文档库 最新最全的文档下载
当前位置:文档库 › iFix SCADA冗余配置S:

iFix SCADA冗余配置S:

iFix SCADA冗余配置S:
iFix SCADA冗余配置S:

一、配置SCADA冗余的前提条件:

1、两个SCADA SERVER 又同样的过程数据库

2、相同的I/O DRIVER 配置

3、连接到相同的设备

4、SCU配置成报警同步。

5、独立于IFIX软件外,两个SCADA服务器和客户端的机器在物理网络连接是通的。

二、客户端配置

1、启动客户端IFIX软件,打开IFIX软件的SCU(系统配置程序),

其画面如下:(确保禁用了SCADA支持)

2、打开系统配置的网络配置,打开的画面如下:

画面(一)

3、网络中选择网络连接的协议,如TCP/IP协议。

4、删除所有已经配置的远程节点

5、在远程节点名中输入用户定义的逻辑节点的名称。(在图中有

标注)。关于远程逻辑节点名的使用是这样的,假设我们取的远程的节点名称是PROD_1,二两个SCADA 服务器的名称分别是SCADA10P(主)和SCADA10B(备),那么在数据连接,VBA脚本,调度,动画的数据源中引用格式是FIX32.PROD_1.TANKEVEL.F_CV 而不是FIX32.SCADA10P_1.TANKEVEL.F_CV。

6、然后选择上图中的按纽,进入下面的画面:

主的SCADA

服务器的物理

节点名

7、在上面的画面中的设置如下:

首先选中“启用逻辑节点名(E)”复选框,在主节点名中输入主的SCADA服务器的物理节点名,在备节点名中输入备用SCADA服务器的物理节点名,最后单击画面的“确定”按纽关闭画面,返回到画面(一),单击画面(一)的“确定”按纽,返回到SCU配置画面。

8、打开下面的画面:(SCU—配置—本地启动)

选中“本地节点别名”,单击“确定”按纽,返回到SCU配置画面。

9、保存SCU配置,退出SCU配置。

10、修改系统的HOST文件,该文件的目录是WNNT:

\SYSTEM32\drivers\etc\host.ini ,将两个SCADA 服务器的IP

地址、节点名称、机器名称信息添加到该文件当中,如:192.168.0.1taida1 taida1

192.168.0.2taida2 taida2

修改完毕后,保存该文件,重新启动IFIX !

客户端配置完毕。

三、主SCADA SERVER 配置

1、打开主的SCADA SERVER 的SCU系统配置,配置逻辑节点名和报警同步。具体操作如下:在SCU配置的“配置”菜单“本地启动”,弹出下面的画面(转下一页)

在本地节点名中输入节点名,该名称必须和客户端的SCU配置中社定的主SCADA 服务器的名称是一致的,该例子的主SCADA服务器的名称是SCADA10P,在本地逻辑节点名处输入远程节点名称,必须和客户端的远程节点名称是一致的,在本例子中的名称是PROD_1, 然后选中“本地节点别名”复选框,最后单击“确定”按纽,关闭“本地启动定义”对话框,返回到SCU配置画面。

2、单击SCU配置画面的按纽,弹出下面的画面:(转下页)

在这个画面的SCADA邻居的SCADA名出输入备用的SCADA服务器的节点名,在该例子的名称为SCADA10B,单击“确定”,退出

SCADA组态,返回到SCU配置画面,保存SCU设置,退出SCU配置,重新启动IFIX 。

四、备用SCADA SERVER 配置

1、打开备用的SCADA SERVER 的SCU系统配置,配置逻辑节点名和报警同步。具体操作如下:在SCU配置的“配置”菜单“本地启动”,弹出下面的画面(转下一页)

在本地节点名中输入节点名,该名称必须和客户端的SCU配置中社定的主SCADA 服务器的名称是一致的,该例子的主SCADA服务器的名称是SCADA10B,在本地逻辑节点名处输入远程节点名称,必须和客户端的远程节点名称是一致的,在本例子中的名称是PROD_1, 然后选中“本地节点别名”复选框,最后单击“确定”按纽,关闭“本地启动定义”对话框,返回到SCU配置画面。

2、单击SCU配置画面的按纽,弹出下面的画面:(转下页)

在这个画面的SCADA邻居的SCADA名出输入主的SCADA服务器的节点名,在该例子的名称为SCADA10B,单击“确定”,退出SCADA 组态,返回到SCU配置画面,保存SCU设置,退出SCU配置,重新启动IFIX 。

在上述的配置完成后,将需要通讯的IFIX的节点的IP地址都添加到每个IFIX节点的HOST文件中去,其语句格式如下:

# IP ADDRESS IFIX NODE NAME HOST NAME 机器名)

如:

169.254.90.73 SCADA10P ZLL

将所有的网络上的IP地址都添加到每个机器的HOST文件中去,保

存该文件,到此为止,冗余配置完成!

王主任,如有问题,请再于我联系!

2.

a.定义逻辑节点名。

b.在SCU中配置主、备SCADA服务器。

c.配置SCADA服务器对。

d.配置报警同步。

e.同步SCADA服务器的时钟。

f.如果安全启用的话,分配手动故障切换的权限。

3.配置网络冗余:

a.在SCU中配置网络冗余的网络路径。

b.如果使用TCP/IP,则修改hosts文件。

c.如果需要的话,通过禁用网络路径和平衡网络定时器值和故障切换时间值来

优化系统性能。

4.使用网络状态服务器域和iFIX提供的网络诊断画面来监视和控制网络状态。

SCADA服务器的报警处理

在SCU中为双SCADA服务器配置网络和SCADA选项时,iFIX自动启动报警启动对列服务,在会话丢失和重建连接时该服务确保报警不会丢失。

启用在SCADA节点对之间的报警同步,需要为每个SCADA定义一个备份SCADA作为SCADA对。例如,如果有两个SCADA节点(SCADA1和SCADA2),可以按照如下步骤启用报警同步:

1.在“本地启动”中,定义节点名。

2.在SCADA1的SCU中,从“配置”菜单中选择“SCADA”。

3.在“SCADA配置”对话框中的“SCADA名”域中输入“SCADA2”。

注意: SCADA2的逻辑节点名必须与SCADA1不同。

4.在SCADA2的SCU中,从“配置”菜单中选择“SCADA”。

5.在“SCADA配置”对话框中的“SCADA名”域中输入“SCADA1”。

6.确保在每台计算机的SCU网络配置中,主备SCADA节点的名字列在“远程节点配

置”对话框的列表框中。更多信息,请参阅成组主、备份节点。

注意:不要将主和备份SCADA服务器按单独的远程节点添加。

7.确保两个节点的过程数据库是完全一致的,最简单的办法是比较两个数据库的序列

号,如果它们不匹配,则合并两个数据库,然后将合并后的PDB文件拷贝到每台服务器上。

当一台SCADA服务器发生报警,该报警被送到显示节点中。显示节点只从活动节点上接收报警,而无论该活动节点是主SCADA还是备份SCADA。用户无法监视非活动SCADA节点产生的报警。

在显示节点,报警和消息使用逻辑名,并用方括号括起来,如下面的例子,逻辑节点名为LNN。

04/29/98 22:49:45.1 [LNN] AI-1 HI 72.00

然而,如果是数据库管理器或者由于网络问题产生的报警,报警文本显示的是物理节点名字。

当节点被配置成SCADA服务器对中的一个时,报警一览队列的长度需要被定义为非备份状态下的两倍。例如,如果系统中产生500个报警,报警一览队列最好定义为1000。如果报警一览队列溢出,将会看见报警在报警一览中显示,然后消失。关于报警队列长度的信息,请参阅实现报警和消息。

SCADA系统的冗余环网连接

SCADA系统的冗余环网连接 2004-5-12 16:01:36未知来源供稿 简介 如今所有正在应用的成功的SCADA ( 管理控制和数据采集) 系统提供了高级的控制和实时的监视,这些都使当前的以太网和因特网连接技术能在世界范围内得到应用。使用以太网连接信息和控制层的设备可以提高工厂的效率,并且由此盈利。当实现一个SCADA系统时,系统设计者必须考虑到一个非常重要的问题,即,如果系统的硬件和软件出现故障怎么办?大多数设备都是有良好的可靠性设计,这当然是不用说的,但是故障仍然会发生的,特别是在设备被使用在要求的环境中。一个典型的情况就是所谓的“单个设备点的故障”。即,当只有一个设备(比如一台计算机)出现故障,整个系统都瘫痪了。如果系统所应用的某些场合是和过程是非常重要的,或者系统停机的代价是非常高的话,那么为整个系统建立一个冗余是解决这个问题的一条途径。 这里有许多不同的方法,每个都使用不同的设备来为系统提供冗余。例如,在应用软件这个水平上,您可以建立双服务器来提供备份以防主计算机和软件出现故障,并且在现场您可以连接平行的设备(如PLC)和相同的现场设备。但是,所有的设备仍然需要连接到网络上,为了使系统的可靠性最大化,您同样必须建立一个冗余的以太网络。 冗余网络拓扑 为了建立一个冗余的网络,环状拓扑提供了一个最简单的设计和节约费用的解决方案。理论上,以太网不能作为环网连接,因为由广播产生的数据包会引起传输负荷增大导致阻塞。解决的方法就是使用配备了生成树协议(802.1D)或者快速生成树协议(802.1w)的以太网交换机来实现这种拓扑网络。当以太网交换机安装了这几个协议之一后,就可以建立一个环网了,一个网段会被自动从逻辑上阻塞,这样广播数据包风暴就不会引起问题了。如果另一个网段出现故障,前面阻塞的网段将会运行起来,让系统连续运转。

几种实用的低电压冗余电源方案设计

几种实用的低电压冗余电源方案设计 引言 对于一些需要长时间不间断操作、高可靠的系统,如基站通信设备、监控设备、服务器等,往往需要高可靠的电源供应。冗余电源设计是其中的关键部分,在高可用系统中起着重要作用。冗余电源一般配置2 个以上电源。当1 个电源出现故障时,其他电源可以立刻投入,不中断设备的正常运行。这类似于UPS 电源的工作原理:当市电断电时由电池顶替供电。冗余电源的区别主要是由不同的电源供电。 电源冗余有交流220 V及各种直流电压的应用,本文主要介绍低压直流(如DC 5 V、DC 12 V 等)的冗余电源方案设计。 1冗余电源介绍 电源冗余一般可以采取的方案有容量冗余、冗余冷备份、并联均流的N+1 备份、冗余热备份等方式。容量冗余是指电源的最大负载能力大于实际负载,这对提高可靠性意义不大。 冗余冷备份是指电源由多个功能相同的模块组成,正常时由其中一个供电,当其故障时,备份模块立刻启动投入工作。这种方式的缺点是电源切换存在时间间隔,容易造成电压豁口。 并联均流的N+1 备份方式是指电源由多个相同单元组成,各单元通过或门二极管并联在一起,由各单元同时向设备供电。这种方案在1 个电源故障时不会影响负载供电,但负载端短路时容易波及所有单元。冗余热备份是指电源由多个单元组成,并且同时工作,但只由其中一个向设备供电,其他空载。主电源故障时备份电源可以立即投入,输出电压波动很小。本文主要介绍后两种方案的设计。 2传统冗余电源方案 传统的冗余电源设计方案是由2 个或多个电源通过分别连接二极管阳极,以“或门”的方式并联输出至电源总线上。如图1所示。可以让1个电源单独工作,也可以让多个电源同时工作。当其中1 个电源出现故障时,由于二极管的单向导通特性,不会影响电源总线的输出。

实验五配置交换机间的冗余链路

实验五配置交换机间的冗余链路 一、实验目的 1、交换机MAC地址 2、了解STP(生成树协议) 3、选择并设置根网桥 二、实验背景 某公司使用三台交换机将60台计算机相互连接起来构成局域网。为确保交换机和交换机之间的连接万一出现故障时不致影响整个网络的正常运行,网络构建为如下图所示的含有冗余链路的网络。 图5.1含有冗余链路的交换网络 三、分析准备 图5.1所示的网络中,任意两台交换机之间都有两条通路连接。但是,含有冗余链路的交换网络会造成交换环路,容易形成广播风暴。为此,交换机通过运行STP协议来解决此问题。 1、理论准备 STP是一个开放式标准协议,基本不需要配置。使用STP的交换机运行时会不断检查网络,一旦发现环路,就会自动阻止某些端口(使其进入待命状态)而保留其它一些端口,使网络中的所有交换机形成一个树形拓扑结构,从而确保

网络中不存在任何环路;而当发现现有路径出现故障而失效时,则通过自动启用适当的待命路径来重新配置网络。 在含有冗余链路的交换网络中,位于STP生成的交换机树形拓扑的最上层的交换机称为根交换机。STP在生成树形拓扑时,会根据各交换机的BID值选择BID值最小的交换机作为整棵树的根交换机,然后由根交换机来确定哪些端口待命,哪些端口转发数据;之后,根交换机还会向网络中的其它交换机发送含有网络拓扑信息的BPDU(交换机协议数据单元)信息,以便在出现故障时可自动重新构建网络。 交换机的BID值由交换机优先级和交换机的MAC地址构成,其格式为:“交换机优先级:交换机MAC地址”。如某交换机的优先级为4096,MAC地址为000B.BE05.D89E,则该交换机的BID值为:4096:000B.BE05.D89E。 所有交换机的默认优先级均为32768,因此默认情况下,交换机BID值的大小就决定于交换机MAC地址值的大小。由于MAC地址值一般不能改变,因此如果需要,管理员可以通过修改交换机优先级值的方式来改变交换机的BID值。交换机优先级的取值范围是0—65535,但必须是4096的倍数。 在一个交换网络中,位于整个网络的中心位置的交换机最适合作为根交换机,否则的话可能导致两台设备间传送数据时选择使用了较远的路径。而默认情况下自动生成的拓扑树,其根交换机并不是位于网络中心位置的交换机。因此,在含有冗余链路的交换网络中,管理员通常需要通过修改交换机优先级的方式来改变交换机的BID值,以便手工选择一个合适的交换机作为根交换机。 2、实验准备 如图5.1所示,为完成本实验,按下表配置网络设备,PC3用于和各交换机建立终端仿真会话。 设备IP地址子网掩码主机名 加密 使能秘密 控制台 密码 PC0192.168.1.10255.255.255.0 PC1192.168.1.11255.255.255.0 PC2192.168.1.12255.255.255.0 Switch0jysw0s0jm s0kzt

网络设备冗余和链路冗余-常用技术(图文)

网络设备及链路冗余部署 ——基于锐捷设备 8.1 冗余技术简介 随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。 为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。本章将对这三种冗余技术的基本原理和实现进行详细的说明。 8.2设备级冗余技术 设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。 在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。 8.2.1S6806E交换机的电源冗余技术 图8-1 S6806E的电源冗余 如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC电源或者两路DC电源的接入,实现设备电源的1+1备份。工程中最常见配置情况是同

时插入两块P6800-AC模块来实现220v交流电源的1+1备份。 电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。 注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。 8.2.2 S6806E交换机的管理板卡冗余技术 图8-2 S6806E的管理卡冗余 如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。承担着系统交换、系统状态的控制、路由的管理、用户接入的控制和管理、网络维护等功能。管理模块插在机箱母板插框中间的第M1,M2槽位中,支持主备冗余,实现热备份,同时支持热插拔。 简单来说管理卡冗余也就是在交换机运行过程中,如果主管理板出现异常不能正常工作,交换机将自动切换到从管理板工作,同时不丢失用户的相应配置,从而保证网络能够正常运行,实现冗余功能。 在实际工程中使用双管理卡的设备都是自动选择主管理卡的,先被插入设备中将会成为主管理卡,后插入的板卡自动处于冗余状态,但是也可以通过命令来选择哪块板卡成为主管理卡。具体配置如下 注意:在交换机运行过程中,如果用户进行了某些配置后执行主管理卡的切换,一定要记得保存配置,否则会造成用户配置丢失 在实际项目中,S65和S68系列的高端交换机一般都处于网络的核心或区域核心位置,承

工业冗余环网与民用三层网络比较

工业冗余环网与民用三层网络比较 1、引言 有鉴于目前工业设计院和工业系统集成单位,为工业客户设计实施现场工业以太网方案时,仍然采用三层网络结构。本文就工业冗余环网与民用三层网络做了个比较。 2、工业化设计冗余环网 交换机数据转发延迟小,存储转发(Store and Forward)是网络领域使用最为广泛技术之一,以太网交换机控制器先将输入端口到来数据包缓存起来,先检查数据包是否正确,并过滤掉冲突包错误。确定包正确后,取出目址,查找表找到想要发送输出端口址,然后将该包发送出去。交换机数据存储转发由硬件实现,数据转发延迟为1~2ms 交换机带宽高, 100M。 提供冗余链路,网络故障恢复时间<300ms。工业冗余环网网络环境里,交换机不会立即开始转发功能,主交换机(Local)由手动指定,选择主链路和备份 链路建立一个指定路径,由Supreme-Ring协议自动指定。一个工业冗余环网网络里面只能有一个主交换机(Local)。主交换机(Local)会定期发送配置信息,这种配置信息将会被所有从交换机(Remote)发送。一旦网络结构发生变化,网络状态将会重新配置。 当指定主交换机(Local)之后,转发数据包之前,所有端口都以阻塞方式启动。运用Supreme-Ring算法,主交换机(Local)选择最低COST值端口作为主链路,另一条COST值高端口作为备份链路。备份链路不转发数据,只接收和处理HELLO包,处于热备(Hot Standby)状态。从交换机(Remote)没有主链路和备份链路区别。Supreme-Ring协议是一种简洁高效冗余协议,能够保证环网链路故障时,300ms之内恢复网络通信。 Supreme-Ring状态: 运行Supreme-Ring协议交换机上端口,总是处于下面四个状态中一个:阻塞:所有端口以阻塞状态启动止回路,处于阻塞状态端口不转发数据帧但可接受HELLO包。

软冗余实例

Siemens PLC系统软件冗余 的说明与实现 软件冗余基本信息介绍 软件冗余是Siemens实现冗余功能的一种低成本解决方案,可以应用于对主备系统切换时间要求不高的控制系统中。 A.系统结构 Siemens软件冗余系统的软件、硬件包括: 1套STEP7编程软件(V5.x)加软冗余软件包(V1.x); 2套PLC控制器及I/O模块,可以是S7-300或S7-400系统; 3条通讯链路,主系统与从站通讯链路(PROFIBUS 1)、备用系统与从站通讯链路(PROFIBUS 2)、主系统与备用系统的数据同步通讯链路(MPI 或 PROFIBUS 或 Ethernet); 若干个ET200M从站,每个从站包括2个IM153-2接口模块和若干个I/O模块; 除此之外,还需要一些相关的附件,用于编程和上位机监控的PC-Adapter(连接在计算机串口)或CP5611(插在主板上的PCI槽上)或CP5511(插在笔记本的PCMIA槽里)、PROFIBUS电缆、PROFIBUS总线链接器等; 下图说明了软冗余系统的基本结构: 图2 可以看出,系统是由两套独立的S7-300或S7-400 PLC系统组成,软冗余能够实现: I.主机架电源、背板总线等冗余; II.PLC处理器冗余; III.PROFIBUS现场总线网络冗余(包括通讯接口、总线接头、总线电缆的冗余); IV.ET200M站的通讯接口模块IM153-2冗余。

软冗余系统由A和B两套PLC控制系统组成。开始时,A系统为主,B系统为备用,当主系统A中的任何一个组件出错,控制任务会自动切换到备用系统B当中执行,这时,B系统为主,A系统为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153接口模块的整体切换。系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换,这种手动切换过程,对于控制系统的软硬件调整,更换,扩容非常有用,即Altering Configuration and Application Program in RUN Mode 。 B.系统工作原理 在软冗余系统进行工作时,A、B控制系统(处理器,通讯、I/O)独立运行,由主系统的PLC掌握对ET200从站中的I/O控制权。A、B系统中的PLC程序由非冗余(non-duplicated)用户程序段和冗余(redundant backup)用户程序段组成,主系统PLC执行全部的用户程序,备用系统PLC只执行非冗余用户程序段,而跳过冗余用户程序段。 下面我们看一下软冗余系统中PLC内部的运行过程: 图3 主系统的CPU将数据同步到备用系统的CPU需要几个程序扫描循环:

AB冗余配置操作步骤(自编)

AB PLC冗余系统刷机攻略 1.安装20.01编程软件(默认操作即可) 2.参照文档将RSlink 授权成GATE WAY 版本 3.设置节点数:将IO机架的CN2R模块拨成01 02。。。(有几个机架拨到几)将两个CPU 机架上的CN2R模块拨成N+1(N为IO机架的数量),一般原则是CPU机架的节点数大于IO机架的节点数 4.设置IP:一种是模块上直接拨码***(默认是192.168.1.***)另外一只是出厂时拨码999, 在中BOOTP-DHCP通过MAC码来刷EN2T模块的IP(好处是可以任意设置网段)具体操作参照胡品来文档 5.打开RSLINK CLASSIC 后新建以太网驱动configure devices 中的Ethernet devices 新建个 驱动。IP与PLC模块设置的IP保持一致 6.冗余包(V20.055_kit4_ENHCLXRED 为CONTROLL FLAS软件Red_Mod_CT_V8.2.1.0为冗余 模块配置工具RMCT )在此之前UPLOAD 每个模块的EDS文件直至所有模块的图标显示正常;在RSLINX中设置冗余模块,选中冗余模块后,点击右键,选中Module Configuration,将数据同步改为Always;热备冗余:在编程软件中只需要组态一个主机架,然后点击主控制器的右键,选择Properies,将Redundancy上的Redundancy Enabled 前面的选中打上勾。 7.接下来配置C网,(软件是RSNtwxCN)参照文档设置即可,最后要保存(即下载配置) 8.如果主从机架通讯正常时时同步,那么主机架上的冗余模块显示为PRIM,从机架上的 冗余模块显示为SYNC。进行热备切换后,显示的PRIM与SYNC互换。

FTV SE7.0 服务器冗余配置说明

RSView SE 服务器冗余配置说明 准备3台电脑,一台作主服务器、一台作从服务器、最后一台作客户机。 1、系统:Windows 7 Ultimate 2、上位机软件:RSView SE 3、主服务器IP地址;子网掩码; 用户名(管理员) : KLT1 ; 密码: klt1 ; 工作组:WORKGROUP 。 计算机名:KLT1-PC 4、从服务器IP地址;子网掩码; 用户名(管理员) : KLT2 ; 密码: klt2 ; 工作组:WORKGROUP 。 计算机名:KLT2-PC 5、客户机IP地址;子网掩码; 用户名(管理员) : KLT3 ; 密码: klt3 ; 工作组:WORKGROUP 。 计算机名:KLT3-PC 6、系统安装过程中,设定计算机用户名,用户密码、安装完毕后设定 IP地址、子网掩码、工作组。 7、安装RSView SE 软件,安装过程中会有安装IIS组件的过程,IIS一定要安装正确。 8、安装上位机软件之后进行系统设置 (1) 启用来宾帐户 打开控制面板(查看方式:类别) 用户账户和家庭安全——用户帐户——管理帐户——来宾帐户(Guest)——启用 (2) 关闭防火墙 控制面板——系统和安全——Windows 防火墙——打开或关闭Windows 防火墙——选择关闭 (3) 删除“拒绝从网络上访问这台计算机”项中的guest账户

运行组策略()——本地计算机——计算机配置——Windows 设置——安全设置—— 本地策略——用户权利指派——拒绝从网络上访问这台计算机——删除guest账户。 (3) 公用文件夹共享 控制面板——网络和 Internet——选择家庭组和共享选项——更改高级共享设置——公用 ——公用文件夹共享——启用共享以便可以访问网络的用户。 (4) 以上设置完毕后,打开计算机,以主服务器为例,在windows 地址栏中输入\\,可 以访问从服务器的共享文件,以此类推,三台计算机可以相互访问对方的共享文件。 9、检测IIS是否正常 三台电脑每台都要检测,以主服务器为例,在IE浏览器中输入,会出现下图 图标 10、检测RSViewse是否正常 三台电脑每台都要检测,以主服务器为例,在IE浏览器中输入, 会出现下图图标 11、以上两项检测全部正常后,配置SE冗余。 12、三台电脑都要做以下设置, 打开电脑左下角开始——所有程序——Rockwell Software——FactoryTalk Tools—— FactoryTalk Directory Configuration Wizard——Configure settings——选择Configure the FactoryTalk Network Directory——Next——输入本机的用户名和密码——等待完成设置。13、设定通讯路径

环网冗余的配置与查看

环网冗余的配置与查看 根据《交换机配置》文档中的操作方法将实验台上的交换机按照预先的分配设置好相应的IP地址和Device Name,然后再进行后续的工作。 构成环网是冗余网络的一种方法,通过环网上的冗余管理器来实现冗余管理。由于一些配置、系统稳定等实现上的要求,采用X414E来作为冗余管理器。构成环网就必须要有一个冗余管理器,而且只能有一台,在硬件实现环网连接之前要先对各个交换机先行设置,主要是设置X414E为环网管理器,否则会引起广播风暴出现网络瘫痪。 打开IE浏览器,在地址栏中输入已经配置好的IP地址,在弹出的对话框中,用户名和密码都为“admin”,即可进入该交换机的配置参数。

首先可以从交换机的状态指示灯看出该模块的状态和端口信息。 选中其中的某一项可以看到其具体的信息,如“RM(Redundancy Manager冗余管理器)”,打勾表示当前被选中的功能使能,如环网冗余使能、冗余管理器使 能,以及构成环网的端口等,可以进行修改后点击“Set Value”。 其他的状态灯,如系统错误F,电源和冗余电源L1/L2,输入输出端口等信息均

可以快速查看到,特别是对当前已经连接上的端口,而下面的数字则表示当前模块在机架上的槽号(可能与实际模块外壳不同,要以实际机架插槽为准)。 下面按步骤配置交换机的环网使能及环网冗余使能。选择System—〉Select/Set Button,在第二项的冗余管理器前打勾选中,并“Set Value”。 选择X-400—〉Ring Config,选择环网冗余使能和冗余管理器使能,并对环网端口进行选择(该端口为环网实际需要连接的端口),注意由于环网上跑的数据量较大,最好选择带宽更大的端口,比如千兆的光口等。 具体的状态情况可以从事件日志中查看到,选择System—〉Restart & Defaults,在交换机的参数发生变化时,正常需要重启操作,主要有重启系统、从存储卡中

电源系统ORing的基本原理

电源系统 ORing 的基本原理 为您的便携设备、刀片服务器以及电信交换机寻找适用的 ORing 功能以及技术 作者:Martin Patoka,德州仪器 (TI) 工程总监 许多现代设备和系统都要求带有冗余设计、电源容量总计或者多电源选择功能的电源架构。在本文中,这些功能一般来说是指 ORing。使用 ORing 的系统非常普遍,规格和复杂性多种多样。这包括诸如便携式设备、刀片服务器、电信交换机之类的系统。 一旦应用中要求有超过一个以上的单电源时,电源组合、选择、热插拔及总线保护之类的问题就出现了。由于故障、短路、热插拔或者拆卸器件,没有带保护功能的并联电源就会导致运行中断的现象。虽然这些功能与典型的浪涌和故障保护热插拔功能相类似,但它们在位置和操作中却明显不同。这样的 ORing 功能最初是由半导体二级管来完成的,而且在一些应用中仍然是最好的解决方案。随着MOSFET 的进一步的发展,它们已成为较高性能解决方案的基础。 在许多情况下,都必须把多个电源组合起来为负载供电。在高功率系统中(例如:刀片服务器或基于机架的电信系统),为了提高灵活性、冗余或者一个N+1 结构中的电容量,可能会具有多个电源组合。一般而言,在系统处于工作状态时(可热插拔)这些电源均为可替换的,而且是采用电路卡的形式。另一个例子是一个可能由交流电适配器、USB或者电池电源供电的设备。 ORing 架构 电源组合的拓扑如图 1 所示。二级管符号可能以半导体二极管的形式来实现,或由一个较高性能的功能模块来实现。从物理层面来说,ORing 可以被置于数个地方。如果聚合在 B 线的左边,那么 ORing 可以被放置在电源中。如果置于 A 线和 B 线之间,那么 ORing 同样可以被放置在背板或者中间板上。最后,如果置于 A 线的右边,那么 ORing 则可以被放置在负载中。 图1、多个电源输入

软件冗余的原理和配置

软件冗余的原理和配置 7.1 软件冗余基本信息介绍 软件冗余是Siemens实现冗余功能的一种低成本解决方案,可以应用于对主备系统切换时间为秒级的控制系统中。 7.1.1系统结构 Siemens软件冗余系统的软件、硬件包括: (1)1套STEP7编程软件(V5.2或更高)加软冗余软件包(V1.x); (2)2套PLC控制器及I/O模块,可以是S7-300(313C-2DP,314C-2DP,31X-2DP)或S7-400(全部S7-400系列CPU)系统; (3)3条通讯链路,主系统与从站通讯链路(PROFIBUS 1)、备用系统与从站通讯链路(PROFIBUS 2)、主系统与备用系统的数据同步通讯链路(MPI 或 PROFIBUS 或 Ethernet); (4)若干个ET200M从站,每个从站包括2个IM153-2接口模块和若干个I/O模块;Y-Link不能用于软冗余系统; (5)除此之外,还需要一些相关的附件,用于编程和上位机监控的PC-Adapter(连接在计算机串口)或CP5611(插在主板上的PCI槽上)或CP5511(插在笔记本的 PCMIA槽里)、PROFIBUS电缆、PROFIBUS总线链接器等。 系统架构如图7-1所示: 图7-1软冗余的系统架构

可以看出,系统是由两套独立的S7-300或S7-400 PLC系统组成,软冗余能够实现: 主机架电源、背板总线等冗余;PLC处理器冗余;PROFIBUS现场总线网络冗余(包括通讯接口、总线接头、总线电缆的冗余);ET200M站的通讯接口模块IM153-2冗余。 软冗余系统由A和B两套PLC控制系统组成。开始时,A系统为主,B系统为备用,当主系统A中的任何一个组件出错,控制任务会自动切换到备用系统B当中执行,这时,B 系统为主,A系统为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153接口模块的整体切换。系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换,这种手动切换过程,对于控制系统的软硬件调整,更换,扩容非常有用,即Altering Configuration and Application Program in RUN Mode 。 7.1.2 系统工作原理 在软冗余系统进行工作时,A、B控制系统(处理器,通讯、I/O)独立运行,由主系统的PLC掌握对ET200从站中的I/O控制权。A、B系统中的PLC程序由非冗余(non-duplicated)用户程序段和冗余(redundant backup)用户程序段组成,主系统PLC执行全部的用户程序,备用系统PLC只执行非冗余用户程序段,而跳过冗余用户程序段。 软冗余系统内部的运行过程参考图7-2。 图7-2软冗余系统内部的运行过程 主系统的CPU将数据同步到备用系统的CPU需要1到几个程序扫描循环,如图7-3所示:

摘要_论述了冗余热备份电源的工作原理和设计方案

一种冗余热备份电源的设计 摘要:在设计某高可靠性计算机系统时,要求其配套电源采取冗余设计。一般来说,可以采取的方案有容量冗余、冗余冷备份方式、并联均流的N+1备份方式、冗余热备份方式。本文论述了冗余热备份电源的工作原理和设计方案。 关键词:正激变换器;冗余热备份;或门二极管 0、引言 在设计某高可靠性计算机系统时,要求其配套电源采取冗余设计。一般来说,可以采取的方案有容量冗余、冗余冷备份方式、并联均流的N+1备份方式、冗余热备份方式。 容量冗余是指电源的最大负载能力大于实际负载,也就是“大马拉小车”,其缺点是不利于提高电源的效率,而且对提高电源的可靠性意义不大。 冗余冷备份方式是指电源由两个或多个功能相同的单元模块组成,电源启动后由其中一个单元模块向设备供电,当工作单元发生故障时,备份单元立刻启动向设备供电。这种方式的缺点是备份单元的启动到输出电压的建立需要一定的时间,容易造成输出电压出现较大的豁口,这样会对被供电的设备产生影响。 并联均流的N+1备份方式是指电源由多个功能相同的单元组成,所有单元的输出功率之和大于系统要求的功率,各单元的输出通过或门二极管并联在一起,有时输出采取均流控制电路,目前采用较多的就是这种方式。N+1备份方式由于是多个单元同时向设备供电,单个单元故障(失效)一般不会对输出电压产生影响,但是,如果输出线发生故障容易波及到所有单元。 冗余热备份方式是指电源由多个功能相同的单元组成,电源启动时所有单元同时工作,由其中预先设定的单元向设备供电,备份单元处于空载状态,当向设备供电的单元出现故障时,备份单元立刻向设备供电,维持了输出电压的稳定。这种方式的优点是工作单元故障后,备份单元输出响应速度快,可以保证输出电压只在一个很小的范围内波动。 本文详细论述了采取冗余热备份方式的电源设计方案。 1、工作原理 冗余热备份结构的主电路由两个功能相同且同时处于工作状态的单元组成,由切换电路控制其中一路向设备供电,另一路空载。当向设备供电的单元发生故障时,切换电路立即动作,使另一个单元向设备供电,同时切断故障单元的输出。 主电路拓扑采用正激变换器,由输入滤波电路、功率变换电路、控制电路、输出滤波电路、监测切换电路组成。电源框图如图1所示。DC 28V输入经过滤波后提供给功率变换电路,控制电路通过实时检测来控制功率变换电路,以实现输出隔离稳定的5V电压,同时对输出电压进行过压、过流保护。

原创-IBM刀柜L2-3交换机与网络的冗余配置

NORTEL L2-3层交换机现有trunk上增加ext3操作步骤目前刀柜上的配置是GbESM-1#的ext1、ext2设置trunk group 1, 与之对应的是在我司核心CoreA的g6/45、g6/47(port channel group on) 目前3个刀片服务器共享这2G的带宽,同时允许vlan 2、110、202、204、166的通过。

由于带宽使用的不足,想要在现有的基础上再增加1路带宽,即把GbESM-1#的ext3连接CoreA核心交换机的g6/43端口,同时增加到目前的trunk group 1并生效,以下为操作步骤,请帮忙检查确认,谢谢! 1、在CoreA的g6/43启用以下命令,与g6/45、g6/47合并至同一个channel group 1并生效: switchport trunk encapsulation dot1q switchport mode trunk channel-group 1 mode on 2、在刀柜Switch Port设置中启用ext3的VLAN tagging与PVID tagging 3、在刀柜Switch Port设置ext3的PVID与ext1、ext2一致:1 4、在刀柜Switch Trunk Group 1中增加ext3 5、在刀柜VLANs Configuration中修改每个VLAN ID(2、110、16 6、202、204),将ext3增加至Ports in Vlan 6、Save Apply生效

NORTEL L2-3层交换机现有模式上增加GbESM-2#操作步骤 在上述实现GbESM-1#的ext1、ext2、ext3汇聚冗余后,为了实现对GbESM交换机的冗余,决定增加启用GbESM-2#交换机,实现如下图示功能: 注:图中红色部分为新增功能,其余功能已经设置并实现;Trunk允许所有VLAN通过;GbESM_1、GbESM_2的管理IP及网关均已经设置好。

冗余配置例子

1 引言 Controllogix是Rockwell公司在1998年推出AB系列的模块化PLC,代表了当前PLC发展的最高水平,是目前世界上最具有竞争力的控制系统之一,Control- logix将顺序控制、过程控制、传动控制及运动控制、通讯、I/O技术集成在一个平台上,可以为各种工业应用提供强有力的支持,适用于各种场合,最大的特点是可以使用网络将其相互连接,各个控制站之间能够按照客户的要求进行信息的交换。 Controllogix可以提供完善的控制器的冗余功能,采用热备的方式构建控制器,两个控制器框架采用完全相同的配置,它们之间使用同步电缆连接,不仅控制器可以采用热备,通讯网络也可以采用相似的方式进行热备,除以上的部分可以热备外,控制器的电源也可以进行热备,这样大大提高了控制器的运行的可靠性。 2 系统介绍 在某焦化厂干熄焦汽轮机发电项目的DCS控制系统中,采用了冗余的Controllogix,系统结构如图1所示。上位机通过交换机与PLC处理器通讯,远程框架通过冗余的ControlNet连接到控制器框架,同时,远程框架采用了冗余电源配置。整套系统具有很高的可靠性,满足了汽轮机发电系统对于PLC控制部分需要长期无故障运行的要求。上位机采用Rsview32软件,用以监控现场设备的运行。 图1 系统结构图 本地框架由L1和L2 框架构成,运行时L1和L2互为热备,构成了冗余,L1和L2框架各个槽位的所配置的模块如表1所示。R1,R2和R3是远程框架,所有的点号都连接到远程框架的模块,远程框架的供电使用了AB的冗余电源(1756-PAR2)。 收藏 引用 muzi_woody 1楼2007-9-21 7:41:00 表1 L1和L2框架各个槽位的所配置的模块 设置主从控制器框架的1756-CNBR/D的节点地址时应注意,他们的地址拨码应该相同,应该是系统中挂接在冗余ControlNET网上所有节点的最高地址,在本系统里面都设置为4,远程站的节点地址分别为1,2,3。在冗余系统正常运行时,从控制器框架的CNBR/D 节点地址会自动加1,变为5。 1757-SRM是用于同步的冗余模块,主从控制器框架的SRM通过光纤连接。正常工作时,1756- L61中所有的程序和数据通过光纤进行同步,在RSLOGIX5000编程中,不必对此模块进行组态。 1756-ENBT是以太网接口模块,通过网线连接到交换机。ENBT的地址分配为两个连续的IP即可,在这个系统中IP地址分别为192.168.1.11和192.168.1.12。 3 模块的升级 冗余系统中,主控制器框架和从控制器框架上各个模块的版本必须严格一致,

一种冗余热备份电源的设计

一种冗余热备份电源的设计 作者:祝海强,尹明 摘要:论述了冗余热备份电源的工作原理和设计方案。 关键词:正激变换器;冗余热备份;或门二极管 0 引言 在设计某高可靠性计算机系统时,要求其配套电源采取冗余设计。一般来说,可以采取的方案有容量冗余、冗余冷备份方式、并联均流的N+1备份方式、冗余热备份方式。 容量冗余是指电源的最大负载能力大于实际负载,也就是“大马拉小车”,其缺点是不利于提高电源的效率,而且对提高电源的可靠性意义不大。 冗余冷备份方式是指电源由两个或多个功能相同的单元模块组成,电源启动后由其中一个单元模块向设备供电,当工作单元发生故障时,备份单元立刻启动向设备供电。这种方式的缺点是备份单元的启动到输出电压的建立需要一定的时间,容易造成输出电压出现较大的豁口,这样会对被供电的设备产生影响。 并联均流的N+1备份方式是指电源由多个功能相同的单元组成,所有单元的输出功率之和大于系统要求的功率,各单元的输出通过或门二极管并联在一起,有时输出采取均流控制电路,目前采用较多的就是这种方式。N+1备份方式由于是多个单元同时向设备供电,单个单元故障(失效)一般不会对输出电压产生影响,但是,如果输出线发生故障容易波及到所有单元。 冗余热备份方式是指电源由多个功能相同的单元组成,电源启动时所有单元同时工作,由其中预先设定的单元向设备供电,备份单元处于空载状态,当向设备供电的单元出现故障时,备份单元立刻向设备供电,维持了输出电压的稳定。这种方式的优点是工作单元故障后,备份单元输出响应速度快,可以保证输出电压只在一个很小的范围内波动。 本文详细论述了采取冗余热备份方式的电源设计方案。 1 工作原理 冗余热备份结构的主电路由两个功能相同且同时处于工作状态的单元组成,由切换电路控制其中一路向设备供电,另一路空载。当向设备供电的单元发生故障时,切换电路立即动作,使另一个单元向设备供电,同时切断故障单元的输出。 主电路拓扑采用正激变换器,由输入滤波电路、功率变换电路、控制电路、输出滤波电路、监测切换电路组成。电源框图如图1所示。DC 28V输入经过滤波后提供给功率变换电路,控制电路通过实时检测来控制功率变换电路,以实现输出隔离稳定的5V电压,同时对输出电压进行过压、过流保护。

软冗余和硬冗余的区别

从字面上讲,也就是实现的方式上: 1)软冗余是通过软件实现,也就是是西门子的SWR软件包;硬冗余,则是使用CPU417H;414H;412H来实现,对于PLC 本身的操作系统及硬件设置上均不同,硬冗余的同步机理为事件同步。 2)硬冗余的两个热备系统必须使用相同的PLC;软冗余的两个暖被系统可以使用不同的PLC。 3)硬冗余的同步链路采用同步模块和光纤,有长距,短距两种;软冗余则使用MPI,DP(CP343-5,CP443-5)和IE(CP343-1,CP443-1),程序内部调用的是xsend/xrcv;AGsend/rcv以及Bsend/rcv(仅对400),这也就是为什么S7-300 PN CPU 无法使用集成PN口来实现同步的原因。 从性能上来: 1)冗余的层级:软冗余无法进行IO冗余;IO冗余仅能在硬冗余里实现。 此外,Y-link仅能在硬冗余中实现。 2)系统切换的时间:硬冗余:PLC无切换时间,因为程序同时在两个CPU里运行,硬冗余里成为主动切换;被动切换,也就是从站切换的时间<100ms; 对于软冗余,冗余程序仅在主CPU内执行,备用CPU仅执行非冗余段程序,切换时为整个系统的切换。切换时间取决于同步链路的类型,速率和同步数据量的大小,DP从站的多少,多为秒级。 对于切换,软冗余系统中,DP从站的接口模板或DP链路故障均会造成主备CPU的切换,而引起整个系统的切换;而在硬冗余中,从站的故障不会造成主备CPU的切换。 3)信息的丢失:2)提到了切换,很自然的,CPU间的切换可能导致部分信息,如报警的丢失,因为报警在当前激活的主CPU 中进行处理。所以,软冗余系统中会存在信息的丢失;而硬冗余系统中,由于CPU间为事件同步的方式,且切换无时间,保证了信息不会丢失,也就是硬冗余中所说的平滑切换。 4)通信架构: 400H系统与上位机间的通信有多种架构,需要使用CP1613和redconnect实现,网络构成方式:双通道,四通道,单环,双环等;400H间建立的是容错S7连接。 5)H-CiR功能: 硬冗余系统支持H-Cir功能,可在线修改组态,增删模板,更换存储卡等

S7-400冗余系统组态

S7-400冗余系统组态 S7-400 H硬件组态 以例子的形式介绍S7-400H系统的组态过程 2.1 例子所需硬件和软件 1、硬件: 一套S7-400H PLC,包括 (1) 1个安装机架UR2-H (2) 2个电源模板PS 407 10A (3) 2个容错CPU,CPU414-4H或CPU 417-4H (4) 4个同步子模板 (5) 2根光缆 一个ET200M分布式I/O 设备,包括 (6) 2个IM 153-2 (7) 1个数字量输入模板 (8) 1个数字量输出模板 必备的附件,如PROFIBUS 屏蔽电缆及网络连接器等。 2、软件: STEP 7 V5.3 SP2标准版(已集成冗余选件包)或更高版本。 2.2硬件安装 (1)设置机架号 CPU V3版本,通过同步子模板上的开关设置; CPU V4版本,通过CPU背板上的开关设置; CPU通电后此机架号生效。 (2)将同步子模板插到CPU板中。 (3)连接同步光缆 将两个位于上部的同步子模板相连; 将两个位于下部的同步子模板相连; 在打开电源或启动系统之前要确保CPU的同步光缆已经连接。同步光纤的连接如图2-1所示: 图2-1 S7-400H 同步光纤的连接 (4)组态分布式I/O站ET200M ,使其作为具有切换功能的DP从站。 (5)将编程器连到第一个容错CPU(CPU0)上,此CPU 为S7-400H 的主CPU。 (6)通电后CPU自检查 CPU第一次通电时,将执行一次RAM 检测工作,约需3分钟。这段时间内CPU 不接收通过MPI 接口来的数据,并且STOP LED 灯闪烁。如果有备用电池,再次通电时不再做此项检查工作。 (7)启动CPU 装入程序后执行一个热启动操作:首先启动主CPU ,然后启动热备CPU。 2.3 使用STEP 7 进行组态 2.3.1创建项目组态S7-400H 在STEP7中新建一个项目,在Insert菜单下的Station选项中选择SIMATIC H Station,添 加一个新的S7-400H的站,如图2-2所示:

工业以太网交换机环网冗余的实现

Network World ? 网络天地Electronic Technology & Software Engineering 电子技术与软件工程? 11【关键词】工业 以太网技术 冗余 工业以太网它的成本低,效率高,方便 安装且功耗较低吸引了越来越多的厂商。控制 系统和自动化系统通常使用的该技术来完成任 务。核电力的实际应用在许多领域,电力和运 输是一个复杂的工业,控制环境变化使用户对 以太网的可靠性的要求也越来越高。为了保证 整个通信系统的网络系统不受干扰通信系统的 影响,或产生其他通信或通信系统瘫痪的问题, 以太网冗余技术被广泛采用来提高容错率。 1 工业以太网技术 以太网具有通信速率高、兼容性好、互 联扩展性好、功耗低、安装方便等优点。所谓 的工业以太网是什么?其实就是在工业上广泛 应用的一种技术,与其他以太网的技术都是类 似的。因此,工业以太网技术继承了以太网技 术的优势,与传统的现场总线相比较具有很多 优点。主要的有点体现在下面几个方面: (1)以太网在计算机网络技术中的应 用中最为广泛,它得到了广泛的技术支持。 以太网最典型的应用形式是以太网+TCP/ IP+Web 。常用的编程语言,如Java 、Visual C++和Visual Basic ,都支持以太网的应用开发, 这些编程语言特别受欢迎,软件开发人员都喜 欢应用这些编程语言,开发前景一片良好。工 业控制领域采用以太网通信,可以选择更多的 开发工具,开发环境。 (2)由于商用以太网的广泛应用,主要 的通信设备开发商和制造商致力于以太网交换 机的开发和生产,这使得工业以太网交换机更 便宜。因为他应用的广泛,硬件价格很低,现 在以太网网卡它的价格在现场总线价格的十分 之一左右,而且随着集成电路技术的快速发展, 其价格还会更低。 (3)目前,该技术比较成熟,广泛使用 的以太网通信速率为10M 、100M 和1000M 。 这比任何当前的现场总线都快。因此,以太网 能够满足工业控制对带宽不断增长的要求。工业以太网交换机环网冗余的实现 文/孟飞 (4)基于TCP/IP 协议模型的以太网是完全开放的。因此,信息网络与控制网络可以实现无缝集成。因此,嵌入式控制器、智能现场测控仪器和传感器可以方便地连接到现场控制网络,甚至管理网络。2 环网冗余技术以太网环网是环网冗余最为简单的拓扑结构。任何网络节点都有一个交换机和两个相邻的节点。如果其中一个端口被设置成了默认阻止,那么我们可以认为交换机此时工作正常,用来防止以太网的数据帧转发,并且保证它在物理上是一个循环,不论它有没有逻辑循环。所以,一般主交换机有两个端口,同时也存在两个检测问题的办法。首先端口为主端口和辅助端口,检测方法为故障报警以及循环检测,主端口包括环路上其他设备的端口,辅助端口为拥塞端口一般只存在一个,而检测主要是为了保证环网的连通性,以防发生问题。(1)主设备节点首先要转发端口,其次发送循环检测,所谓循环检测就是按照规定时间发送检测帧,它的功能为检测环网的问题,当它正常工作时主设备节点的下级端口就会接收环网一周左右的检测帧,但是在规定时间中没有接收到检测帧,主设备节点会快速的打开阻塞端口。以此保证它在逻辑上的线性结构,紧接着主设备节点要进行的是清空交换机中的转发表(FDB 表),清空之后会发送数据包,然后剩下的节点都会跟从主设备节点清空FDB 表。这样的话所有交换机就会学习新的网络拓扑。交换机的接口出现问题时就会向主设备节点报警,以此来打开拥塞控制,然后清空FDB 表,一般的环网交换机都存在两个接口,任意一个发生问题都会报警。在最后主节点将数据包发送到环上的每一个节点,节点接到指示后清空FDB 表并学习全新的拓扑结构。(2)环网冗余切换机制在环网出现问题的情况下,主要的设备实现节点定期发送测试帧在主端口,如果环网故障恢复,那么下一个测试帧就会准时接收端口,然后主节点就会恢复正常,从时间端口就会拥塞控制包,更新FDB 表,给传输节点发送控制消息,传输节点接收指示,根据指示内容也会更新FDB 表,并学习新的网络拓扑。3 以太网中环网冗余的具体实现之所以快速环网会被研究出来,主要是为了方便用户发现环网中存在的问题,以方便 及时的修复,以免造成更大的损失。这个技术是美国知名的控制公司研究实现的,它的工作原理主要如下:当环网出现断链的问题时,就可以在交换机上报警,用户就会收到报警的消息,从而及时的处理问题,该项技术的优点就是,可以快速的修复环网在网络上的故障,也是以此来减少因故障带来的损失。快速环网技术使用过程中时,我们可以形成一个简单地环网,首先在众多交换机当中设置一个主交换机,其次把每一个交换机的两个端口相互连接,还需要把每个交换机都设置成快速环网,这样连接的两个端口就可以保持正常运行。在主交换机的网络中会存在备用端口,所谓备用端口就是在紧急情况下可以进行网络修复的。网络在正常运行时,备用端口进入休眠状态,不会影响每个交换机之间的相互工作,如果备用端口被激活。那么就证明线缆连接中出现了问题,备用端口就会发挥它的作用,保证环网工作的正常进行,指导主交换机发起报警,出现的问题被修复之后,备用端口就会再次进入休眠状态。而且快速环网还可以支持双环网的连接,在每一个方面都会拥有更大的灵活性。4 总结随着工业以太网技术在工业控制领域的广泛应用,其可靠性越来越受到重视。保证工业以太网可靠性的方法是利用设备冗余为以太网中的交换设备和链路提供冗余保护。参考文献[1]周乐文.高可靠千兆以太网交换机研究[D].长沙:国防科技大学,2011.[2]邹航宇.工业以太网冗余协议研究[D].上海:上海交通大学,2013.[3]孙明刚.工业以太网中冗余问题的研究[D].成都:西南大学,2008.作者简介孟飞(1986-),男,河北省无极县人。硕士研究生学历。工程师。主要研究方向为计算机网络。作者单位北京计算机技术及应用研究所 北京市 100854

相关文档
相关文档 最新文档