰富的运行数据资料,正是由于以上两个方面,需要研究新的更加适合于目前配电网实际情况的理论线损计算方法,从而推动计算方法研究不断深入。

目前,国内外发表的配电网理论线损计算方法的文献很多,其采用的计算方法和计算结果的精度也各有不同,综合起来主要有以下几种类型。

1.2传统的配电网理论线损计算方法

传统的配电网理论线损计算方法,主要分为两类,一类是依据网络主要损耗元件的物理特征建立的各种等值模型算法;一类是根据馈线数据建立的各种统计模型。传统等值模型计算方法中按计算精度又分为两类,一类是计算精度较低的简化近似法;一类是计算精度高的精确计算方法。10kV配电网等值模型计算方法如均方根电流法、平均电流法(形状系数法)、最大电流法(损耗因数法)、最大负荷损耗小时法、等值电阻法等,低压配电网等值模型计算方法如等值电阻法、电压损失法、台区损失率法等,这类方法是典型的传统等值模型计算方法中比较粗略的简化近似法,计算精度不高,不便于降损分析,但由于需要的数据资料少,计算方法简单,便于计算机编程,计算精度能够满足工程要求,所以在实际工程中广泛应用;潮流法是典型的传统等值模型计算方法中计算精度高的精确计算方法,计算精度高,能够精确计算配电网理论线损,但由于配电网结果复杂,表计不全,运行参数无法全部收集,或者网络的元件和节点数太多,运行数据和结构参数的收集、整理很困难等因素,无法采用潮流方法,所以在实际工程中很少应用。概率统计模型是一种统计模型,分为配电线路概率统计模型和配电变压器概率统计模型,是一种简化计算模型,需要的数据资料少,在计算配电线路和配电变压器等值电阻方面,只需要配电变压器容量、数量等较少参数就可以计算,这种计算方法是基于概率统计的基础上,因此计算精度低,很少在实际工程中应用。

1.3配电网理论线损计算方法新进展

近年来,随着各项科学技术和各种理论迅速发展,配电网理论线损计算方法研究也取得了很大的进展,新的计算方法不断出现,这些方法为配电网理论线损计算方法的研究提供了有力的工具,拓宽了新思路。新发展起来的配电网理论线损计算方法主要有:潮流改进算法、遗传与人工神经网络结合算法、模糊识别算法等。

1.3.1潮流改进算法

对配电网理论线损计算,在对精度要求较高的场合下,多彩用潮流计算的方法,提高计算精度。传统的潮流计算方法有牛顿法、PQ分解法、等效节点功率法、损耗累加法等,由于配电网网络结构复杂、负荷节点数量多、运行数据收集不全、数据整理困难等因素,传统的潮流法很难采用。

基于这种情况,部分学者对潮流算法中的部分算法进行了深入研究并加以改进,形成新的算法,

主要有改进迭代法、前推回推区间迭代法、匹配潮流法等。

迭代法是一种非线性方程组求解方法,将其应用于潮流法,求解潮流方程,在求解过程中,在初始条件参数基础上,经过多次迭代,达到收敛条件,停止迭代。改进迭代法和前推回推区间迭代法是对常规迭代法进行改进。

改进迭代法根据配电网得实际情况和网络特点,充分利用现有运行参数,将数据结构中的链表技术和“前推回代”潮流算法结合起来,运用于配电网理论线损计算。这种算法重要特征是引入链表技术-“节点双亲孩子兄弟链表”,是根据网络中节点与支路得关联关系,由动态指针将网络中得各节点链接起来而形成链表。以此链表为基础,由“前推回代”潮流算法求得配电网潮流分布,进而求得线损及其分布。此算法在处理负荷时依然使用《电力网电能损耗计算导则》中的简化方法处理,影响计算精度。

前推回推区间迭代法是建立在数据区间概念基础之上。数据区间是属于数学范畴,用来求解问题的未知解所在的范围或求取区间解。在实际工程中,当一个问题的原始数据不能精确地被知道,而只知其包含在给定的界限范围内,或者原始数据本身就是一个区间而非某个点值时,就可以用这一方法求解。传统的迭代法属于点迭代法,如牛顿法,负荷和其它参数是用一个数值,而不是用一个数值的范围即区间来表示,求解都是系统的瞬时状态,不符合实际。前推回推区间迭代法正是使用负荷和参数变化区间来表示,不但可以处理具有不确定性的点信息,而且可以方便地求解给定时间段上系统状态量的变化范围,从而能更全面真实地反映系统的状态。但这种计算方法在负荷处理上,采用区间方法定量描述缺乏量测的负荷变化,只利用变压器容量信息,并没有考虑实际配电网中的少数自动化量测信息及典型用户的变化规律,使得计算的理论线损结果的有效性和合理性不够充分。

匹配潮流法是以潮流法为基础,以配电网自动化系统采集数据为前提进行理论线损计算的。匹配潮流法主要是如何确定配电网各节点负荷功率。在获取节点负荷功率后,在求解潮流时,用线路量测冗余信息来修正配电网节点负荷,从而使潮流解更趋于合理,收敛性好,数值稳定性好,计算效率高(陈得治等,2005)。匹配潮流法将配电网理论线损计算范围扩展到支路损耗,而不向其他计算方法是将整体馈线作为计算对象,有利于帮助运行人员考察配电网局部理论线损值及变化情况,制定降损措施。该方法很好地考虑了目前配电网的实际情况,有普遍性,适合城市配电网结构,但在配电网节点负荷功率获取方面,一是依赖配电网自动化系统的实时量测信息,条件苛刻,二是对于没有实时量测信息的配电网节点负荷功率,则节点负荷功率的获取依然采用传统的方法,仍需要进一步研究。

1.3.2遗传算法(GA)与人工神经网络(ANN)结合算法

自二十世纪九十年代以来,人工神经网络(ANN)大量开创性应用。人工神经网络的优越性一方面体现在它的自学习能力,自动发现和把握事物发展的规律;另一方面ANN具有很强的非线性映射功能,可以把学习到的复杂的数学关系,建立成具有丰富内涵的网络模型。常用的ANN模型是BP 网络模型,利用一个简单的三层人工神经网络模型,就能实现从输入到输出间非线性映射任何复杂函数关系。

基于人工神经网络(ANN)的优点,国内外部分学者开始提出基于人工神经网络模型算法来计算配电网理论线损方法。这种模型算法正逐渐成为配电网理论线损计算方法研究的新热点,为配电网理论线损计算提供了新思路。但到目前为止,国内外利用ANN进行配电网理论线损计算的研究仍处于理论探索阶段,各种文献确定的模型机理无法让人信服,计算效果不是十分明显,在实际应用中不成熟。

人工神经网络(ANN)是由多个神经元连接而成,用以模拟人脑行为的网络系统,它通过学习获得合适的参数,用来映射任意复杂的非线性关系。人工神经网络具有学习功能和处理输入输出变量间非线性关系的能力,以及较短的计算时间。但是,应用单一的ANN计算线损的最大缺点就在于确定适于线损计算的神经网络的拓扑结构和算法中的具体参数时,都是靠反复试验确定的,没有规则可循。这不仅浪费时间,而且很难保证设计出的用于线损计算的ANN一定最佳。

基于上述原因,部分学者引入遗传算法(GA),现有对GA的改进也都存在一定的局限性,不适用

于线损计算。部分研究人员又对GA进一步改进,并于人工神经网络(ANN)相结合,研究新的算法。遗传算法(GA)是一种参数搜索算法,主要应用于优化计算。引入遗传算法(GA)的目的是使用GA来优化ANN,使优化后的ANN具有自进化、自适应能力,构造出进化的神经网络,最后应用优化的BP型ANN来拟合影响线损的特征参数与线损之间的复杂关系,建立适合配电网线损计算的新模型,从而获得了比传统配电网理论线损计算方法和单一使用ANN模型方法更好的计算效果,其计算精度分别提高了16倍和4倍。

对于一个具体的配电网线损理论计算工程来说,用于理论线损计算的人工神经网络的研制需要相当长时间的原始资料积累、学习样本的选择、训练和模型修正,才能确定配电网理论线损与特征参数之间的复杂关系,研制过程复杂,从研制到实用的周期较长。

可以预见,作为一门新兴的交叉学科,人工神经网络为揭示复杂对象的运行机理提供了一条新途径,将有更多的学者将其应用于配电网理论线损计算方法的研究中,研制出符合配电网线损理论计算的新算法。

1.3.3模糊识别算法

模糊理论是在美国加州大学伯克利分校电气工程系的L.A.zadeh教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊逻辑控制等方面的内容。20世纪20年代至80年代,模糊理论处于不断理论探索阶段,逐步完善。20世纪80年代后开始,模糊理论开始与实践相结合,研制有实际意义的模糊逻辑控制器。模糊识别技术在自动控制等领域有着较为深入研究和应用。事实上,模糊理论应用最有效、最广泛的领域就是模糊逻辑控制,模糊逻辑控制在各种领域出人意料的解决了传统控制理论无法解决的或难以解决的问题,并取得了一些令人信服的成效。

基于此,在配电网理论线损计算模型中,引入模糊识别技术。该方法采用模糊理论中的模型识别原理对支路电流的分配进行修正,使计算结果尽可能准确,即理论运行状态尽可能接近实际运行状态,提高了线损计算的精度。但该方法在对电流大小及变压器负荷率的大小进行模型判别时,隶属函数的选择较难,在实际应用中较困难。该方法引入模糊识别技术,虽然尚处于理论研究阶段,但开拓了新思路,需要进一步深入研究。

1.4主要研究内容

目前,对于配电网理论线损计算方法,结合配电网实际情况,国内外进行了大量的理论研究,达到了较高的水平,部分计算方法已投入实际应用,取得了较好的结算结果。

对发、供电企业来说,降低电能损耗,就意味着节约能源,增加经济效益。目前,供电企业在配电网理论线损计算方面开展较少,特别是0.4kV低压配电网,几乎没有开展理论线损计算,基本是以电量为数据,通过简单的线损率计算公式计算,计算方法原始,不能计算出理论线损,不能开展科学的降损分析,不能制定出合理的降损措施,这种状况即跟不上科学技术发展的步伐,也不能满足电力部门的要求。

有鉴于此,针对县市供电企业配电网理论线损计算问题,结合配电网的实际情况,对配电网理论线损计算方法进行研究,研究出一种需要数据资料少、计算速度快、计算结果精度高的计算方法。

因此,本论文的主要研究内容如下:

1.分析配电网理论线损计算步骤和过程;

2.对现有常用的配电网理论线损计算方法进行研究,并分析其特点;

3.分析影响配电网理论线损计算的因素;

4.改进等值电阻法理论研究;

5.配电网降损措施研究。

2 配电网理论线损计算的研究

2.1配电网理论线损计算特点

配电网理论线损计算是根据配电网结构参数和运行数据来计算配电网理论线损,所以配电网理论线损计算工作研究的对象是网络结构基本固定、负荷实时变化的配电网,根据配电网的结构和负荷类型需要采用适当的计算方法和计算模型,计算出配电网理论线损。因此其特点如下:

2.1.1不准确性

由于配电网网络结构的复杂性,负荷功率性质的多样性,负荷功率实时变化性,外部环境条件不确定性,要完全准确计算出配电网理论线损实际是不可能的,无论采用哪种计算方法和计算模型,只能是尽力作到理论运行状态尽可能接近实际运行状态,使计算结果尽可能准确,近似于实际值。

2.1.2条件性

传统的配电网理论线损计算方法,由于配电网网络结构的复杂,各节点没有监测设备,在计算理论线损过程中,都要假设一定的条件来简化计算,在假设条件的基础上,确定计算模型。由于假设条件的存在,使计算结果误差大,精度低,或高于实际值,或低于实际值。但这种假设条件并不是没有实际意义、毫无根据的凭空假设,而是建立在一定理论基础之上的,是必要的。

2.1.3多方案性

正是由于配电网理论线损计算的近似性和条件性,所以在进行配电网理论线损计算过程中,结合配电网的网络结构和负荷情况以及假设条件,对同一配电网进行理论线损计算可以有不同的计算方案,选择不同的计算模型。

2.2配电网理论线损计算步骤

2.2.1明确内容和要求

在对配电网进行理论线损计算时,首先要了解配电网理论线损计算的内容和要求,对配电网分压、分线、分台区进行分类,明确不同的类别的配电网理论线损计算范围、计算内容和计算要求。

2.2.2资料的搜集和整理

根据配电网理论线损计算的内容与要求,搜集进行配电网进行理论线损计算所需要的各种资料。首先要搜集有关配电网结构的接线图、结构参数、运行数据等资料,尽量齐全。对收集到的资料进行分析和加工整理,对资料中的数据去伪存真,提高资料的准确度。

2.2.3对资料进行分析

配电网资料的齐全与准确是影响配电网理论线损的重要因素(杨秀台,1985),因此要对收集到的配电网资料,如配电网的单线接线图、结构参数、运行数据等资料进行认真分析。对于单线接线图的结构,区分是辐射状还是环形结构,在单线接线图上导线、配电变压器参数是否标注齐全、正确,如果没有特殊情况,配电网结构一般不会发生变化,若由于改造等原因发生变化,应在计算之前补充修改,使之与实际相符;对于运行数据,如以月为时间单位记录的供电量、售电量等数据,应分析数据的合理性,对于异常值进行分析,找出异常值产生的原因,查明异常值是否合理。

2.2.4选择计算模型

根据配电网结构、负荷功率性质可以选择不同的计算模型。正确选择计算模型是配电网理论线损计算中最关键的一步,选择不同的计算模型、计算方法及假设条件,对于同一配电网线路或低压台区,可能得出不同的计算结果,准确度各不相同,如果选择不适当,可能造成计算误差过大,必要时可以选择多个计算模型进行计算,并对比计算结果,以供选择。

目前,在配电网理论线损计算实际工作中,常用的计算方法有多种,如均方根电流法、

平均电流法(形状系数法)、最大电流法(损耗因数法)、等值电阻法、潮流法、人工神经网络法等多种方法。各种计算方法均有其不同的特点和适用范围,要根据计算的内容和要求来选择。

2.2.5理论线损计算

随着科学技术的发展,配电网理论线损计算方法研究有了较大的进步,各种新的计算方法和模型不断出现,并且对计算机的性能要求越来越高,依赖性越来越强。依据选择的配电网理论线损计算模型,根据所掌握的资料数据,运用计算软件进行计算,能够获得比较准确的计算结果,获得更高的精度,更好的满足供电企业对配电网理论线损计算结果和精度的要求。

2.2.6分析计算结果

根据所选择的配电网理论线损计算模型得到的计算结果并不一定与实际值相符,这是由于所建立的计算模型是对实际情况的近似模拟,是用理论状态来近似实际状态,在计算过程由于数据资料不全、假设计算条件、计算模型精度等因素,必然产生误差。因此,需要对计算结果进行分析和评价,以确定计算结果是否可信。

2.3配电网元件电能损耗数学模型

配电网的电能损耗是网内各元件电能损耗的总和,要计算电能在传输过程中产生的电能损耗,就必须掌握网内各元件的物理特性,并确定这些元件的数学模型。在l0kV 及以下电压等级配电网中,元件数量较大,每个元件的运行数据具有一定的随机性。根据配电网元件电气特性及线损产生机理的不同,可将元件电能损耗分为:变电、配电元件中导线电阻发热损耗;变压器铁芯损耗;电缆线路、并联电容器的介质损耗;架空线路的电晕损耗;户外绝缘子漏电损耗,以及二次回路、谐波损耗等。

二次回路包括测量、保护、信号、控制、监视系统。其中用户及变电站二次回路的损耗分别计入用户电量及变电站的自用电量。除此之外,那些用于测量、保护、信号、控制、监视的户外以及环网柜、开闭所内的损耗因所占比例较小可以忽略不计。

谐波对线损的影响是一个专门的研究领域,己超出了本文的研究范围。在谐波治理和电能质量管理要求的约束下,由于谐波产生的损耗很小,可以忽略不计。

电晕损耗及绝缘子的泄漏损耗,其损耗量的大小与绝缘子外形、绝缘材料及气候条件等因素有关,尚缺乏成熟的计算方法。因配电网中电压等级较低,漏电损耗所占比例很小,故也忽略不计。

2.3.1配电线路导线损耗等值数学模型

电力线路的数学摸型是以电阻、电抗、电纳、电导元件组成其等值电路.对于10kV 及以下电压等级的线路,由于电压较低,线路对地电纳及电导的影响较小,故将其等值为由电阻、电抗元件组成的简化等值电路,如图1所示.

图 2.1 配电线路等值电路

若通过某段线路的电流I 稳定不变,则在计算时段T 内产生的电能损耗为:

23310()A TI R kWh -?=? (2.1)

若整条线路由多段参数不同的导线组成,则在计算时段T 内产生的线路电能损耗为:

23310()i m L i i i A L I

R kWh -?=?∑ (2.2)

若已知通过线路的有功功率和无功功率,上式可改写为:

223210()i

m i

i L i i i P Q A T R kWh U -+?=?∑ (2.3) 式中: i I 为第i 段线路在时间T 内的电流(A); i P 为第i 段线路在时间T 内的有功功率(kW); i Q 为第i 段线路在时间T 内的无功功率(kvar);Ri 为第i 段线路导线电阻(Ω);mi 为线路总段数;Ui 为第i 段线路平均线电压(kV);T 为计算时段小时数(h)。

j w

2.3.2配电变压器绕组损耗等值数学模型

配电变压器一般均为双绕组变压器,可用电阻、电抗、电导、电纳元件组成的T 形的等值电路来表示,如图2所示.

图 2.2 变压器的型“Γ”等效电路 若通过变压器绕组的电流i T I 稳定不变,在计算线损时段T 内, 配电变压器绕组产生的损耗Tcui A ?为: 2()i i T Tcui Ki N I A P T kWh I ???=????????

(2.4) 式中: Ki P ?为第i 台配电变压器短路损耗功率(kW); i T I 为第i 台配电变压器绕组上电流(A); i N I 为第i 台配电变压额定电流(A)。

2.3.3配电变压器铁芯损耗等值数学模型

配电变压器的铁芯损耗与其运行电压有关,因此,在计算线损时段T 内,配电变压器的铁芯损耗Tfe A ?为:

12()avl Tfe Oi N U A P T kWh U ???=???????

? (2.5) 式中: Oi P ?为第i 台变压器的空载损耗功率(kW); 1N U 为第i 台变压器的额定电压(kV); avl U 为第i 台变压器的平均运行线电压(kV)。

2.3.4并联电容器损耗等值数学模型

并联电容器的等值电路由一个无损耗的理想电容器与电阻并联而成,如图3所示。

图 2.3 并联电容器等值电路

在交流电压作用下,流过电容器的电流有两部分:有功电流R I 和无功电流. C I 通常把R I 与C I 的比值称为介质损耗角正切值tg δ,即

2

I

T G jB - 0I I 2U

C I

R C

I tg I δ=

(2.6) 电容器有功功率为: 2

2U P U w C tg Q tg R

δδ==??=? (2.7) 在计算线损时段T 内电容器有功功率损耗C A ?为:

C K A Q tg T δ?=?? (2.8) 式中: K Q 为第i 组并联电容器投入容量(kavr);tg δ为第i 组并列电容器介质损失角正切值。

2.3.5电缆线路损耗等值数学模型

电缆线路除按架空导线计算线芯电阻损耗外,还应计算绝缘介质的电能损耗,其计算公式为:

()2310D i i i i A U w C tg L T kWh δ-?=?????? (2.9)

式中:Ui 为第i 条电缆平均运行线电压(kV);ω为电网电压角频率(rad/s); i C 为每相的工作电容(μF/km);tg δ为介质损失角正切值;Li 为第i 条电缆长度(km)。

2.3.6配电网线损计算的基本假设

前述给出了元件损耗的计算模型,可在此基础上进行整个配电网线损的线损计算.不过由于配电网中元件数很多,每个元件上的运行数据又具有随机特性,所以收集这些运行数据相当困难.因此,配电网线损计算方法是在尽量减少原始资料收集范围的前提下,进行足够准确的元件电能损耗计算。

图 2.4 配电网示意图

如图4所示的配电网,变电站l0kV 侧有两条馈线,馈线首端经过高压降压变压器与供电网相连,末端经低压降压变压器与用户相连.每条馈线如同树状,一般以辐射型网络连接若干台配电变压器,馈线与馈线之间除在树根处(馈线首端)通过高压母线相连外,没有其它电气联系.一条馈线内的负荷波动相对于一个大供电网来说可以忽略不计,故可以认为馈线根节点的电压是恒定的。因此,给定馈线根节点

的电压及沿线各负荷节点的负荷,此馈线的潮流分布就可完全确定。基于上述特点,配电网的线损计算不再以全网为单位,而是以馈线作为基本单位.根据给定某馈线的根节点电压及沿线各负荷点的负荷,求出各段的功率损耗和电压降落,得到各段在一定时间区域内的电量损耗,从而确定整条馈线的线损分布,进而通过对馈线逐条计算以得到全网的线损.那么,在进行配电网线损计算时,需收集沿线各节点的负荷,但由于配电网节点数多,负荷在不同时段的变化又比较大,运行数据根本无法全面收集。为尽量减少运行数据的收集量,同时又不影响线损计算精度,一般作如下假设:

(1)各负荷节点负荷曲线的形状与首端相同。

(2)各负荷节点功率因数与首端相等。

(3)忽略沿线的电压损失对能耗的影响。

(4)负荷的分配与负荷节点装设的变压器额定容量成正比,即各变压器的负荷系数相同。(一般把通过变压器的视在功率与其额定容量的比值称为负荷系数)

2.4配电网理论线损计算的含义

配电网理论线损计算是在已知配电网结构和负荷功率性质等数据条件下,研究或选择一种计算方法来进行数据处理,在满足一定精度要求的条件下,计算一段时间内(如一个月)配电网的理论线损值。

2.5配电网理论线损计算方法分析

目前,传统和现代的配电网理论线损计算方法是基于两种配电网参数、运行数据资料获取情况和三种配电网结构的开展理论线损计算方法理论研究和实际应用的。在两种配电网参数和运行数据资料获取情况中,一种是以配电网结构参数和历史运行数据资料为基础;另一种是以供电企业综合管理系统(MIS)提取配电网结构参数和以调度自动化系统(SCADA)、配电网自动化系统(DMS)实时采集、存储的数据为基础。在三种配电网结构中,第一种是辐射状配电网,如农村配电线路;第二种是环状配电网,如部分城市配电网,第三中是辐射状与环状相结合,属于混合结构,如部分城市配电网。由于黑龙江省县市供电企业的配电网结构参数、运行数据资料获取方式的实际情况各不相同,普遍没有实现配网自动化,所以在配电网理论线损计算过程中,应结合配电网的实际情况进行选择负荷实际的计算方法。

2.5.1均方根电流法

均方根电流法是配电网理论线损计算的基本计算方法,也是最常用的方法。均方根电流法的基本思想是,线路中流过的均方根电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。其计算公式如下:

2

3A=3I 10jf Rt -?? (2.10)

式中:?Α为损耗电量(kWh );R 为元件电阻(Ω);t 为运行时间(h );为均方根电流jf I (A )。 均方根电流jf I 计算公式如下:

jf I =式中:i I 为代表日整点负荷电流(A );jf I 为均方根电流(A )。

若实测为i p 、i Q 、i U ,均方根电流jf I 可以使用以下公式计算:

jf I = (2.13) 式中:i p 为代表日整点时通过元件电阻的有功功率(kW );i Q 为代表日整点时通过件电阻的无功功率(kvar );i U 为与i p 、i Q 同一时刻的线电压(kV );jf I 为均方根电流(A )。

电能损耗计算公式如下: 2224213

A 1024i i i i P Q U RT =-+?=?∑ (2.14)

式中:i p 为代表日整点时通过元件电阻的有功功率(kW );i Q 为代表日整点时通过元件电 阻的无功功率(kvar );i U 为与i p 、i Q 同一时刻的线电压(kV );R 为元件电阻(Ω);t 为运行时间(h )。

若实测为有功电量、无功电量和电压,均方根电流可以使用下式计算:

310ef I -=? (2.15) 式中:ai A 为代表日整点有功电量(kWh );ri A 为代表日整点无功电量(kvarh );i U 为与ai A 、ri A 同一时刻的线电压(kV )。

电能损耗计算公式如下: 2224

2

131024ai ri i i A A U A RT =-+?=?∑ (2.16) 式中:ai A 为代表日整点时通过元件电阻的有功电量(kWh );ri A 为代表日整点时通过元件电阻的无功电量(kvarh );i U 为与i p 、i Q 同一时刻的线电压(kV );R 为元件电阻(Ω);t 为运行时间(h )。

由于有功电量和无功电量是由电度表计量的,精度比较高,一般使用2.16式计算电能损

耗。

均方根电流法的优点是:方法简单,按照代表日24小时整点负荷电流或有功功率、无

功功率或有功电量、无功电量、电压参数等数据计算出均方根电流就可以进行电能损耗计算, 计算精度较高。缺点是:在对10 kV 配电网线路计算理论线损时,对没有实测负荷记录的配 电变压器,其均方根电流按与配电变压器额定容量成正比的关系来分配计算,这种计算不完 全符合实际负荷情况;各分支线和各线段的均方根电流由各负荷的均方根电流代数相加减而 得,但一般情况下,实际系统各个负荷点的负荷曲线形状和功率因数都不相同,因此用负荷

的均方根电流直接代数相加减来得到各分支线和各线段的均方根电流不尽合理;均方根电流法计算的理论线损是代表日的线损值,利用代表日线损值、代表日电量、月平均日电量和月总电量归算出

的月理论线损值在客观上必然有一定差距。

2.5.2平均电流法

平均电流法也称形状系数法,是利用均方根电流法与平均电流的等效关系进行电能损耗

计算的,由均方根电流法派生而来。平均电流法的基本思想是,线路中流过的平均电流所产 生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。其计算公式如下:

223310ar A I K Rt -?=? (2.17)

式中:A ?为损耗电量(kWh );R 为元件电阻(Ω);t 为运行时间(h );ar I 为平均电流(A ), K 为形状系数。

形状系数K 的计算公式如下:

jf

ar I K I = (2.18)

式中:jf I 为代表日均方根电流(A ),ar I 为代表日负荷平均电流(A )。

若实测为有功电量、无功电量和电压,平均电流也可以使用以下公式计算:

ar I =式中:a A 为代表日的有功电量(kWh );r A 为代表日的无功电量(kvarh);ar U 为代表日的电压平均值。 电能损耗计算公式如下:

2223210a r ar

A A A K Rt U -+?=? (2.20) 式中:a A 为代表日通过元件电阻的总有功电量(kWh);r A 为代表日通过元件电阻的总无功电量(kvarh);ar U 为平均线电压(kV);R 为元件电阻(Ω);t 为运行时间(h)。

形状系数K 根据负荷曲线的负荷率f 及最小负荷率α确定较为复杂。

平均电流法的优点是:用实际中较容易得到并且较为精确的电量作为计算参数,计算结

果较为准确,计算出的电能损耗结果精度较高;按照代表日平均电流和计算出形状系数等数 据计算就可以进行电能损耗计算。缺点是:形状系数K 不易计算,在实际使用中其值存在计 算简化,与直线变化的持续负荷曲线有关,对没有实测负荷记录的配电变压器,不能记录实 际负荷曲线;需改进负荷分配因子;配电网电压假设为平均低压后,计算精度受到了一定影 响。

2.5.3最大电流法

最大电流法也称损耗因数法,是利用均方根电流法与最大电流的等效关系进行电能损耗

计算的,由均方根电流法派生而来。最大电流法的基本思想是,线路中流过的最大电流所产 生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。其计算公式如下:

23max 310A I FRt -?=? (2.21)

式中:A ?为损耗电量(kWh);R 为元件电阻(Ω);t 为运行时间(h);max I 为最大电流(A),F 为损耗因数。

损耗因数F 的计算公式如下:

2

2max jf

I F I = (2.22)

式中:jf I 为代表日均方根电流(A ),ar I 为代表日负荷平均电流(A )。

损耗因数F 值的大小随电力系统的结构、损失种类、负荷分布及负荷曲线形状不同而异,特别是与负荷率f 密切相关,分析表明:损耗因数F 与负荷率f 的关系,应介于直线和抛物线之间,即:

()21F f f ββ=+- (2.23)

式中:β是与电力网负荷曲线形状、网络结构及负荷特性有关的常数,通常介于0.1~0.4之间,在不同网络结构下,β值不同,f 负荷率。

对于损耗因数F 有三种计算方法,第一种是利用理想化得负荷曲线推求F(f)

关系,第二种是采用统计数学方法来求取F(f)得近似公式,第三中是数学积分方法求取F(f)得近似公式。

对于损耗因数F 第一种计算方法,我国有人采用以两级梯形和梯形两种理想化的负荷曲线作为极限状态,分析得到如下损耗因数F 计算公式:

()()()

222211231f F f βββββ??+-+-?

?=++ (2.24) 式中:F 是损耗因数;f 是负荷率;β是常数。

对于损耗因数F 第二种计算方法,采用二项式公式和三项式公式近似求取。

1926年法国人杨森利用二项式公式求取得:

()22

f f F += (2.25) 式中:F 是损耗因数;f 是负荷率。

1928年美国人布勒尔利用二项式公式求取得:

20.30.7F f f =+ (2.26)

式中:F 是损耗因数;f 是负荷率。

在二十世纪七十年代,我国沈阳地区采用:

20.20.8F f f =+ (2.27)

式中:F 是损耗因数;f 是负荷率。

在二十世纪七十年代上海地区采用:

20.1750.825F f f =+ (2.28)

式中:F 是损耗因数;f 是负荷率。

使用三项式求取损耗因数F 的典型代表有1948年前苏联凯捷维茨,求取的计算公式如下:

()2

0.1240876F f =+ (2.29)

式中:F 是损耗因数;f 是负荷率。

对于损耗因数F 第三种计算方法,典型代表有:

1980年美国雷蒙特(Raymond A)对持续负荷曲线采用直接积分的方法得到如下计算公

式:

()2

20.273F f f β=+- (2.30)

式中:F 是损耗因数;f 是负荷率,β是常数。

当f ≤0.8时适用,当f>0.8时,使用2F f =。

1982年我国西宁电力局刘应宪采用双动点形成的四折线代表持续负荷曲线族,利用分段

积分方法求取如下计算公式:

()20.6390.361F f f f ββ=++- (2.31) 式中:F 是损耗因数;f 是负荷率,β是常数。

上式有较大实用价值。

最大电流法的优点是:计算需要的资料少,只需测量出代表日最大电流和计算出损耗因

数等数据就可以进行电能损耗计算。缺点是:损耗因数不易计算,不同的负荷曲线、网络结

构和负荷特性,计算出的F 不同,不能通用,使用此方法时必须根据负荷曲线实际情况计算F 值;计算精度低,常用于计算精度要求不高的情况。

2.5.4最大负荷损耗小时法

最大负荷损耗小时法的意义是,在一段时间内,若用户始终保持最大负荷不变,此时在

线路中产生的损耗相当于一年中实际负荷产生的电能损耗。

计算公式如下:

2max 2S A R U τ?= (2.32) 式中:A ?为损耗电量(kWh);max S 为最大视在功率(kVA);τ为最大负荷损耗小时数(h);R 为元件电阻(Ω),U 为额定电压(kV)。

令T=8760,U 为常数,则τ计算公式如下:

8760

202max

S dt S τ=? (2.33) 式中:τ为最大负荷损耗小时数(h );S 为实际负荷视在功率(kVA );m a

x S 为最大视在功率(kVA)。 最大负荷损耗小时法的优点是:通过计算出最大负荷损耗小时数τ,能够计算出电能损

耗,计算需要资料少,计算简单。缺点是:最大负荷损耗小时法计算精度较低,一般用来估 算年度配电网理论线损,不宜进行精确计算。

2.5.5等值电阻法

等值电阻法的理论基础是均方根电流法。等值电阻法的基本思想是,在配电线路首端,

假想一个等值的线路电阻el R ,在通过线路首端的总电流()

I ∑产生的损耗,与线路各段不同的分段电流i I 通过分段电阻i R 产生的损耗的总和相等。

线路等值电阻法具体介绍详见3.1.1。

等值电阻法的优点是:在理论上比较完善,在方法上克服了均方根电流法的诸多方面的

缺点;不用收集运行数据,仅与结构参数配电变压器额定容量、分段线路电阻有关,计算出

等值电阻数据就可以进行电能损耗计算,适合于10kV 及以下配电网理论线损计算。缺点是:需要假设计算条件,影响计算结果精度;对没有实测负荷记录的配电变压器,假设负荷分布按与配电变压器额定容量成比例,各节点负荷率相同,这种计算不完全符合实际负荷情况;假设各负荷点功率因数、负荷系数和电压相同,但一般情况下,实际系统各个负荷点的功率因数、负荷系数和电压都不相同,计算出的电能损耗值偏小。

2.5.6 潮流法

潮流法是配电网理论线损计算方法中计算精度较高的计算方法。配电网潮流计算以馈线

作为基本单元,基本任务是求解出系统的状态变量,即馈线上的各母线的电压或功率。传统的潮流计算方法有牛顿法、PQ 分解法、等效节点功率法、损耗累加法、前推法、迭代法等。随着配电网网络结构复杂化,负荷节点数量多,运行数据无法全部收集等因素,传统的计算方法已经不再实用,必须进行改进和创新,研究出新的潮流算法。新的潮流算法主要有改进迭代法、匹配潮流法、前推回推区间迭代法、基于区间算法的配电网三相潮流计算方法等,新的计算方法需要进一步深入研究,逐步实用化。

潮流法的优点是计算精度高,缺点是由于配电网需要收集的数据资料多,若表计不全或

运行参数收集不全,或者网络的元件和节点数太多,运行数据和结构参数的收集整理困难, 则无法采用潮流方法。

2.5.7电压损失法

对于低压配电网理论线损计算,《电力网电能损耗计算导则》推荐使用电压损失法。电

压损失法主要是利用功率损耗与电压损耗百分数之间的关系来粗略计算低电压配电网理论线损。计算方法如下:

假设负荷集中在低压配电网线路末端,按照电压向量图可以得到电压损失率近似计算公

式:

cos %100%U ??=? (2.34)

式中: I 为线路首端电流(A); R 为线路电阻(Ω);?为功率因数角。

功率损耗率计算公式如下:

2%100%P ?= (2.35) 式中:I 为线路首端电流(A);R 为线路电阻(Ω);?为功率因数角;U 为线路首端电压(V)。 功率损耗率与电压损耗率之比:

2%1%cos P U P K U ?

?=

=? (2.36) 式中:?为功率因数角。 假设,则一般的可以写作如下计算公式:

211%%n j j

j P n U j j

j I R P K U I I R ==?=

=??∑∑ (2.37)

式中:j I 从配电网变压器出口出到电压最低点间各段的电流(A);j R 从配电网变压器出口出到电压

低压线损管理中存在的问题及降损措施

线损管理是供电所在生产技术管理、经营管理中的关键环节,直接影响到供电企业的经济效益,是供电企业的一项重要经济指标。影响线损升高的主要有技术因数和管理因数,但在对线路、台区进行普查后分析往往技术因数的影响只占10%--20%左右,主要是管理人员不规范管理造成的,因而降低低压线损的关键在管理降损上,建立线损管理机制,提高管理水平,通过内部的强化管理,综合考虑影响线损起伏不稳的客观条件,分析和排查存在的各种因素,找出关键点,逐步消除,是降低线损提高经济效益的关键所在。一、低压线损管理中存在的问题目前,农村低压用户用电量一般在农村供电所的比例占在60%—90%之间,低压线损如果居高不下不仅影响供电所综合线损指标的完成,还影响台区管理员的线损考核工工资减少,以致影响台区管理员的工作积极性,形成恶性循环。按照省公司有关规定,低压线损指标值一般定在12%以下,虽然低压线损率比以前有了降低,但部分供电所都没能完成规定的低压线损值,降低高损台区降低低压台区线损成为当前营销工作的重点工作。 (一)低压线损管理网络松散,线损管理档案资料不齐全。县公司和供电所都建立了降损节能管理组织,但没有充分发挥小组的作用,只有所长和营业班长在日常抓线损管理,其他成员没有履行职责。另外,没有建立台区线路的负荷资料和电网设备的各项基础参数资料台帐,致使线损管理依据不详实。 (二)低压线损理论计算不科学,线损考核指标值定制随意。供电所在台区精细化系统收集线路、计量等基本参数时都是在现场目测的,不能真实反映现场情况,台区现状发生设备变更后没有及时在精细化系统更新,造成理论测算的线损值只能作为一种参考,线损考核指标每年测算靠营业管理人员根据公司下达的指标值再参考各台区上年完成情况综合确定,对部分台区不尽合理。 (三)线损分析制度执行坚持不好,台区管理员素质不高。供电所线损分析会效果不明显,有的台区管理员年龄大、文化水平低,有的语言组织能力差、有的不用心总结,造成线损分析会总是几个管理人员在分析,台区管理员既写不出分析材料又讲不出线损高低的原因,更不知道采取哪些措施降损。 (四)抄表管理制度执行不力,随意性大。部分台区管理员思想观念没有及时转变,每月抄表不能严格按照制订的抄表日程进行,而是根据自己的时间

配电网节能降损优化研究综述

配电网节能降损优化研究综述 摘要:伴随我国经济的快速发展,我国电网的负荷也在不断的提升,配电网的 电能损耗也在逐渐的增加。怎样有效的减少电能在运输过程中的损耗,即节能降 损已成为配电网中亟待解决的问题。节能降损是当前企业发展的一个重要标准, 也是提高企业在市场上竞争力的一个重要举措。这篇文章根据配电网中节能降损 和优化的措施进行探索,对配电网节能降损的现状和问题做出分析,提出了有效 的降损方式。 关键词:配电网;节能现状;存在问题;优化措施 引言 电网运输是电能传输的重要渠道,电网本身的节能降耗是我国节能工作中的 一个重要组成成分。当前电网配置比较弱,这是我国电网结构中急需解决的一个 问题。因为配电网点比较多,配电线路也比较繁复,电能损失比较大,大约占电 网损失的一半以上,所以说它可节能地方比较大。城镇之间的配电网是电力系统 的主要部分,该文章根据配电网对如何节能降耗进行研究探索,对节能降损的现 状进行分析,提出了当前节能降耗中存在的一些问题以及解决措施[1]。 一、配电网节能降损的现状 现在我国对配电网节能降损的探究还处于比较独立的阶段,对部分地区的电 网线损进行计算,无功优化,变压器经济运转期,并且这些部分的技术都是由不 同的企业掌控,过于离散,缺少整合。各个系统之间的信息合成率过低,数据之 间的连接也不符合规定,运行员工没法及时的掌控配电网运行的现时情况,这会 导致工作繁复以及效率低的后果。而现在配电网中无功补偿节能设施和电力质量 处理装备分布面积还不够广,不仅没有数据上传和收集的单位,也没有设备的整 体调控单位,在设施的运转状态,故障以及节能成效和电力质量的治理成效也没 法知晓。所以,按照配电网的建设和发展需求,研发一种新型的配电网节能减损 和电力质量综合调控设备是非常重要的。利用先进技术逐渐推行电网的节能和提 升电力质量的工作。 电力降损系统的硬件装备的发展过程有:电网发展的初级阶段只是无功调节 和优化的要求,经过了由同步调相机到开关投切电容器到静止无功补偿的变化过程,他们的共有特征是用来调控无功功率从而达到降耗的目的。然而它们在不同 的方面也会出现一些弊端,比如说同步调相机的反应速度不高,噪声大,耗损多,技术老旧,所以属于过去式了。开关投切电容器反应较慢,而且连续控制能力比 较弱。而静止型动态无功补偿器的压制能力弱,体积大,本身谐波污染就比较大。 二、配电网节能降损工作存在的问题。 (一)无功补偿不足而造成的无功损耗问题 现在配电网应用的降损方式主要是电容的补偿,但是因为速度比较低,不能 动态调整,很易过量补偿的现象,所以说电网的损耗现象仍然很重[2]。 (二)能设备无法治理电能质量的问题 电网损耗以及电力质量的问题主要体现在电网的谐波波动、三相负载不平衡。引发的问题主要有:第一,谐波对供电变压器来说会产生额外的损耗,升高变压 器温度,降低了绝缘期限;第二,谐波对旋转电机也会产生一定的副作用,不仅 能产生额外的损耗,还能导致发生机械震动,产生噪音和谐波过电压等;第三,

线损理论计算方法

线损理论计算方法 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑: 1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB

10kV及以下配电网理论线损计算5页

10kV及以下配电网理论线损计算 0 引言 10kV及以下配电网的网架结构、设备和用电负荷都比较复杂,占了电网电量损耗的大头。加强配电网线损计算是降损节能的重要管理手段[1]。线损计算是根据电网的网架和运行电气参数,应用相应的电路原理计算电网中各个原件的理论线损电量。在配电网规划中,规划年的理论线损计算是不可缺少的内容,但相对于高压配电网,中低压配电网由于设备规模和数量较为庞大,大量缺乏网架内的元件参数和运行参数,特别是规划年的网络参数和运行环境缺失,使得使用精确模型建模和运用成熟的计算软件进行计算较为困难。根据中低压配电网的实际特点,充分利用配电网规划方案可以获取的有限条件进行理论线损计算是配电网理论计算在工程应 用方向的可行路径[2]。本文采用简化负荷模型对配电网进行降低规模计算,求得各类负荷分布类型线路的功率损耗,最后采用最大负荷利用小时法得到规划区域内的理论电量损耗。 1 10kV中压配电网理论线损计算 根据地区线路特性和计算结果,把线路简化为5种负荷分布形式的线路,包括末端集中分布、均匀分布、递增分布、递减分布和中间集中分布。下面具体对各种负荷分布线路模型进行分析。 1.1 中压线路负荷分布模型 1.1.1 末端集中分布 设10kV中压线路主干始端电流为I,单位阻抗为r,负荷集中于线路的末端,则主干的线路损耗为:

1.1.2 线路负荷均匀分布 线路负荷均匀分布于线路上,假设线路始端主干电流为I,末端电流为i0,距离始端x距离的分置电流为ix。图1为负荷均分布模型,X轴为距离线路始端的距离,线路全长为L;Y轴为线路分支线电流的总和。 1.1.3 负荷递增分布 1.1.4 负荷递减分布 1.1.5 负荷中间集中分布 1.2 功率损耗系数 根据以上的计算分析,可以得到各种负荷分布模型的线路功率损耗系数,见下表。 1.3 中压线路损耗估算流程 1.3.1 中压线路主干损耗估算 (1)按照线路主干型号,查找相应的线路的单位电阻r,根据线路长度L得到主干的阻抗为R=L×r; (2)分析线路的分布模型,获得该线路的的功率损耗系数β; (3)计算该线路的功率损耗 1.3.2 中压线路装接配变损耗估算 根据变压器型号和单台变压器容量S,查找变压器参数表得到该型号变压器的空载损耗为ΔPk,负载损耗为ΔP T。中压线路装接配变损耗为:公式中,ST为变压器实际运行容量,采用年最高负荷。 1.3.3 中压线路的总功率损耗 每回中压线路的功率损耗为中压线路功率损耗ΔPL和中压线路装接

(完整word版)低压台区线损分析及降损措施

低压台区线损分析及降损措施 2019年5月 380V低压台区网络线损是10kV配电网络线损的重要组成部分,其损失约占整条线路损失的60%~70%左右,因此,降低台区的低压损失,是开展线路降损增效工作的重点。台区线损率主要由两部分构成。一是实际线损,是技术方面的,是配电线路、变压器、电能表计等设备自身消耗的电量,它还与低压网络的分布、低压线路设备状况、用电负荷的性质及运行情况有关。由于电能在传输分配过程中不可避免的损失一部分电量,这部分电量就构成了实际损耗,实际损耗可以减小,但不能完全避免。二是管理线损,是由管理因素决定的。这方面引起线损的原因比较复杂,比如窃电、错漏抄表、计量故障等。管理线损是供电企业线损的主要部分,可以通过加强管理来减小甚至完全避免管理线损。 1.影响低压台区线损率的主要因素 1.1技术方面 1.1.1线路状况 低压配电线路的材质、截面、长度及好坏程度,是影响低压网络实际损耗的主要因素。一段导线的电阻公式为: R——电阻;ρ——电阻率;l——导线长度;s——导线截面

由此公式可知,导线的电阻与导线的电阻率、导线长度成正比,与导线截面积成反比。导线电阻越大其消耗的电能也就越大。如果现场低压线路截面过小,会导致损耗加大。另外,线路老化、破损现象严重,与树木相碰触,也会加大线路自身的电能损耗。 2.1.2供电半径 一般来说,一个低压台区的供电半径不应大于300米(市区不应大于150米),即以变台为中心,低压线路的半径长度不应超过300米,否则线路的损耗将加大。现场实际运行中,低压线路供电半径过长的现象有很多,特别是在远离市区的平房区域、城乡结合部区域,此类现象比较突出,个别低压线路有的延伸到500米以上。这样,一方面线路损耗增加,线损加大,另一方面导致线路末端电压质量急剧下降,造成电压损失,使用户电压质量下降。 2.1.3三相负荷不平衡率 现场大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,而实际上很难达到这一点,现场三相负荷基本上都是非对称性的,变压器三相负载的不平衡率也是一项重要的技术指标,规程规定变压器三相负载不平衡率不能大于20%。变压器三相负载不平衡率过大,将使线路损耗增加,各相电压超差,影响用电设备的使用寿命。 配变三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。经计算证明,将负荷接到一相上,导线上的功率损失是三相负荷平衡时的6倍。

关于配电网节能降损措施分析

摘要:从合理选择配电变压器、改善低压供电网网架结构、改造老旧低压计量装置、 保持变压器低压三相负荷平衡运行、加大无功补偿力度、改善供电电压水平六个方面,阐 述了配电网节能降损的技术措施,指出了配电网节能降损的管理措施。 供电企业“跑、冒、滴、漏”和配电网线损居高不下的问题,一直是困扰供电企业经 济效益的瓶颈。通过近几年的电网改造,电网装备水平得到了较大改善,线损率逐年下降,但一些台区特别是乡镇居民密集区低压线损率依然居高不下,个别台区线损高达30%以上,这给供电企业线损管理和经营带来了巨大压力。 配电网的损耗分为管理线损和技术线损,管理线损通过科学的管理方法来降低,技术 线损主要采取技术措施来降低,包括对电网进行技术改造和改善电网运行方式等措施。下 面谈谈农村配电网节能降损几项技术措施。 一、合理选择配电变压器 配电变压器的选择包括配电变压器容量、型号的选择以及变压器安装位置的选择。 1.配电变压器容量选择 配电变压器容量应根据该区域的现状和发展趋势选择,如果容量选择过大,会出现 “大马拉小车”现象,变压器利用率低,空载损耗增加。选择容量过小,会引起变压器过载,损耗同样增加,严重时将可能导致变压器过热或烧毁,因此,配电变压器必须根据所 安装区域平时负荷和最大负荷进行合理的选择。 2.配电变压器型号的选择 主要是选用应用了新技术、新材料、新工艺的新型号高效节能配电变压器,降低能耗。 (1)选用非晶合金铁芯变压器。非晶合金铁芯变压器是用新型导磁材料——非晶合金制 作铁芯而成的变压器,它比硅钢片作铁芯变压器的空载损耗下降80%左右,空载电流下降 约85%,是目前节能效果较理想的配电变压器,特别适用于农村电网和变压器负载率较低 的地方使用。三相非晶合金铁心配电变压器与S9型配电变压器相比,其年节约电能量相当可观。 (2)选用卷铁芯全密封型配电变压器。卷铁芯全密封型配电变压器是近几年研制的新一 代低噪声、低损耗型变压器,卷铁芯无接缝,全部磁通磁化方向与硅钢片轧压方向相同, 充分地发挥了硅钢片的取向性能,在条件相同的情况下,卷铁芯与叠片铁芯相比,空载损 耗下降了7%~10%,空载电流可下降50%~70%。由于变压器高低压线圈在芯柱上连续绕制,绕组紧实,同心度好,更加增强了产品的防盗性能,噪声下降10分贝以上,温升低16~ 20K。 由于该型号变压器空载电流小,因此降损效果明显,可提高网络功率因数,减少无功 补偿设备的投入,节省设备投资和降低运行能耗。 (3)选择有载自动调容配电变压器。有载自动调容变压器是将变压器线圈采用串、并联 接线,在变压器的低压线圈上接有有载调容开关,在变压器低压侧接有电流互感器和自动 控制器,通过电流互感器提供变压器负荷状态,自动控制器可按负荷自动调挡运行。有载 自动调容变压器解决了长期以来电磁线圈变压损耗较高、需要人工操作的缺点,进一步降 低了变压器的空载损耗和空载电流。有载自动调容变压器特别适用于负荷分散、季节性强、平均负荷率低的用户。 3.配电变压器安装位置的选择 变压器安装位置除满足场地、环境要求外,还要考虑将配电变压器接近负荷中心位置,使供电半径尽量缩短,最好控制在500米范围内。对于负荷比较分散的台区,也应将绝大 部分负荷尽量控制在500米范围内。

配电网理论线损计算方法._secret

配电网理论线损计算方法 配电网线损是电力部门一项综合性的经济、技术指标。准确合理的配电网线损理论计算是电力部门分析线损构成、制定降损措施的有力工具,对促进供电企业降低能耗,内部挖潜,提高经济效益,优化电网规划设计方案,加强运行管理具有重要意义。目前,由于配电网结构的复杂性、参数多样性和资料不完善以及缺乏实时监控设备,准确计算配电网理论线损比较困难,一直是个难题。配电网理论线损计算的主要目的是通过对电能在输送和分配过程中各元件产生的电能损耗及各类损耗所占比例的计算,来确定配电网线损的变化规律。配电网理论线损计算方法,主要分为两类:一类是依据网络主要损耗元件的物理特征建立的各种等值模型算法;另一类是根据馈线数据建立的各种统计模型和神经网络模型等算法。传统计算方法,如均方根电流法、平均电流法等,计算结果精度不高,不便于降损分析。针对这种情况,近几年来,部分学者将遗传算法(GA)、人工神经网络(ANN)和模糊识别等理论应用于配电网理论线损计算,研究计算速度快、计算结果精度高的数学模型,丰富和发展了理论线损计算方法,拓宽了研究思路。 1传统的主要的配电网理论线损计算方法 1.1均方根电流法均方根电流法是基本计算方法 均方根电流法的物理概念是,线路中流过的均方根电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。

均方根电流法的优点是:方法简单,按照代表日24小时整点负荷电流或有功功率、无功功率或有功电量、无功电量、电压、配电变压器额定容量、参数等数据计算出均方根电流就可以进行电能损耗计算,易于计算机编程计算。缺点是:代表日选取不同会有不同的计算结果,计算误差较大。 1.2 平均电流法平均电流法 平均电流法平均电流法也称形状系数法,是利用均方根电流法与平均电流的等效关系进行电能损耗计算的,由均方根电流法派生而来。平均电流法的物理概念是,线路中流过的平均电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。平均电流法的优点是:用实际中较容易得到并且较为精确的电量作为计算参数,计算结果较为准确,计算出的电能损耗结果精度较高;按照代表日平均电流和计算出形状系数等数据计算就可以进行电能损耗计算,易于计算机编程计算。缺点是:对没有实测记录的配电变压器,形状系数不易确定,计算误差较大。1.3最大电流法最大电流法 最大电流法最大电流法也称损失因数法,是利用均方根电流法与最大电流的等效关系进行电能损耗计算的,由均方根电流法派生而来。最大电流法的物理概念是,线路中流过的最大电流所产生的电能损耗相当于实际负荷在同一时间内所产生的电能损耗。最大电流法的优点是:计算需要的资料少,只需测量出代表日最大电流和计算出损失因数等数据就可以进行电能损耗计算,

降低线损的常用措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 降低线损的常用措施(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4820-71 降低线损的常用措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 线损是考核供电企业生产经营的一项重要技术经济指标,线损率的高低,是衡量我们供电部门管理水平的一项重要内容,对农网来说降低线损也是降低农村综合电价的技术保证。 1影响线损的原因 影响线损的原因是多方面的,总的可分为两方面的因素,一是内在因素,即技术管理,可概括为:电流、电压、功率因数和负荷曲线形状系数等四大类;二是外在因素,即用电管理,主要是营抄工作和客户的窃电行为。对农网来说影响线损具体突出在以下几方面:

配电网络布局不合理,部分低压网络迂回供电,供电半径大等问题,未能实现合理的供电方式;有些主干线路截面偏小,偏远地区存在导线老化严重、线路运行时间过长,接头较多现象。 变压器利用率过低,变损电量较大。农忙时用电量较大,农闲时只带照明用电,每台配电变压器平均用电负荷最多20几个kW。目前农村变压器普通用于生活用电,每天用电集中时间在6:00~8:00、18:00~22:00,其余约有18个小时变压器处于轻负荷,或在后半夜至上午没有负荷,形成变压器自身损耗高。 由于资金困难,农网有部分高耗能配变仍继续在使用,尤其目前线路导线和变压器被盗窃现象严重,因为一时无更换资金来源,又急需供电,只能又将原来换下来的高耗能变压器安上继续使用。 农村低压配电线路负荷分布一般没有统一的规律,

配电网理论线损计算方法的应用探讨

配电网理论线损计算方法的应用探讨 摘要:计算理论线损是分析线损构成、制定降损措施及确定线损指标的必要手段。本文笔者结合多年的实际工作经验,介绍了配电网理论线损计算方法,指出目前各种线损计算方法的局限性,在此基础上,提出采用电量潮流法计算线损的新方法,供同行参考。 关键词:配电网线损计算方法 配电网线损是电力部门一项综合性的经济、技术指标,是国家考核电力部门的一项重要指标,也是表征电力系统规划设计水平和经营管理水平的一项综合性技术经济指标。只有通过加大技术降损力度,提高技术含量以及加强管理降损水平,走上精细管理之路,才能取得显著的经济效益和社会效益。因此,线损的理论计算还需要进一步深入研究。 1、配电网理论线损计算方法 传统理论线损计算方法主要有: 损失因数法、均方根电流法、等值功率法、回归分析法和人工神经网络法(ANN) 1.1 损失因数法 损失因数法是利用日负荷曲线的最大值与均方根值之间的等效关系(即损失因数)进行线损计算的方法。其计算式为: (1) 式中,为最大电流;F为负荷损失因数。负荷损失因数F因配电网结构、损失种类、负荷分布及负荷曲线形状不同而异,特别是与负荷率密切相关。由于最大负荷电流取自电流表,而损失因数F是由负荷率通过统计得到的,其精度不高,因此这种算法只适用于电网规划的线损测算和35kV及以上电压等级电网(如城市电网)的线损计算。 1.2 均方根电流法 均方根电流法是目前l0kV配电网中最常见的理论线损计算方法,算法原理是将线路中流过的均方根电流所产生的电能损耗, 近似于实际负荷在同一时期所消耗的电能。电流通过电力网元件(电阻为R)时产生的三相有功功率损耗为△P = 3I2R,则该元件在24h内的电能损耗可以表示为: (2) 其中是随机变量一般不能准确获得,通常可由代表日的均方根电流代替,即: (3) 其中, 均方根电流法原理简单,方法易于掌握,应用广泛,但是算法在实际应用时所需数据计算量大,而且没有考虑负荷曲线形状的差异和负荷功率因数不同对计算结果的影响,在一定程度上降低了算法精度。用代表日的线损率近似系统全年线损率误差较大,另外典型日的数据很难保证准确性,这样又增加了计算结果的误差。因此算法只适用于供用电较为平衡,负荷峰谷差较小(日负荷曲线较为平坦) 且精度要求不高的情况。 1.3 等值功率法 等值功率法由准确级别高的电能表读数求取平均功率,通过将负荷曲线梯形化或查负荷曲线形状系数的方式获取节点等效功率,将电能损失的计算转化为功率损失的计算,将计算时段内随时间变化的各节点注入功率处理为节点等值功率,

配电网中理论线损计算方法及降损措施的研究

华北电力大学 毕业设计 题目配电网中理论线损计算方法及降损措施的研究学院自动化与电气工程学院 专业电气工程及其自动化 二〇一七年三月三十一

配电网中理论线损计算方法及降损措施的研究 [摘要]线损率是综合反映电力网规划设计、生产运行和经营管理水平的主要经济技术指标。降低线损率,可以减少电能传输能耗,提高电力供应能力,增加供电企业经济效益。研究配电网理论线损计算方法有很重要的理论与实际意义。本文阐述了进行配电网线损计算的意义和线损的基本概念,在理论研究方面,本文通过对几种常用配电网线损计算方法的分析比较,主要采用改进等值电阻法进行配电网线损计算,目的是为了降低配电网电能损耗、加强电网的经济运行。 [关键词]配电网;理论线损计算;改进等值电阻法;电能损耗 Research on Calculation Methods of Theoretical Line Losses and

Reducing Energy Loss Methods in Distribution Network Wu Tao (Grade07,Class1,Electrical Engineering and Automation ,Department of Electrical Engineering ,ShaanXi University of Technology, Han Zhong 723003,ShaanXi) Tutor: Yang Zhangyong [Abstract] The distribution lines loss rate is an important norm which comprehensively reflectes the degree of programing ,designing ,producing working and managing in distribution network. Lowing the distribution lines loss rate can not only reduce the energy loss in transporting, improve the electricity supply ability, but also increase the economic performance of Power Company. It was very important in theory and actual to study on the method of theoretical energy loss calculation for distribution network. The calculation significance of distribution network and the basic concepts were introduced in this paper. In theory,through analysis and comparison of some commonly-used calculation of line losses of distribution network methods, the equivalent resistance method to improve the distribution network calculation of line losses was adopted in order to reduce energy loss and operating economicly. [Key Words] distribution network;theoretical energy loss calculation;improving of the equivalentelectric resistance method;energy loss 目录 引言 (5) 1 配电网理论线损计算简介 (6) 1.1国内外研究动态和趋势 (7) 1.2传统的配电网理论线损计算方法 (7)

工业企业用电的损耗及降损主要措施探讨

工业企业用电的损耗及降损主要措施探讨 李军 摘要:电网电能损耗是一个涉及面很广的综合性问题,主要包括管理损耗和技术损耗两部分。本文首先介绍电网电能损耗的组成、降低电能损耗的原因分析及相关内容,然后从多个角度提出了降低电网电能损耗的技术改造措施。 关键词:电能损耗降低损耗技术措施 一、概述 电能是一种很重要的二次能源,其应用尤其是在工业生产中十分广泛在当前电能尚不能大量储存的情况下,电能的生产,传输和使用都是同时进行的,始终保持着供与用之间的平衡。电能损耗主要来自用电设备和供配电系统的电能损耗。而供配电系统的电能损耗,包括企业变配电设备、控制设备及输配电线路的电能损耗,在企业的电能损耗中所占的比例较大,而且很容易被人忽视。因此,目前企业在不断降低生产成本,追求经济效益的情况下,进一步降低供配电系统中的电能损耗,使电气设备及供电线路处于最佳经济运行状态,从而提高用电效益是很必要的。限于篇幅,这里只浅谈工业企业用电的损耗及降损主要措施。 二、电网电能损耗的组成及降低损耗的原因分析 (一)电能损耗的组成 电能损耗是指输电网络、配电网络损耗电量的总称。主要包括管理损耗和技术损耗两部分。是由管理因素和人为因素造成的线损,需要加强管理来减少不明损耗;技术损耗又称理论损耗,是电网中各元件电能损耗的总称,可分为可变损耗和固定损耗两种。 (二)降低电能损耗的原因分析 降低电能损耗不但可以减少电费开支,提高经济效益,挖掘配电设备供电能力,而且对国家能源利用、环境保护、资源优化配置也是非常有利。例如,在一选厂最大负荷为1.5万kW的电力系统中,若有功损耗占15%,则损耗有功功率为0.225万kW;如果年最大负荷利用小时为4000h,则每年损耗电能900万kW?h,按每千瓦时的电价为0.56元人民币计算,则可节约资金为504万元人民币。所以,降低电能损耗是电网设计、运行和使用中的一项重要任务,公司各级相关部门应把电网的降损工作摆在重要位置。结合本人的实践经验,降低电网电能损耗可以通过以下几个方面的技术改造措施来实现。

浅谈电力企业线损管理的具体降损措施

浅谈电力企业线损管理的具体降损措施 发表时间:2018-11-26T09:38:42.973Z 来源:《基层建设》2018年第29期作者:王晓伟[导读] 摘要:随着我国经济的快速发展,我国电量的增长十分迅速,电力系统随之发展的比较充分,新时代的环境保护越来越重要,所以电力企业在发展过程中需要大力进行节能减耗研究,切实做好降低电线损坏的相关工作,对电力企业在线损方面的管理问题,虽然通过技术与管理的策略提高管理有效性,保障电力企业的经济效益。 黑龙江省明水县电业局 摘要:随着我国经济的快速发展,我国电量的增长十分迅速,电力系统随之发展的比较充分,新时代的环境保护越来越重要,所以电力企业在发展过程中需要大力进行节能减耗研究,切实做好降低电线损坏的相关工作,对电力企业在线损方面的管理问题,虽然通过技术与管理的策略提高管理有效性,保障电力企业的经济效益。本文主要研究电力企业供电线损管理及降损措施,保障线损的有效降低,对电能的输送效率提高。 关键词:电力企业;线损;管理;消耗 一、电网线损的成因 1.物理原因 物理原因是物质的基本属性对于电能的输送、变电、配电等环节中所产生的损耗,依据其具体的作用情况的不同分为在输电过程中由电源、线路、用电器所组成的电路中具有电阻,当电流通过电阻的时候,会使得线路与用电器产生热量,这种线损是随着电路中电流的大小而发生改变,称为可变损耗。由于电源、线路、用电器上应用的绝缘材料,会产生介质极化的作用,正式极化作用使得电能发生损耗,称为介质损耗,其与电路中电压的平方是正比例关系。 2.气候及环境原因 气候环境对电能在输送、变电配电各环节中会带来损耗,在正常的自然环境下,气候对电能的传输影响并不大,损耗也并非主要损耗。在极端天气下,电力系统正常的物理状态受到严重的影响,其绝缘与受力状态超出额定承受的水平,在原有的损耗基础上添加新的电能损耗。 3.数据统计原因 由于数据统计原因产生的线损主要体现在负荷不均衡,在统计线损的时候,供电状况会随着气候等多重因素发生变化,所以是不断变化的,使得售出的抄见电量和迈入的抄见电量出现不符,时间差与符合不均衡差针对统计线损的影响具有一定的限制。 4. 配网结构方面的缺陷,主要是结构很不合理 因为我国的国土面积广阔,地形复杂,电网铺设工作变得比较复杂,同时使得电网的结构也越发多样,在山区的电网线路长,受到高山和峡谷等的影响,铺设的长度和距离都不合理,而在平原地区稍微好一些,但是在经济发展的过程中用电需求也在增加,原来的电网结构不能负担起太大的用电压力。由于现代电网的发展速度过快,导致原有的电网发展估计与实际不符,出现规划无法满足现阶段供电需求的情况,并且由于许多的老旧设备长时间处于负荷运行之中,时常出现老坏的情况,同时由于许多的输电线路较长,变压器距离负荷中心较远容易出现线损问题,当用电高峰期出现的时候,有部分的线路会出现满负荷运行的情况,由于电流太大增加了线损的数量。 二、线损的分类 1.技术线损 技术线损也可以被称为理论线损。主要指的是电力工作人员根据电网实际运行情况和电力设备的实际运行参数,采用相应的计量装置和理论公式来得出的理论线损,但是由于在实际的电网运行中造成线损的因素有很多,所以理论线损比实际线损要低,技术线损主要包括这样几个方面:首先是输配电线路中,由于线路的长短和材质而出现的电能损耗;另外是与运行电压有关的变压器铁心损耗和电容器等绝缘介质损耗;最后是高压电晕所产生的电能损耗。另外,在电网的运行过程中,可以根据电能损耗的变化规律和实际运行特点,来将线损分为固定电能损耗和可变电能损耗等两种类型,其主要表现在以下几个方面: ①固定电能损耗可以被称为不变损耗,这样的损耗是在电网运行过程中不可避免出现的电能损耗,这种电能损耗的具体情况与电网运行电流的变化情况没有太大的关系,而是与电力系统中各个电力元件所承受的电压变化有关,但是电网系统中,电压是保持相对稳定的,这样的电能损耗变化情况相对来说较小。通常情况下,固定损耗主要包括电气设备铁心的电能损耗和高压线路的电晕损耗。 ②可变电能损耗。在输配电线路中,由于线路材质问题,会产生相应的电阻,这样的可变损耗主要是电网中各个电力元件中的电阻在通过电流的时候所产生的,这样的电能损耗大小与电流的平方成正比,可变电能损耗主要包括电力线路损耗和变压器绕组中的损耗。 2.管理线损 管理损耗主要指的是电网企业在对电网运行管理中,由于人为管理问题所造成的电能损耗,通常包括计量方式、抄表错误和用户窃电等这样几种情况,这样的管理线损可以通过加强管理来进行降低和避免。 三、配电网管理线损及降损措施 1.强化营销专业管理 (1)重视业扩报装时的档案建立,确保用户所在线路的信息正确,同时加强用户侧无功管理,要求新上用户设备必须配备无功补偿设备。 (2)加强计量管理,落实电能表、互感器的检验、轮换周期制度,按期进行农户表校验,并全部加封或贴封条,确保表计正确,减少因计量原因引起的漏计,少计等原因(特别是专项用户),对台区计量总表计量箱柜进行改造,并建立健全农户表计计量台帐。 (3)加大用电检查(普查)力度,做到高压供电客户每半年至少检查一次,低压供电客户每年至少检查一次,农村居民客户每年至少检查一次。同时要加强单相水泵的检查,特别是在农忙和抽水季节防止乱接乱挂,减少电量损失。 2. 完善线损管理组织体系 形成供电公司、供电所、电工组三级管理网络,将台区线损指标承包到营销和供电所抄表员人头,供电所实行线损“四分”管理(分级、分压、分线、分台区),各岗位实行线损指标管理。明确责任,层层落实,严格考核,做到线损的精细化管理。 3.强化低压线路设备日常维护力度

配电网降损节能的措施

配电网降损节能的措施 摘要电网的经济运行与用电管理是降低供电成本的有效途径。本文结合某油田供电系统实际情况,总结了近年来在供电降损工作中的成绩,客观地分析了电网电量损失的原因,进一步阐述了降低供电网损的途径,应重视技术措施和管理措施降等,对今后降低供电网损有一定的指导意义。 关键词电网降损节能 线损率是电力企业经营中的一项重要经济指标,如何降低电力线路损耗,加强电网运行管理至关重要。近年来,油田供电系统在降低供电网损率方面做了大量工作,供电网损率逐年下降,取得了较好的成绩。随着社会的进步,现代化管理方法的应用和科学技术的发展,为进一步降低供电网损提供了可能。扎实地做好降损工作,落实各项降损措施是每一位工作人员义不容辞的责任,是供电企业管理的重要内容。本文通过对供电网损的进一步分析,查找生产、经营、管理各环节存在的问题,挖掘降低网损的可能,实现电网经济合理运行,提高企业的管理水平。 一、线损情况分析 近年来,油田供电系统围绕降低供电网损做了大量工作,采取了一系列切实可行的管理和技术措施,取得了较好成绩,但是,仍然存在以下有待进一步改进的问题:1.线损波动较大,过程管理、预控能力还有待加强和提高。如有些变电站更换CT、电能表、计量回路异常等原因形成的可追补的损失电量参数没有详细记录下来;购进电量与抄回电量未同时抄录;供、售电量实时跟踪能力较差,有时贻误处理问题的最佳时机。 2.电网结构老化。油田电网点多线长,电网老化严重,还存在一定数量的配电变压器容量与实际用电负荷不匹配的情况,造成电量损失较高。 3.人员素质需加强,分析处理问题能力有待提高。日常工作中存在抄表不同步现象;线损管理制度在执行过程中仍然存在管理流程不畅现象。

低压线路损耗理论计算

在农村用电管理工作中,低压配电网理论线损的计算和实际线损的考核是一个薄弱环节。 笔者推荐一种简单实用的计算方法,以供广大城乡电工参考。 1低压线路理论线损的构成 1.1低压线路本身的电能损耗。 1.2低压接户线的电能损耗。 1.3用户电能表的电能损耗。 1.4用户电动机的电能损耗。 1.5用户其他用电设备的电能损耗。 以上所有供电设备的电能损耗之和,即构成低压线路的理论线损电量,其线损电量与线路供电量之比百分数,即为线路的理论线损率。 要说明的是,在实际线损计算中,只计算到用户电能表,用户的用电设备不再参与实际线损计算。但在理论计算中,凡连接在低压线路上的用电设备的电能损耗,均应计算在内。 2低压线路理论线损计算通用公式 △A=NKI pjR dzt×10 式中N——配电变压器低压侧出口电网结构系数; ①单相两线制照明线路N=2; ②三相三线制动力线路N=3; ③三相四线制混合用电线路N=3.5;

K——负荷曲线形状系数,即考虑负荷曲线变化而采用的对平均电流(I pj)的修正系数,K值按推荐的理论计算值表1选用; 表1负荷曲线形状系数k 值表 最小负荷率 K值0.20.30.4 1.050.5 1.030.6 1.020.7 1.010.8 1.000.8 1.001.0 1.00。2。2。。-3 1.171.09 (最小负荷率a=最小负荷/最大负荷) t——线路月供电时间,h;Rdz——线路导线等值电阻,Ω。 等值电阻可按下式计算: Rdz=ΣN KI zd。 kR k/N×I

zd 式中I zd——配电变压器低压出口实测最大电流,A; 22KI pj——线路首端负荷电流的月平均值,A。可根据以下不同情况计算选用。 ①配电室装有电流表,并有记录的,可直接计算月平均负荷电流值。 ②如装有电流表,但无记录的,可选取代表性时段读取电流值,然后计算平均负荷电流值。 ③如未装电流表时,可选取代表性时段,直接用钳形电流表读取负荷电流值。 ④配电室装有有功电能表和无功电能表时,可按下式计算。 式中U pj——线路平均运行电压值,kV,也可近似地用额定电压(Un)代替;AP——线路月有功供电量,kW。h;AQ——线路月无功供电量,kvar。h; t——线路月供电量时间,h。 ⑤如配电室装有有功电能表和功率因数表时,可按下式计算: 式中cosφ pj——线路负荷功率因数的平均值。 3低压接户线的理论线损计算 从低压线路至用户电能表,从电能表到用电器具的连接线称接户线(或下户线),其理论线损电量可按每10m月损耗为0.05kW。h计算,当接户线长度为L 时,月损耗电量为:

低压线路损耗理论计算

N——配电变压器低压出口结构常数(如前); ——低压线路各分段结构常数,取值与N相同; N K ——线路首端负荷电流的月平均值,A。可根据以下不同情况计算选用。 I pj ①配电室装有电流表,并有记录的,可直接计算月平均负荷电流值。 ②如装有电流表,但无记录的,可选取代表性时段读取电流值,然后计算平均负荷电流值。 ③如未装电流表时,可选取代表性时段,直接用钳形电流表读取负荷电流值。 ④配电室装有有功电能表和无功电能表时,可按下式计算。 ——线路平均运行电压值,kV,也可近似地用额定电压(Un)代替; 式中U pj A ——线路月有功供电量,kW。h; P ——线路月无功供电量,kvar。h; A Q t——线路月供电量时间,h。 ⑤如配电室装有有功电能表和功率因数表时,可按下式计算: 式中cosφ ——线路负荷功率因数的平均值。 pj 3低压接户线的理论线损计算 从低压线路至用户电能表,从电能表到用电器具的连接线称接户线(或下户线),其理论线损电量可按每10m月损耗为0.05kW。h计算,当接户线长度为L时,月损耗电量为: ΔA=0.05L/10kW。h。 4电能表的理论线损计算 4.1单相电能表每只每月损耗按1kW。h计算。 4.2三相三线表每只每月损耗按2kW。h计算。 4.3三相四线表每只每月损耗按3kW。h计算。 5电动机的电能损耗计算 电动机的额定输入功率与额定输出功率的差值即为其损失功率(包括铁损、铜损等),乘以当月运行小时数即为其电量损失,其计算公式为: ——电动机的额定运行电压,kV; 式中U n I ——电动机的额定电流,A; n ——电动机的额定功率因数; cosφ n P ——电动机的额定功率,kW; n t——电动机的月运行时间,h。 6其他用电器具的电能损耗 △A=Σ(各类电器总台数×额定功率×运行时间)×0.01kW。h

降低线损的技术措施

降低线损的技术措施 平时工作中,我们不仅要从设备技术管理方面入手,即加强电网建设、线路改造、无功补偿、计量装置管理及反窃电、临时用电、低压三相不平衡管理等,又要进行技术创新,加大新设备、新技术、新材料、新工艺的引进和使用,以最少的投资取得最大的经济效益,实现多供少损,提高电网的科技含量和自动化水平。 下面我从技术上谈几点降损增效的措施: 1.逐步将高耗能配电变压器更换为节能型变压器,降低配电变压器本身损耗。 节能型配电变压器比高损耗配电变压器的空载损耗和短路损耗有较大幅度的降低,据了解,有些电业局还存在少量高耗能变压器,所以更换高耗能变对线损很重要。现在有一种非晶合金铁芯变压器具有明显的降损优势,部分电业局已经采用了。 2.合理调整变压器,达到经济运行。 变压器本身具有铁损(空载损耗)和铜损(负载损耗)。有关资料显示,一般变压器的损耗占全电力系统总线损量的30%以上,所以要从变压器的选型、容量、经济运行方式等方面降低线损。 对于变压器的损耗,只要方案配置合理,控制手段科学,就能将损耗降到最低。变电站主变的控制主要有调度员来完成,根据调度自动化系统显示的负荷大小及时调整变压器运行方式,负荷小用小容量变压器,负荷大用大容量变压器或者两台主变并列运行。配电变压器数量多、范围广,是节能降损的关键环节。合理选择配电变压器容量,台区变压器分布尽量

坚持“小容量、多布点”原则,使变压器负载率时刻处于经济运行区域,一般要维持在额定容量的70%左右,减少因变压器所供负荷过大或过小带来设备的固有损耗。配电台区管理人员一定要对配电变压器是否经济运行进行认真计算,根据季节变化和负荷大小及时调整变压器。比如:抗旱变在不用时要退出运行。 3.配电变压器的三相负荷不平衡时,既影响变压器的安全运行又增加了线损。 规程规定:一般要求配电变压器出口处的电流不平衡度不大于10%,干线及分支线首端的不平衡度不大于20%,中性线的电流不超过额定电流的25%,这是因为在配电系统中,有的相电流较小,有的相电流接近甚至超过额定电流,这种情况下,不仅影响变压器的安全经济运行,影响供电质量,而且会使线损成倍增加。所以对于配电变压器一定要把降低三相负荷不平衡作为一项经济指标,列入考核项目,制定奖惩措施,以提高认识,增强对降损工作的自觉性和积极性。同时要求有关人员定期测量三相负荷电流,检查和掌握三相负荷不平衡情况。测量负荷应在白天和夜晚用电高峰时段进行。 4.降低线路的损耗。 在当前的新一轮农网改造中,对于导线供电半径,不能片面的根据要求(10KV线路供电半径不大于15km,400V不大于0.5km)来规划,要通过计算线路载流量(负荷电流)和电流密度合理选择,对于已经运行的线路,定期检查一下线路末端电压偏差和线路功率损失是否在规程要求以内(这一点一定要通过计算才能确定)。所以在新建或改造架空电力线路、敷设低压地埋线路前,首先应对负荷进行全面调查,根据低压负荷情况,合理选择导线截面、导线型号和供电半径。对于超过供电半径的线路可以通过转移负荷、缩短供电半径、增加导线截面、加装无功补偿装置等方法

相关文档
相关文档 最新文档